Optimization of Gluten-Free Bread Formulation Using Whole Sorghum-Based Flour by Response Surface Methodology
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Proximate Compositions
2.3. Bread Making
2.4. Experimental Design and Statistical Analysis
2.5. Evaluation of Gluten-Free Bread Quality
2.5.1. Quantitative Descriptive Analysis (QDA)
2.5.2. Overall Acceptability
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximal Composition of Whole Sorghum-Flour
3.2. Evaluation of the Fitted Model
3.3. Effect of the Ingredients on Whole Sorghum on Bread Making Quality
3.3.1. Milk Powder (MP) and Egg White (EW)
3.3.2. Yeast and Sugar
3.3.3. Psyllium Husk (PsH) and Water
3.3.4. Soy Lecithin (SL) and Xanthan Gum (XG)
3.4. Optimization and Analysis of the Optimized Formulations
3.5. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DATEM | Diacetyl tartaric ester of monoglycerides |
SSL | Sodium stearyl-2-lactylate |
GFB | Gluten-free bread |
RSM | Response surface methodology |
EW | Egg white |
MP | Milk powder |
XG | Xanthan gum |
SL | Soy lecithin |
W | Water |
S | Sugar |
Y | Yeast |
CCD | Central composite design |
References
- Serna-Saldivar, S.O. Cereal Grains: Properties, Processing, and Nutritional Attributes, 1st ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; ISBN 13: 978-1-4398-8209-2. [Google Scholar]
- Adebo, O.A. African Sorghum-Based Fermented Foods: Past, Current and Future Prospects. Nutrients 2020, 12, 1111. [Google Scholar] [CrossRef]
- Stefoska-Needham, A. Sorghum and Health: An Overview of Potential Protective Health Effects. J. Food Sci. 2024, 89, A30–A41. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, W.; Zhao, Y. Phenolic Compounds in Whole Grain Sorghum and Their Health Benefits. Foods 2021, 10, 1921. [Google Scholar] [CrossRef] [PubMed]
- de Morais Cardoso, L.; Pinheiro, S.S.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, Bioactive Compounds, and Potential Impact on Human Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Ramírez, J.; Rodríguez, A.; De la Rosa-Millán, J.; Heredia-Olea, E.; Pérez-Carrillo, E.; Serna-Saldívar, S.O. Shear-Induced Enhancement of Technofunctional Properties of Whole Grain Flours through Extrusion. Food Hydrocoll. 2021, 111, 106400. [Google Scholar] [CrossRef]
- Dykes, L.; Rooney, L.W. Sorghum and Millet Phenols and Antioxidants. J. Cereal Sci. 2006, 44, 236–251. [Google Scholar] [CrossRef]
- Gallagher, E.; Gormley, T.; Arendt, E. Recent Advances in the Formulation of Gluten-Free Cereal-Based Products. Trends Food Sci. Technol. 2004, 15, 143–152. [Google Scholar] [CrossRef]
- Adiamo, O.Q.; Fawale, O.S.; Olawoye, B. Recent Trends in the Formulation of Gluten-Free Sorghum Products. J. Culin. Sci. Technol. 2017, 16, 311–325. [Google Scholar] [CrossRef]
- Capriles, V.D.; Arêas, J.A.G. Novel Approaches in Gluten-Free Breadmaking: Interface between Food Science, Nutrition, and Health. Compr. Rev. Food Sci. Food Saf. 2014, 13, 871–890. [Google Scholar] [CrossRef]
