Towards Botanical Authentication of Ginkgo Food Supplements: A Holistic Approach Based on Phytochemical and Genomic Markers
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Ginkgo-Leaf Extracts and Commercial Samples
2.3. DNA Analysis
2.3.1. DNA Extraction
2.3.2. Qualitative PCR and Real-Time PCR
2.4. Phytochemical Analysis
2.4.1. UHPLC-MS/MS Analysis
2.4.2. Sample Preparation and Extraction of Phytochemicals
2.4.3. Method Validation
2.5. Statistical Analysis
3. Results and Discussion
3.1. DNA Analysis
3.1.1. Quality of Extracted DNA
3.1.2. Analysis of Ginkgo Leaf Extracts and PFS
3.2. Phytochemical Analysis
3.2.1. Optimization of UHPLC-MS/MS Conditions
3.2.2. Optimization of the Extraction Method and Validation Tests
3.2.3. Analysis of Ginkgo Leaf Extracts
3.2.4. Analysis of PFS
3.3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Booker, A.; Frommenwiler, D.; Reich, E.; Horsfield, S.; Heinrich, M. Adulteration and poor quality of Ginkgo biloba supplements. J. Herb. Med. 2016, 6, 79–87. [Google Scholar] [CrossRef]
- Garcia-Alvarez, A.; Egan, B.; de Klein, S.; Dima, L.; Maggi, F.M.; Isoniemi, M.; Ribas-Barba, L.; Raats, M.M.; Meissner, E.M.; Badea, M.; et al. Usage of plant food supplements across six European countries: Findings from the PlantLIBRA consumer survey. PLoS ONE 2014, 9, e92265. [Google Scholar] [CrossRef]
- Singh, B.; Kaur, P.; Gopichand; Singh, R.D.; Ahuja, P.S. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008, 79, 401–418. [Google Scholar] [CrossRef] [PubMed]
- Wohlmuth, H.; Savage, K.; Dowell, A.; Mouatt, P. Adulteration of Ginkgo biloba products and a simple method to improve its detection. Phytomedicine 2014, 21, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Gargouri, B.; Carstensen, J.; Bhatia, H.S.; Huell, M.; Dietz, G.P.H.; Fiebich, B.L. Anti-neuroinflammatory effects of Ginkgo biloba extract EGb761 in LPS-activated primary microglial cells. Phytomedicine 2018, 44, 45–55. [Google Scholar] [CrossRef]
- EMA. European Medicines Agency—Assessment Report on Ginkgo biloba L., Folium—EMA/HMPC/321095/2012-Amend. 2015. Available online: https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-ginkgo-biloba-l-folium_en.pdf (accessed on 15 January 2025).
- Czigle, S.; Toth, J.; Jedlinszki, N.; Haznagy-Radnai, E.; Csupor, D.; Tekelova, D. Ginkgo biloba food supplements on the European market—adulteration patterns revealed by quality control of selected samples. Planta Med. 2018, 84, 475–482. [Google Scholar] [CrossRef]
- Orhan, N.; Gafner, S.; Blumenthal, M. Estimating the extent of adulteration of the popular herbs black cohosh, echinacea, elder berry, ginkgo, and turmeric—Its challenges and limitations. Nat. Prod. Rep. 2024, 41, 1604–1621. [Google Scholar] [CrossRef]
- Dhivya, S.; Ragupathy, S.; Kesanakurti, P.; Jeevitha, S.; Noce, I.D.; Newmaster, S.G. Validated identity test method for Ginkgo biloba NHPs using DNA-based species-specific hydrolysis PCR probe. J. AOAC Int. 2019, 102, 1779–1786. [Google Scholar] [CrossRef]
