Mineral Content of Apple, Sour Cherry and Peach Pomace and the Impact of Their Application on Bakery Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Technological Method of Obtaining Breads
2.3. Sample Preparation
2.4. Elemental Analysis
2.5. Statistical Analysis
3. Results and Discussions
3.1. Mineral Content of Apple, Sour Cherry and Peach Pomace
3.2. Mineral Content in Breads Enriched with Apple, Cherry and Peach Pomace
3.3. Covering the Daily Mineral Requirements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PM | Bread with added apple pomace |
PV | Bread with added sour cherry pomace |
PP | Bread with added peach pomace |
References
- Raczkowska, E.; Serek, P. Health-Promoting Properties and the Use of Fruit Pomace in the Food Industry—A Review. Nutrients 2024, 16, 2757. [Google Scholar] [CrossRef]
- Martin-Dominguez, V.; Garcia-Montalvo, J.; Garcia-Martin, A.; Ladero, M.; Santos, V.E. Fumaric Acid Production by R. arrhizus NRRL 1526 Using Apple Pomace Enzymatic Hydrolysates: Kinetic Modelling. Processes 2022, 10, 2624. [Google Scholar] [CrossRef]
- Struck, S.; Rohm, H. Fruit processing by-products as food ingredients. In Valorization of Fruit Processing By-Products; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–16. [Google Scholar] [CrossRef]
- Kruczek, M.; Drygaś, B.; Habryka, C. Pomace in fruit industry and their contemporary potential application. World Sci. News 2016, 48, 259–265. [Google Scholar]
- Weyh, C.; Krüger, K.; Peeling, P.; Castell, L. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients 2022, 14, 644. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, M.; Gutierrez, J.; Komarnytsky, S. Essential Minerals and Metabolic Adaptation of Immune Cells. Nutrients 2023, 15, 123. [Google Scholar] [CrossRef]
- Kim, M.-H.; Choi, M.-K. Seven dietary minerals (Ca, P, Mg, Fe, Zn, Cu, and Mn) and their relationship with blood pressure and blood lipids in healthy adults with self-selected diet. Biol. Trace Elem. Res. 2013, 153, 69–75. [Google Scholar] [CrossRef]
- Lukaski, H.C. Vitamin and mineral status: Effects on physical performance. Nutrition 2004, 20, 632–644. [Google Scholar] [CrossRef]
- Dewettinck, K.; Van Bockstaele, F.; Kühne, B.; Van de Walle, D.; Courtens, T.M.; Gellynck, X. Nutritional value of bread: Influence of processing, food interaction and consumer perception. J. Cereal Sci. 2008, 48, 243–257. [Google Scholar] [CrossRef]
- Coțovanu, I.; Stroe, S.-G.; Ursachi, F.; Mironeasa, S. Addition of Amaranth Flour of Different Particle Sizes at Established Doses in Wheat Flour to Achieve a Nutritional Improved Wheat Bread. Foods 2023, 12, 133. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Razzaque, M.S.; Wimalawansa, S.J. Minerals and Human Health: From Deficiency to Toxicity. Nutrients 2025, 17, 454. [Google Scholar] [CrossRef]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The Epidemiology of Global Micronutrient Deficiencies. Ann. Nutr. Metab. 2015, 66 (Suppl. S2), 22–33. [Google Scholar] [CrossRef] [PubMed]
- Vrech, M.; Ferruzzi, A.; Pietrobelli, A. Effects of micronutrient and phytochemical supplementation on cardiovascular health in obese and overweight children: A narrative review. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Awuchi, C.G.; Igwe, V.S.; Amagwula, I.O.; Echeta, C.K. Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. Int. J. Food Sci. 2020, 3, 1–32. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Dziki, D.; Gawlik-Dziki, U.; Parol-Nadłonek, N.; Kalisz, S.; Krajewska, A.; Stępniewska, S. Wheat Bread Enriched with Black Chokeberry (Aronia melanocarpa L.) Pomace: Physicochemical Properties and Sensory Evaluation. Appl. Sci. 2023, 13, 6936. [Google Scholar] [CrossRef]