- Schober, T.J.; Messerschmidt, M.; Bean, S.R.; Park, S.-H.; Arendt, E.K. Gluten-Free Bread from Sorghum: Quality Differences Among Hybrids. Cereal Chem. 2005, 82, 394–404. [Google Scholar] [CrossRef]
- Taromsari, A.; Ghiassi Tarzi, B. Optimization of Functional Gluten-Free Cake Formulation Using Rice Flour, Coconut Flour, and Xanthan Gum via D-Optimal Mixture Design. Food Sci. Nutr. 2024, 12, 10734–10755. [Google Scholar] [CrossRef] [PubMed]
- Carson, L.C.; Sun, X.S. Breads from White Grain Sorghum: Rheological Properties and Baking Volume with Exogenous Gluten Protein. Appl. Eng. Agric. 2000, 16, 423–429. [Google Scholar] [CrossRef]
- Admassu Emire, S.; Demelash Tiruneh, D. Optimization of Formulation and Process Conditions of Gluten-Free Breadfrom Sorghum using Response Surface Methodology. J. Food Process. Technol. 2012, 3, 1–11. [Google Scholar] [CrossRef]
- Onyango, C.; Unbehend, G.; Lindhauer, M.G. Effect of Cellulose-Derivatives and Emulsifiers on Creep-Recovery and Crumb Properties of Gluten-Free Bread Prepared from Sorghum and Gelatinised Cassava Starch. Food Res. Int. 2009, 42, 949–955. [Google Scholar] [CrossRef]
- Masure, H.G.; Wouters, A.G.B.; Fierens, E.; Delcour, J.A. Impact of Egg White and Soy Proteins on Structure Formation and Crumb Firming in Gluten-Free Breads. Food Hydrocoll. 2019, 95, 406–417. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J.; Schmidt, Š. Significance of Emulsifiers and Hydrocolloids in Bakery Industry. Acta Chim. Slovaca 2009, 2, 46–61. [Google Scholar]
- Ribotta, P.D.; Perez, G.T.; Leon, A.E.; Anon, M.C. Effect of Emulsifier and Guar Gum on Micro Structural, Rheological and Baking Performance of Frozen Bread Dough. Food Hydrocoll. 2004, 18, 305–313. [Google Scholar] [CrossRef]
- Chakraborty, S.; Singh, N. Wheat Bread Partially Replaced with Fermented Cowpea Flour: Optimizing the Formulation and Storage Study at 25 °C. Meas. Food 2024, 14, 100168. [Google Scholar] [CrossRef]
- Fratelli, C.; Santos, F.G.; Muniz, D.G.; Habu, S.; Braga, A.R.C.; Capriles, V.D. Psyllium Improves the Quality and Shelf Life of Gluten-Free Bread. Foods 2021, 10, 954. [Google Scholar] [CrossRef]
- Bilgiç, H. Effect of Psyllium and Cellulose Fiber Addition on Starch Digestibility for Bread and Cracker. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2022. [Google Scholar]
- Chen, C.-S.; Chen, J.-J.; Wu, T.-P.; Chang, C.-Y. Optimising the Frying Temperature of Gluten Balls Using Response Surface Methodology. J. Sci. Food Agric. 1998, 77, 64–70. [Google Scholar] [CrossRef]
- Monteiro, J.S.; Farage, P.; Zandonadi, R.P.; Botelho, R.B.A.; de Oliveira, L.; Raposo, A.; Shakeel, F.; Alshehri, S.; Mahdi, W.A.; Araújo, W.M.C. A Systematic Review on Gluten-Free Bread Formulations Using Specific Volume as a Quality Indicator. Foods 2021, 10, 614. [Google Scholar] [CrossRef] [PubMed]
- AACC. Approved Methods of Analysis; AACC International: St. Paul, MN, USA, 2015. [Google Scholar]