- Little, D.P. Authentication of Ginkgo biloba herbal dietary supplements using DNA barcoding. Genome 2014, 57, 513–516. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.-Y.; Wei, X.-M.; Gao, Z.-T.; Han, J.-P. Rapid authentication of Ginkgo biloba herbal products using the recombinase polymerase amplification assay. Sci. Rep. 2018, 8, 8002. [Google Scholar] [CrossRef]
- Grazina, L.; Amaral, J.S.; Costa, J.; Mafra, I. Authentication of Ginkgo biloba herbal products by a novel quantitative real-time PCR approach. Foods 2020, 9, 1233. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines. European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019; Volume I. [Google Scholar]
- Grazina, L.; Mafra, I.; Monaci, L.; Amaral, J.S. Mass spectrometry-based approaches to assess the botanical authenticity of dietary supplements. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3870–3909. [Google Scholar] [CrossRef]
- Avula, B.; Wang, Y.H.; Smillie, T.J.; Khan, I.A. Column liquid chromatography/electrospray ionization-time of flight-mass spectrometry and ultraperformance column liquid chromatography/mass spectrometry methods for the determination of ginkgolides and bilobalide in the leaves of Ginkgo biloba and dietary supplements. J. AOAC Int. 2009, 92, 645–652. [Google Scholar] [CrossRef]
- Chen, C.; Duan, L.-N.; Zhou, X.-L.; Chen, B.-L.; Fu, C.-X. Molecular authentication of geo-authentic Scrophularia ningpoensis. J. Zhejiang Univ. Sci. B 2011, 12, 393–398. [Google Scholar] [CrossRef]
- Ding, S.; Dudley, E.; Plummer, S.; Tang, J.; Newton, R.P.; Brenton, A.G. Fingerprint profile of Ginkgo biloba nutritional supplements by LC/ESI-MS/MS. Phytochemistry 2008, 69, 1555–1564. [Google Scholar] [CrossRef]
- Demirezer, L.Ö.; Büyükkaya, A.; Uçaktürk, E.; Kuruüzüm-Uz, A.; Güvenalp, Z.; Palaska, E. Adulteration determining of pharmaceutical forms of Ginkgo biloba extracts from different international manufacturers. Rec. Nat. Prod. 2014, 8, 394–400. [Google Scholar]
- Liu, X.-G.; Yang, H.; Cheng, X.-L.; Liu, L.; Qin, Y.; Wang, Q.; Qi, L.-W.; Li, P. Direct analysis of 18 flavonol glycosides, aglycones and terpene trilactones in Ginkgo biloba tablets by matrix solid phase dispersion coupled with ultra-high performance liquid chromatography tandem triple quadrupole mass spectrometry. J. Pharmaceut. Biomed. Anal. 2014, 97, 123–128. [Google Scholar] [CrossRef]
- Wang, L.-T.; Fan, X.-H.; Jian, Y.; Dong, M.-Z.; Yang, Q.; Meng, D.; Fu, Y.-J. A sensitive and selective multiple reaction monitoring mass spectrometry method for simultaneous quantification of flavonol glycoside, terpene lactones, and biflavonoids in Ginkgo biloba leaves. J. Pharmaceut. Biomed. Anal. 2019, 170, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Avula, B.; Sagi, S.; Gafner, S.; Upton, R.; Wang, Y.H.; Wang, M.; Khan, I.A. Identification of Ginkgo biloba supplements adulteration using high performance thin layer chromatography and ultra high performance liquid chromatography-diode array detector-quadrupole time of flight-mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 7733–7746. [Google Scholar] [CrossRef]