- Torbica, A.; Škrobot, D.; Hajnal, E.J.; Belović, M.; Zhang, N. Sensory and physico-chemical properties of wholegrain wheat bread prepared with selected food by-products. LWT 2019, 114, 108414. [Google Scholar] [CrossRef]
- Bhat, I.M.; Wani, S.M.; Mir, S.A.; Naseem, Z. Effect of microwave-assisted vacuum and hot air oven drying methods on quality characteristics of apple pomace powder. Food Prod. Process. Nutr. 2023, 5, 26. [Google Scholar] [CrossRef]
- Fernández-Fernández, A.M.; Dellacassa, E.; Nardin, T.; Larcher, R.; Gámbaro, A.; Medrano-Fernandez, A.; del Castillo, M.D. In Vitro Bioaccessibility of Bioactive Compounds from Citrus Pomaces and Orange Pomace Biscuits. Molecules 2021, 26, 3480. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, N.; Farrell, M.; O’Sullivan, L.; Langan, A.; Franchin, M.; Azevedo, L.; Granato, D. Effectiveness of anthocyanin-containing foods and nutraceuticals in mitigating oxidative stress, inflammation, and cardiovascular health-related biomarkers: A systematic review of animal and human interventions. Food Funct. 2024, 15, 3274–3299. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, P.; Šėžienė, V.; Pyrzynska, K. Mineral Composition of Wild and Cultivated Blueberries. Biol. Trace Elem. Res. 2018, 181, 173–177. [Google Scholar] [CrossRef]
- Singh, S.; Kulshrestha, K. Peach juice and pomace powder; nutritive value and use of pomace powder in biscuits. Int. J. Food Sci. Technol. 2016, 6, 5–16. [Google Scholar]
- Kruczek, M.; Gumul, D.; Kačániová, M.; Ivanišhová, E.; Mareček, J.; Gambuś, H. Industrial Apple Pomace By-Products as a Potential Source of Pro-Health Compounds in Functional Food. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 22–26. [Google Scholar] [CrossRef]
- Neshovska, H. Determination of the Chemical and Mineral Composition of Apple Pomace in Relation to Its Utilisation as an Innovative Feed Raw Material. Tradit. Mod. Vet. Med. 2024, 9, 72–80. [Google Scholar]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.-M.; Tou, J.C. A Comprehensive Analysis of the Composition, Health Benefits, and Safety of Apple Pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef] [PubMed]
- Oney-Montalvo, J.; Uc-Varguez, A.; Ramírez-Rivera, E.; Ramírez-Sucre, M.; Rodríguez-Buenfil, I. Influence of Soil Composition on the Profile and Content of Polyphenols in Habanero Peppers (Capsicum chinense Jacq.). Agronomy 2020, 10, 1234. [Google Scholar] [CrossRef]
- Purkiewicz, A.; Gul, F.H.; Pietrzak-Fiećko, R. The Utilization of Vegetable Powders for Bread Enrichment—The Effect on the Content of Selected Minerals, Total Phenolic and Flavonoid Content, and the Coverage of Daily Requirements in the Human Diet. Appl. Sci. 2024, 14, 10022. [Google Scholar] [CrossRef]
- Abera, S.; Yohannes, W.; Chandravanshi, B.S. Effect of processing methods on antinutritional factors (oxalate, phytate, and tannin) and their interaction with minerals (calcium, iron, and zinc) in red, white, and black kidney beans. Int. J. Anal. Chem. 2023, 2023, 6762027. [Google Scholar] [CrossRef]
- García-Sartal, C.; del Carmen Barciela-Alonso, M.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. Study of cooking on the bioavailability of As, Co, Cr, Cu, Fe, Ni, Se and Zn from edible seaweed. Microchem. J. 2013, 108, 92–99. [Google Scholar] [CrossRef]