- Canelo-Álvarez, F.; de Dios Figueroa-Cárdenas, J.; Flores-Casamayor, V. Making Leavened Bread from Nixtamalized Whole Sorghum. J. Cereal Sci. 2023, 112, 103721. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M. Functionality of Starches and Hydrocolloids in Gluten-free Foods. In Gluten-Free Food Science and Technology; Gallagher, E., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2009; pp. 200–224. [Google Scholar] [CrossRef]
- Sandstedt, R.M. The Function of Starch in the Baking of Bread. Bak. Dig. 1961, 35, 36–44. [Google Scholar]
- Houben, A.; Höchstötter, A.; Becker, T. Possibilities to Increase the Quality in Gluten-Free Bread Production: An Overview. Eur. Food Res. Technol. 2012, 235, 195–208. [Google Scholar] [CrossRef]
- Nieto-Mazzocco, E.; Saldaña-Robles, A.; Franco-Robles, E.; Rangel-Contreras, A.K.; Cerón-García, A.; Ozuna, C. Optimization of Sorghum, Rice, and Amaranth Flour Levels in the Development of Gluten-free Bakery Products Using Response Surface Methodology. J. Food Process. Preserv. 2020, 44, e14302. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Bugusu, B.A. Overview: Sorghum Proteins and Food Quality. In Proceedings of the Workshop on the Proteins of Sorghum and Millets: Enhancing Nutritional and Functional Properties for Africa, Pretoria, South Africa, 2–4 April 2003. [Google Scholar]
- Taylor, J.R.; Belton, P.S. Sorghum. In Pseudocereals and Less Common Cereals: Grain Properties and Utilization Potential; Belton, P.S., Taylor, J.R., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002; pp. 25–81. ISBN 3-540-42939-5. [Google Scholar]
- Quiles, A.; Llorca, E.; Schmidt, C.; Reißner, A.-M.; Struck, S.; Rohm, H.; Hernando, I. Use of Berry Pomace to Replace Flour, Fat or Sugar in Cakes. Int. J. Food Sci. Technol. 2018, 53, 1579–1587. [Google Scholar] [CrossRef]
- Hryhorenko, N.; Krupa-Kozak, U.; Bączek, N.; Rudnicka, B.; Wróblewska, B. Gluten-Free Bread Enriched with Whole-Grain Red Sorghum Flour Gains Favourable Technological and Functional Properties and Consumers Acceptance. J. Cereal Sci. 2023, 110, 103646. [Google Scholar] [CrossRef]
- Onyango, C.; Mutungi, C.; Unbehend, G.; Lindhauer, M.G. Rheological and Baking Characteristics of Batter and Bread Prepared from Pregelatinised Cassava Starch and Sorghum and Modified Using Microbial Transglutaminase. J. Food Eng. 2010, 97, 465–470. [Google Scholar] [CrossRef]
- Kumar, R.; Pal, P. Response Surface-Optimized Fenton’s Pre-Treatment for Chemical Precipitation of Struvite and Recycling of Water through Downstream Nanofiltration. Chem. Eng. J. 2012, 210, 33–44. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 1-118-91603-4. [Google Scholar]
- Salamatinia, B.; Hashemizadeh, I.; Ahmad, Z.A. Alkaline Earth Metal Oxide Catalysts for Biodiesel Production from Palm Oil: Elucidation of Process Behaviors and Modeling Using Response Surface Methodology. Iran. J. Chem. Chem. Eng. 2013, 32, 113–126. [Google Scholar]