- Ma, Y.-C.; Mani, A.; Cai, Y.; Thomson, J.; Ma, J.; Peudru, F.; Chen, S.; Luo, M.; Zhang, J.; Chapman, R.G.; et al. An effective identification and quantification method for Ginkgo biloba flavonol glycosides with targeted evaluation of adulterated products. Phytomedicine 2016, 23, 377–387. [Google Scholar] [CrossRef]
- Cruz, M.B.; Place, B.J.; Wood, L.J.; Urbas, A.; Wasik, A.; de Carvalho Rocha, W.F. A nontargeted approach to determine the authenticity of Ginkgo biloba L. plant materials and dried leaf extracts by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and chemometrics. Anal. Bioanal. Chem. 2020, 412, 6969–6982. [Google Scholar] [CrossRef]
- Song, J.; Fang, G.; Zhang, Y.; Deng, Q.; Wang, S. Fingerprint analysis of Ginkgo biloba leaves and related health foods by high-performance liquid chromatography/electrospray ionization-mass spectrometry. J. AOAC Int. 2010, 93, 1798–1805. [Google Scholar] [CrossRef]
- Costa, J.; Amaral, J.S.; Fernandes, T.J.R.; Batista, A.; Oliveira, M.B.P.P.; Mafra, I. DNA extraction from plant food supplements: Influence of different pharmaceutical excipients. Mol. Cell. Probe 2015, 29, 473–478. [Google Scholar] [CrossRef]
- Villa, C.; Costa, J.; Oliveira, M.B.P.P.; Mafra, I. Novel quantitative real-time PCR approach to determine safflower (Carthamus tinctorius) adulteration in saffron (Crocus sativus). Food Chem. 2017, 229, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Könczöl, Á.; Rendes, K.; Dékány, M.; Müller, J.; Riethmüller, E.; Balogh, G.T. Blood-brain barrier specific permeability assay reveals N-methylated tyramine derivatives in standardised leaf extracts and herbal products of Ginkgo biloba. J. Pharmaceut. Biomed. Anal. 2016, 131, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Spréa, R.M.; Caleja, C.; Pinela, J.; Finimundy, T.C.; Calhelha, R.C.; Kostić, M.; Sokovic, M.; Prieto, M.A.; Pereira, E.; Amaral, J.S.; et al. Comparative study on the phenolic composition and in vitro bioactivity of medicinal and aromatic plants from the Lamiaceae family. Food Res. Int. 2022, 161, 111875. [Google Scholar] [CrossRef]
- Paíga, P.; Rodrigues, M.J.E.; Correia, M.; Amaral, J.S.; Oliveira, M.B.P.P.; Delerue-Matos, C. Analysis of pharmaceutical adulterants in plant food supplements by UHPLC-MS/MS. Eur. J. Pharmac. Sci. 2017, 99, 219–227. [Google Scholar] [CrossRef]
- Paíga, P.; Santos, L.H.M.L.M.; Delerue-Matos, C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC–MS/MS. J. Pharmaceut. Biomed. Anal. 2017, 135, 75–86. [Google Scholar] [CrossRef]
- Wenzl, T.; Haedrich, J.; Schaechtele, A.; Robouch, P.; Stroka, J. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food. 2016. Available online: https://food.ec.europa.eu/system/files/2017-05/animal-feed-guidance_document_lod_en.pdf (accessed on 1 March 2025).
- Kulić, Ž.; Lehner, M.D.; Dietz, G.P.H. Ginkgo biloba leaf extract EGb 761® as a paragon of the product by process concept. Front. Pharmacol. 2022, 13, 1007746. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- ENGL. Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing. European Network of GMO Laboratories, Join Research Centre, EURL. 2015. Available online: https://gmo-crl.jrc.ec.europa.eu/doc/MPR%20Report%20Application%2020_10_2015.pdf (accessed on 15 March 2025).