- Stanciu, I.; Ungureanu, E.L.; Popa, E.E.; Geicu-Cristea, M.; Draghici, M.; Mitelut, A.C.; Mustatea, G.; Popa, M.E. The Experimental Development of Bread with Enriched Nutritional Properties Using Organic Sea Buckthorn Pomace. Appl. Sci. 2023, 13, 6513. [Google Scholar] [CrossRef]
- Cantero, L.; Salmerón, J.; Miranda, J.; Larretxi, I.; Fernández-Gil, M.d.P.; Bustamante, M.Á.; Matias, S.; Navarro, V.; Simón, E.; Martínez, O. Performance of Apple Pomace for Gluten-Free Bread Manufacture: Effect on Physicochemical Characteristics and Nutritional Value. Appl. Sci. 2022, 12, 5934. [Google Scholar] [CrossRef]
- Lidiková, J.; Čeryová, N.; Musilová, J.; Vollmannová, A.; Trebichalský, P. Impact of Grape Pomace Addition on the Mineral Profile of Long-Life Bakery Products. Waste Forum 2025, 1, 16–21. [Google Scholar]
- Tomar, M.; Bhardwaj, R.; Verma, R.; Singh, S.P.; Dahuja, A.; Krishnan, V.; Kansal, R.; Yadav, V.K.; Praveen, S.; Sachdev, A. Interactome of millet-based food matrices: A review. Food Chem. 2022, 385, 132636. [Google Scholar] [CrossRef]
- Miller, D.D. Minerals, in Fennema’s Food Chemistry; CRC Press: Boca Raton, FL, USA, 2017; pp. 627–679. [Google Scholar]
- Ahuja, A.; Parmar, D. Role of Minerals in Reproductive Health of Dairy Cattle: A Review. Int. J. Livest. Res. 2017, 7, 16–26. [Google Scholar] [CrossRef]
- Haider, A.M.; Ali, A.; Saleh, E.A.M.; Jalil, A.T.; Abdulelah, F.M.; Romero-Parra, R.M.; Alkhayyat, A.S. The Role of Chromium Supplementation in Cardiovascular Risk Factors: A Comprehensive Reviews of Putative Molecular Mechanisms. Heliyon 2023, 9, e19826. [Google Scholar] [CrossRef]
- Demina, E.N.; Safronova, O.V.; Kuprina, I.K.; Kochieva, I.V.; Abaeva, S.K. Research of the mineral composition of freeze-dried plant powders. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 848, p. 012040. [Google Scholar] [CrossRef]
- Fiorentini, D.; Cappadone, C.; Farruggia, G.; Prata, C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients 2021, 13, 1136. [Google Scholar] [CrossRef]
- Gutzeit, D.; Winterhalter, P.; Jerz, G. Nutritional Assessment of Processing Effects on Major and Trace Element Content in Sea Buckthorn Juice (Hippophaë Rhamnoides L. Ssp. Rhamnoides). J. Food Sci. 2008, 73, H97–H102. [Google Scholar] [CrossRef] [PubMed]
- Udensi, U.K.; Tchounwou, P.B. Potassium Homeostasis, Oxidative Stress, and Human Disease. Int. J. Clin. Exp. Physiol. 2017, 4, 111. [Google Scholar] [CrossRef] [PubMed]
Sample | Apple Pomace | Sour Cherry Pomace | Peach Pomace |
---|---|---|---|
Calcium (mg/100 g) | 10.1100 ± 0.0100 c | 39.5400 ± 0.0900 a | 25.0000 ± 0.0300 b |
Chromium (mg/100 g) | 0.0065 ± 0.0001 c | 0.0085 ± 0.0001 b | 0.0093 ± 0.0005 a |
Copper (mg/100 g) | 0.1200 ± 0.0001 c | 0.4800 ± 0.0004 a | 0.2600 ± 0.0003 b |
Iron (mg/100 g) | 0.3300 ± 0.0004 c | 0.9700 ± 0.0030 a | 0.8200 ± 0.0010 b |
Potassium (mg/100 g) | 209.6300 ± 0.4900 c | 327.3400 ± 0.7100 b | 542.1400 ± 0.9000 a |
Magnesium (mg/100 g) | 8.8800 ± 0.0100 c | 19.8100 ± 0.0150 b | 23.9100 ± 0.0300 a |
Manganese (mg/100 g) | 0.1600 ± 0.0001 b | 0.2300 ± 0.0007 a | 0.2700 ± 0.0003 a |
Sodium (mg/100 g) | 1.9600 ± 0.0001 c | 2.1800 ± 0.0100 b | 2.5600 ± 0.0100 a |
Zinc (mg/100 g) | 0.0900 ± 0.0006 b | 0.1400 ± 0.0009 b | 0.33 ± 0.0002 a |
Mineral Content | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sample | Ca (mg/100 g) | Cr (mg/100 g) | Cu (mg/100 g) | Fe (mg/100 g) | K (mg/100 g) | Mg (mg/100 g) | Mn (mg/100 g) | Na (mg/100 g) | Zn (mg/100 g) |