- Fang, H.; Zhao, C.; Song, X.-Y. Optimization of Enzymatic Hydrolysis of Steam-Exploded Corn Stover by Two Approaches: Response Surface Methodology or Using Cellulase from Mixed Cultures of Trichoderma Reesei RUT-C30 and Aspergillus Niger NL02. Bioresour. Technol. 2010, 101, 4111–4119. [Google Scholar] [CrossRef]
- Temelli, F. Extraction of Triglycerides and Phospholipids from Canola with Supercritical Carbon Dioxide and Ethanol. J. Food Sci. 1992, 57, 440–443. [Google Scholar] [CrossRef]
- Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Christapher, P.V.; Agrawal, R. Validation of QSAR Models—Strategies and Importance. Int. J. Drug Des. Discov. 2011, 2, 511–519. [Google Scholar] [CrossRef]
- Skendi, A.; Papageorgiou, M.; Varzakas, T. High Protein Substitutes for Gluten in Gluten-Free Bread. Foods 2021, 10, 1997. [Google Scholar] [CrossRef] [PubMed]
- Vilgis, T.A. Soft Matter Food Physics—The Physics of Food and Cooking. Rep. Prog. Phys. 2015, 78, 124602. [Google Scholar] [CrossRef]
- Vincenzetti, S.; Pucciarelli, S.; Polzonetti, V.; Polidori, P. Role of Proteins and of Some Bioactive Peptides on the Nutritional Quality of Donkey Milk and Their Impact on Human Health. Beverages 2017, 3, 34. [Google Scholar] [CrossRef]
- Kato, A.; Ibrahim, H.R.; Watanabe, H.; Honma, K.; Kobayashi, K. Structural and Gelling Properties of Dry-Heated Egg White Proteins. J. Agric. Food Chem. 1990, 38, 32–37. [Google Scholar] [CrossRef]
- Antony, J. A systematic methodology for design of experiments. In Design of Experiments for Engineers and Scientists, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 71–98. ISBN 0-443-15174-1. [Google Scholar]
- Nunes, M.H.B.; Ryan, L.A.M.; Arendt, E.K. Effect of Low Lactose Dairy Powder Addition on the Properties of Gluten-Free Batters and Bread Quality. Eur. Food Res. Technol. 2009, 229, 31–41. [Google Scholar] [CrossRef]
- Clarke, C.I.; Schober, T.J.; Dockery, P.; O’Sullivan, K.; Arendt, E.K. Wheat Sourdough Fermentation: Effects of Time and Acidification on Fundamental Rheological Properties. Cereal Chem. 2004, 81, 409–417. [Google Scholar] [CrossRef]
- Chevallier, S.; Colonna, P.; Buléon, A.; Della Valle, G. Physicochemical Behaviors of Sugars, Lipids, and Gluten in Short Dough and Biscuit. J. Agric. Food Chem. 2000, 48, 1322–1326. [Google Scholar] [CrossRef]
- Marti, A.; Bottega, G.; Franzetti, L.; Morandin, F.; Quaglia, L.; Pagani, M.A. From Wheat Sourdough to Gluten-Free Sourdough: A Non-Conventional Process for Producing Gluten-Free Bread. Int. J. Food Sci. Technol. 2015, 50, 1268–1274. [Google Scholar] [CrossRef]
- Adedara, O.A.; Taylor, J.R.N. Roles of Protein, Starch and Sugar in the Texture of Sorghum Biscuits. LWT 2021, 136, 110323. [Google Scholar] [CrossRef]
- Ghorpade, S.R.; Limaye, B.V. A Geometric Approach to Saddle Points of Surfaces. Gaz. Austral. Math. Soc. 2009, 36, 127–136. [Google Scholar]
- Filipčev, B.; Pojić, M.; Šimurina, O.; Mišan, A.; Mandić, A. Psyllium as an Improver in Gluten-Free Breads: Effect on Volume, Crumb Texture, Moisture Binding and Staling Kinetics. LWT 2021, 151, 112156. [Google Scholar] [CrossRef]