- Monnin, C.; Ramrup, P.; Daigle-Young, C.; Vuckovic, D. Improving negative liquid chromatography/electrospray ionization mass spectrometry lipidomic analysis of human plasma using acetic acid as a mobile-phase additive. Rapid Commun. Mass Spectrom. 2018, 32, 201–211. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, W.; Phelps, M.A.; Wu, D.; Miller, D.D.; Dalton, J.T. Favorable effects of weak acids on negative-ion electrospray ionization mass spectrometry. Anal. Chem. 2004, 76, 839–847. [Google Scholar] [CrossRef]
- Patel, K.; Panchal, N.; Ingle, P. Review of extraction techniques extraction methods: Microwave, ultrasonic, pressurized fluid, soxhlet extraction, etc. Int. J. Adv. Res. Chem. Sci. 2019, 6, 6–21. [Google Scholar] [CrossRef]
- Van Beek, T.A. Chemical analysis of Ginkgo biloba leaves and extracts. J. Chromatogr. A 2002, 967, 21–55. [Google Scholar] [CrossRef] [PubMed]
- Van Beek, T.A.; Montoro, P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A 2009, 1216, 2002–2032. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Cao, B.; Yi, Y.; Huang, S.; Chen, X.; Luo, S.; Mou, X.; Guo, T.; Wang, Y.; Wang, Y.; et al. DNA precipitation revisited: A quantitative analysis. Nano Sel. 2022, 3, 617–626. [Google Scholar] [CrossRef]
- Andersen, O.M.; Markham, K.R. Flavonoids: Chemistry, Biochemistry and Applications, 1st ed.; Taylor & Francis Group CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Carrier, D.J.; van Beek, T.A.; van der Heijden, R.; Verpoorte, R. Distribution of ginkgolides and terpenoid biosynthetic activity in Ginkgo biloba. Phytochemistry 1998, 48, 89–92. [Google Scholar] [CrossRef]
- Lu, X.; Yang, H.; Liu, X.; Shen, Q.; Wang, N.; Qi, L.-W.; Li, P. Combining metabolic profiling and gene expression analysis to reveal the biosynthesis site and transport of ginkgolides in Ginkgo biloba L. Front. Plant Sci. 2017, 8, 872. [Google Scholar] [CrossRef]
Code | Commercial Samples | Relevant Label Information | Qualitative PCR | Cq (Mean ± SD 1) | Ginkgo DNA (pg) (Mean ± SD 1) |
---|---|---|---|---|---|
#1 | Ginkgo biloba capsules | G. biloba leaves (80%) and dry extract 50:1 (24% flavonol glycosides, 6% terpene lactones) (12%) (28.8 mg flavonol glycosides, 7.2 mg terpene lactones per 2 capsules, 920 mg) | + | 23.56 ± 0.21 | 3714.5 ± 479.2 |
#2 | Ginkoro tablets | G. biloba leaves 400 mg (0.5% flavonoids), G. biloba dry extract 20 mg (24% flavonoids) per 2 capsules (660 mg) | + | 27.64 ± 0.36 | 220.1 ± 33.1 |
#3 | Cerebrum + ginkgo capsules | G. biloba (11 mg) per capsule (495 mg). | ND 2 | ND | |