Control sample | 73.13 ± 0.1 g | 0.016 ± 0.0008 a | 0.15 ± 0.0001 de | 0.50 ± 0.0001 e | 91.73 ± 0.18 j | 16.46 ± 0.05 h | 0.43 ± 0.0008 e | 362.89 ± 0.81 b | 0.48 ± 0.0001 cd |
Pm 5% | 225.30 ± 0.21 c | 0.015 ± 0.0001 ab | 0.14 ± 0.0005 e | 0.56 ± 0.0004 d | 119.38 ± 0.01 i | 18.75 ± 0.07 c | 0.53 ± 0.003 a | 269.51 ± 0.30 c | 0.50 ± 0.001 bc |
Pm 10% | 212.25 ± 0.80 e | 0.011 ± 0.0008 b | 0.15 ± 0.0003 de | 0.56 ± 0.0001 d | 132.74 ± 0.18 f | 17.55 ± 0.03 e | 0.52 ± 0.0003 a | 198.96 ± 0.10 h | 0.55 ± 0.05 a |
Pm 15% | 166.92 ± 0.70 f | 0.012 ± 0.0001 ab | 0.17 ± 0.0002 cde | 0.57 ± 0.001 d | 151.00 ± 0.18 c | 17.36 ± 0.04 g | 0.49 ± 0.001 b | 244.58 ± 0.30 g | 0.45 ± 0.0003 fg |
Pv 5% | 221.22 ± 0.40 d | 0.012 ± 0.0001 ab | 0.17 ± 0.0003 cde | 0.57 ± 0.0007 d | 119.73 ± 0.14 h | 17.55 ± 0.03 e | 0.46 ± 0.0006 d | 266.17 ± 0.60 d | 0.42 ± 0.0003 h |
Pv 10% | 370.77 ± 0.41 a | 0.013 ± 0.0002 ab | 0.19 ± 0.0001 bcd | 0.62 ± 0.0004 c | 145.25 ± 0.08 e | 19.02 ± 0.0002 b | 0.47 ± 0.0002 cd | 258.23 ± 0.33 f | 0.47 ± 0.0005 de |
Pv 15% | 369.56 ± 0.10 b | 0.012 ± 0.0001 ab | 0.22 ± 0.0001 ab | 0.63 ± 0.001 c | 168.40 ± 0.30 b | 19.48 ± 0.04 a | 0.47 ± 0.001 cd | 261.38 ± 0.75 e | 0.44 ± 0.0002 gh |
Pp 5% | 19.70 ± 0.02 i | 0.013 ± 0.0007 ab | 0.22 ± 0.0001 ab | 0.83 ± 0.0009 b | 150.26 ± 0.16 d | 17.53 ± 0.05 ef | 0.36 ± 0.0003 fg | 97.81 ± 0.14 j | 0.56 ± 0.0003 a |
Pp 10% | 18.92 ± 0.04 j | 0.012 ± 0.0007 ab | 0.21 ± 0.0001 abc | 0.80 ± 0.002 b | 130.62 ± 0.32 g | 17.51 ± 0.02 f | 0.38 ± 0.01 f | 111.39 ± 0.24 i | 0.57 ± 0.0004 a |
Pp 15% | 23.75 ± 0.05 h | 0.013 ± 0.0008 ab | 0.24 ± 0.0001 a | 0.92 ± 0.001 a | 209.33 ± 0.37 a | 18.36 ± 0.06 d | 0.35 ± 0.0009 g | 363.27 ± 0.60 a | 0.51 ± 0.0001 b |
Nutrient | Recommended Dietary Allowances and Adequate Intake | The Average Content in Breads with Added Apple Pomace | The Average Content in Breads with Added Sour Cherry Pomace | The Average Content in Breads with Added Peach Pomace | |
---|---|---|---|---|---|
Unit | DRI | ||||
Calcium | mg | 1000 | 201.49 ± 0.57 | 320.52 ± 0.30 | 20.79 ± 0.04 |
Chromium | mg | 0.035 | 0.013 ± 0.0003 | 0.012 ± 0.0001 | 0.013 ± 0.0007 |
Copper | mg | 0.9 | 0.15 ± 0.0003 | 0.19 ± 0.0001 | 0.22 ± 0.0001 |
Iron | mg | 8 | 0.56 ± 0.0005 | 0.61 ± 0.0007 | 0.85 ± 0.001 |
Magnesium | mg | 420 | 17.89 ± 0.05 | 18.68 ± 0.02 | 17.8 ± 0.04 |
Manganese | mg | 2.3 | 0.51 ± 0.001 | 0.47 ± 0.0006 | 0.36 ± 0.004 |
Potassium | mg | 3400 | 134.37 ± 0.12 | 144.46 ± 0.17 | 163.40 ± 0.28 |
Sodium | mg | 1500 | 237.68 ± 0.23 | 261.93 ± 0.56 | 190.82 ± 0.33 |
Zinc | mg | 11 | 0.5 ± 0.01 | 0.44 ± 0.0003 | 0.54 ± 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandache, M.B.; Cosmulescu, S. Mineral Content of Apple, Sour Cherry and Peach Pomace and the Impact of Their Application on Bakery Products. Foods 2025, 14, 3146. https://doi.org/10.3390/foods14183146
Mandache MB, Cosmulescu S. Mineral Content of Apple, Sour Cherry and Peach Pomace and the Impact of Their Application on Bakery Products. Foods. 2025; 14(18):3146. https://doi.org/10.3390/foods14183146
Chicago/Turabian StyleMandache, Maria Bianca, and Sina Cosmulescu. 2025. "Mineral Content of Apple, Sour Cherry and Peach Pomace and the Impact of Their Application on Bakery Products" Foods 14, no. 18: 3146. https://doi.org/10.3390/foods14183146
APA StyleMandache, M. B., & Cosmulescu, S. (2025). Mineral Content of Apple, Sour Cherry and Peach Pomace and the Impact of Their Application on Bakery Products. Foods, 14(18), 3146. https://doi.org/10.3390/foods14183146