- Santos, F.G.; Aguiar, E.V.; Centeno, A.C.L.S.; Rosell, C.M.; Capriles, V.D. Effect of Added Psyllium and Food Enzymes on Quality Attributes and Shelf Life of Chickpea-Based Gluten-Free Bread. LWT 2020, 134, 110025. [Google Scholar] [CrossRef]
- Man, S.; Paucean, A.; Muste, S.; Pop, A.; Muresan, E.A. Influence of Psyllium Husk (Plantago Ovata) on Bread Quality. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca-Food Sci. Technol. 2017, 74, 33–34. [Google Scholar] [CrossRef][Green Version]
- Mironeasa, S.; Codină, G.G. Optimization of Bread Quality of Wheat Flour with Psyllium Addition by Using Response Surface Methodology. J. Culin. Sci. Technol. 2023, 21, 371–386. [Google Scholar] [CrossRef]
- Demirkesen, I.; Mert, B.; Sumnu, G.; Sahin, S. Rheological Properties of Gluten-Free Bread Formulations. J. Food Eng. 2010, 96, 295–303. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, G.; Zhang, J.; Guo, L.; Zhao, W. Psyllium Fibre Inclusion in Gluten-Free Buckwheat Dough Improves Dough Structure and Lowers Glycaemic Index of the Resulting Bread. Foods 2024, 13, 767. [Google Scholar] [CrossRef]
- Marco, C.; Rosell, C.M. Functional and Rheological Properties of Protein Enriched Gluten Free Composite Flours. J. Food Eng. 2008, 88, 94–103. [Google Scholar] [CrossRef]
- Marco, C.; Rosell, C.M. Breadmaking Performance of Protein Enriched, Gluten-Free Breads. Eur. Food Res. Technol. 2008, 227, 1205–1213. [Google Scholar] [CrossRef]
- Sabanis, D.; Tzia, C. Selected Structural Characteristics of HPMC-Containing Gluten Free Bread: A Response Surface Methodology Study for Optimizing Quality. Int. J. Food Prop. 2011, 14, 417–431. [Google Scholar] [CrossRef][Green Version]
- Benkadri, S.; Salvador, A.; Zidoune, M.N.; Sanz, T. Gluten-Free Biscuits Based on Composite Rice–Chickpea Flour and Xanthan Gum. Food Sci. Technol. Int. 2018, 24, 607–616. [Google Scholar] [CrossRef]
- Abdel-Gawad, A.S.; Abd El-Rahman, M.A.M.; Limam, S.A.M.; Abdel-Rahman, A.M.; Ali, A.K. Effect of Different Gums and Water Content on The Physical, Textural and Sensory Properties of Gluten-Free Pan Bread. Assiut J. Agric. Sci. 2023, 54, 23–40. [Google Scholar] [CrossRef]
- Madhuresh, D.; Mishra, H.N.; Deora, N.S.; Baik, O.-D.; Meda, V. A Response Surface Methodology (RSM) for Optimizing the Gluten Free Bread Formulation Containing Hydrocolloid, Modified Starch and Rice Flour. Can. Soc. Bioeng. 2013, 13, 1–9. [Google Scholar]
- Ren, S.; Du, Y.; Zhang, J.; Zhao, K.; Guo, Z.; Wang, Z. Commercial Production of Highly Rehydrated Soy Protein Powder by the Treatment of Soy Lecithin Modification Combined with Alcalase Hydrolysis. Foods 2024, 13, 1800. [Google Scholar] [CrossRef]
- Laureati, M.; Giussani, B.; Pagliarini, E. Sensory and Hedonic Perception of Gluten-Free Bread: Comparison between Celiac and Non-Celiac Subjects. Food Res. Int. 2012, 46, 326–333. [Google Scholar] [CrossRef]
- Rybicka, I.; Doba, K.; Bińczak, O. Improving the Sensory and Nutritional Value of Gluten-Free Bread. Int. J. Food Sci. Technol. 2019, 54, 2661–2667. [Google Scholar] [CrossRef]