#4 | Ginkgo biloba capsules | G. biloba dry extract (24% flavonoids). Capsule of 461 mg. | + | 29.37 ± 0.35 | 66.24 ± 10.70 |
#5 | Ginkgo biloba tablets | G. biloba dry extract (100 mg); flavonol glycosides (24 mg); terpene lactones (6 mg) per capsule (433 mg). | + | 24.69 ± 0.16 | 1691.2 ± 189.1 |
#6 | Ginseng + Ginkgo + Gotu kola capsules (pure herb) | G. biloba (130 mg/capsule of 450 mg) | + | 30.39 ± 0.46 | 33.26 ± 8.93 |
#7 | Ginkgo biloba capsules (pure herb) | G. biloba (500 mg/capsule) | + | 22.84 ± 0.21 | 6107.4 ± 654.5 |
#8 | Ginseng and Ginkgo biloba tablets | G. biloba extract (60 mg) | ± | 32.06 ± 0.39 | 10.42 ± 2.65 |
#9 | Non-alcoholic liquid extract of Ginkgo biloba | G. biloba leaf extract (125 mg) (water/glycerine) | ± | 38.14 ± 1.21 | 0.22 ± 0.17 |
#10 | Liquid extract of Ginkgo biloba | G. biloba leaf extract (250 mg) (water/glycerine) | ± | 38.82 ± 0.95 | <LOD 3 |
#11 | Liquid extract of Ginkgo biloba | G. biloba L. leaves (lyophilised extract, 120 mg/dose) (water/glycerine). Flavonoids: 6 mg/3 mL. | + | 36.50 ± 0.99 | 0.72 ± 0.21 |
#12 | Hydroalcoholic extract of ginkgo | G. biloba leaf + button extract 10% (330 mg/dose) | + | 37.58 ± 0.67 | 0.30 ± 0.12 |
#13 | Hydroalcoholic extract of ginkgo | G. biloba leaf extract (30% alcohol) | + | 36.69 ± 0.88 | 0.27 ± 0.09 |
#14 | Hydroalcoholic extract of ginkgo | G. biloba extract | + | 36.87 ± 0.99 | 0.35 ± 0.10 |
#15 | Hydroalcoholic extract of ginkgo | G. biloba young leaves (5% plant) (25% ethanol) | + | 34.11 ± 0.36 | 1.69 ± 0.42 |
#16 | Hydroalcoholic extract of ginkgo | G. biloba L. leaves (45% alcohol) | ND | ND | |
#17 | Hydroalcoholic extract of ginkgo | G. biloba fresh plant (65% alcohol) | + | 34.83 ± 0.38 | 1.54 ± 0.46 |
#18 | Hydroalcoholic extract of ginkgo | G. biloba (10.3% plant) (32% alcohol) | + | 33.14 ± 0.19 | 4.65 ± 0.58 |
#19 | Hydroalcoholic extract of ginkgo | G. biloba leaves (65% alcohol) | + | 35.62 ± 0.33 | 0.88 ± 0.17 |
Leaf Extracts | (-)-Bilobalide | Ginkgolide A | Ginkgolide B | Ginkgolide C | Ginkgolide J | Isorhamnetin | Kaempferol | Quercetin Dihydrate |
---|---|---|---|---|---|---|---|---|
Concentration (mg/kg) ± RSD (%) | ||||||||
70% EtOH | 2819.99 ± 6.28 | 1992.02 ± 5.78 | 1135.42 ± 7.72 | 1194.03 ± 6.99 | 663.28 ± 2.18 | 229.10 ± 0.53 | 86.16 ± 6.75 | 215.37 ± 7.17 |
50% EtOH | 2898.02 ± 1.75 | 1488.69 ± 1.93 | 993.60 ± 7.60 | 1246.72 ± 7.97 | 777.24 ± 0.53 | 294.27 ± 7.39 | 127.13 ± 6.06 | 235.03 ± 1.81 |