Formulations | Ingredients (g) | Term | Coded Levels | ||||
---|---|---|---|---|---|---|---|
−1.4 | −1 | 0 | 1 | 1.4 | |||
F1 | MP | 2.2 | 4.6 | 10.2 | 16.0 | 18.4 | |
EW (mL) | 54.4 | 66.0 | 94.2 | 122.4 | 134.0 | ||
F2 | Sugar | 2.6 | 4.0 | 7.4 | 10.6 | 12.0 | |
Yeast | 0.4 | 2.0 | 6.0 | 10.0 | 11.6 | ||
F3 | PsH | 4.0 | 5.0 | 7.6 | 10.0 | 11.0 | |
Water | 125.8 | 130.0 | 140.0 | 150.0 | 154.2 | ||
F4 | SL | 0.4 | 1.2 | 3.0 | 4.8 | 5.6 | |
XG | 0.4 | 1.2 | 3.0 | 4.8 | 5.6 |
Parameter | (%) |
---|---|
Moisture | 9.70 ± 0.06 |
Crude Protein * | 8.35 ± 0.02 |
Crude Fat * | 3.5 ± 0.01 |
Crude Fiber * | 1.4 ± 0.0 |
Ash * | 1.3 ± 0.04 |
Carbohydrates * | 85.37 ± 0.0 |
Formulation | Predicted Model Equations | (%) | (%) | (%) |
---|---|---|---|---|
Specific volume | ||||
F1 | 84.96 | 81.20 | 72.22 | |
F2 | 85.69 | 82.11 | 73.44 | |
F3 | 82.21 | 77.76 | 66.20 | |
F4 | 84.08 | 80.09 | 66.49 | |
Crumb firmness | ||||
F1 | 81.65 | 77.06 | 69.25 | |
F2 | 84.94 | 81.18 | 70.52 | |
F3 | 83.62 | 79.53 | 67.42 | |
F4 | 85.80 | 82.25 | 76.07 |
Optimization | Optimal Conditions | Specific Volume | Firmness Crumb | |
---|---|---|---|---|
(cm3 g−1) | (N) | |||
C1 | - | - | 1.7 ± 0.4 e | 10.6 ± 0.0 b |
C2 | - | - | 0.9 ± 0.5 f | 34.2 ± 2.1 a |
C3 | - | - | 3.5 ± 0.0 a | 5.8 ± 0.5 cd |
F1 | 8.6 | 67 | 2.2 ± 0.1 d | 8.1 ± 0.4 bc |
F2 | 5.8 | 1.3 | 2.2 ± 0.3 d | 7.6 ± 0.0 bc |
F3 | 3.7 | 75.4 | 2.6 ± 0.0 c | 2.7 ± 0.2 d |
F4 | 1.9 | 0.2 | 2.8 ± 0.1 b | 3.7 ± 0.3 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-España, M.; Figueroa-Hernández, C.Y.; Suárez-Quiroz, M.L.; Canelo-Álvarez, F.; de Dios Figueroa-Cárdenas, J.; González-Ríos, O.; Rayas-Duarte, P.; Hernández-Estrada, Z.J. Optimization of Gluten-Free Bread Formulation Using Whole Sorghum-Based Flour by Response Surface Methodology. Foods 2025, 14, 3113. https://doi.org/10.3390/foods14173113
Rodríguez-España M, Figueroa-Hernández CY, Suárez-Quiroz ML, Canelo-Álvarez F, de Dios Figueroa-Cárdenas J, González-Ríos O, Rayas-Duarte P, Hernández-Estrada ZJ. Optimization of Gluten-Free Bread Formulation Using Whole Sorghum-Based Flour by Response Surface Methodology. Foods. 2025; 14(17):3113. https://doi.org/10.3390/foods14173113
Chicago/Turabian StyleRodríguez-España, Melissa, Claudia Yuritzi Figueroa-Hernández, Mirna Leonor Suárez-Quiroz, Fátima Canelo-Álvarez, Juan de Dios Figueroa-Cárdenas, Oscar González-Ríos, Patricia Rayas-Duarte, and Zorba Josué Hernández-Estrada. 2025. "Optimization of Gluten-Free Bread Formulation Using Whole Sorghum-Based Flour by Response Surface Methodology" Foods 14, no. 17: 3113. https://doi.org/10.3390/foods14173113
APA StyleRodríguez-España, M., Figueroa-Hernández, C. Y., Suárez-Quiroz, M. L., Canelo-Álvarez, F., de Dios Figueroa-Cárdenas, J., González-Ríos, O., Rayas-Duarte, P., & Hernández-Estrada, Z. J. (2025). Optimization of Gluten-Free Bread Formulation Using Whole Sorghum-Based Flour by Response Surface Methodology. Foods, 14(17), 3113. https://doi.org/10.3390/foods14173113