30% EtOH | 3079.95 ± 6.93 | 1215.09 ± 1.57 | 762.58 ± 5.42 | 1073.11 ± 3.12 | 665.13 ± 2.85 | 370.49 ± 7.44 | 163.40 ± 6.11 | 255.59 ± 6.26 |
Water | 2241.63 ± 1.96 | 811.25 ± 3.06 | 806.44 ± 2.93 | 1164.17 ± 4.96 | 634.96 ± 2.39 | 33.48 ± 1.46 | 4.93 ± 7.01 | 33.22 ± 1.59 |
60% Acetone | 2762.67 ± 2.50 | 1098.65 ± 1.37 | 1047.36 ± 1.43 | 1285.56 ± 2.08 | 756.23 ± 2.17 | 286.04 ± 1.80 | 126.07 ± 6.03 | 217.47 ± 4.29 |
LOD (mg/kg) | 3.75 | 0.47 | 0.50 | 0.30 | 2.50 | 5.98 | 0.05 | 1.07 |
LOQ (mg/kg) | 12.75 | 1.56 | 1.50 | 1.00 | 8.50 | 19.92 | 0.20 | 3.55 |
Sample | (-)-Bilobalide | Ginkgolide A | Ginkgolide B | Ginkgolide C | Ginkgolide J | Isorhamnetin | Kaempferol | Quercetin Dihydrate |
---|---|---|---|---|---|---|---|---|
Solid PFS-Concentration (mg/kg) ± RSD 1 (%) | ||||||||
#1 | 561.09 ± 2.21 | 332.97 ± 7.14 | 146.85 ± 2.63 | 202.81 ± 3.18 | 137.10 ± 4.06 | 188.08 ± 5.96 | 31.93 ± 4.10 | 1399.22 ± 1.48 |
#2 | 149.91 ± 0.94 | 136.14 ± 2.67 | 145.30 ± 3.03 | 174.91 ± 3.36 | 62.46 ± 8.07 | 92.35 ± 5.00 | 42.11 ± 5.98 | 295.61 ± 10.20 |
#3 | 482.83 ± 6.62 | 349.60 ± 8.54 | 366.34 ± 2.26 | 364.11 ± 4.40 | 168.40 ± 3.47 | 33.72 ± 6.35 | 30.71 ± 9.84 | 159.62 ± 11.5 |
#4 | 2359.69 ± 3.99 | 616.92 ± 3.69 | 246.37 ± 4.80 | 1471.26 ± 2.81 | 550.86 ± 5.78 | 803.97 ± 3.76 | 326.22 ± 2.12 | 7277.71 ± 1.82 |
#5 | 4387.90 ± 6.32 | 1845.86 ± 9.14 | 1363.47 ± 6.62 | 2470.34 ± 5.64 | 897.12 ± 5.44 | 218.08 ± 8.10 | 186.92 ± 6.61 | 665.62 ± 10.8 |
#6 | 291.29 ± 3.42 | 274.57 ± 8.49 | 212.44 ± 2.28 | 251.94 ± 2.69 | 158.63 ± 3.02 | 209.11 ± 4.40 | 237.61 ± 2.51 | 277.80 ± 2.97 |
#7 | 442.25 ± 1.63 | 375.3 ± 3.17 | 332.20 ± 1.78 | 309.42 ± 1.71 | 156.37 ± 2.82 | 78.46 ± 4.19 | 40.71 ± 2.13 | 112.59 ± 7.62 |
#8 | 0.300 ± 20.5 | 0.980 ± 13.4 | <LOD | <LOD | 0.380 ± 12.8 | <LOD | <LOD | 1.34 ± 8.12 |
LOD 2 (mg/kg) | 0.003 | 0.001 | 0.001 | 0.001 | 0.14 | 0.047 | 0.002 | 0.11 |
LOQ 3 (mg/kg) | 0.008 | 0.002 | 0.002 | 0.003 | 0.458 | 0.157 | 0.005 | 0.378 |
Liquid PFS-Concentration (mg/L) ± RSD (%) | ||||||||
#9 | 122.85 ± 1.34 | 158.30 ± 1.05 | 39.46 ± 4.11 | 67.90 ± 5.78 | 14.87 ± 3.46 | 5.35 ± 8.15 | 2.99 ± 5.87 | 4.76 ± 5.40 |
#10 | 256.59 ± 4.13 | 143.40 ± 4.72 | 62.91 ± 4.16 | 101.20 ± 1.84 | 34.28 ± 1.94 | 10.62 ± 4.04 | 4.95 ± 8.42 | 9.06 ± 2.97 |
#11 | 257.33 ± 2.29 | 311.62 ± 6.23 | 408.03 ± 1.25 | 231.53 ± 6.03 | 42.44 ± 2.41 | 1.47 ± 7.10 | 30.86 ± 2.08 | 65.37 ± 8.10 |
#12 | 39.38 ± 5.42 | 9.77 ± 1.25 | 7.34 ± 3.50 | 11.39 ± 3.30 | 5.40 ± 0.43 | 1.74 ± 8.57 | 1.08 ± 5.27 | 1.48 ± 4.29 |
#13 | 376.90 ± 6.65 | 128.69 ± 1.38 | 93.97 ± 6.47 | 142.11 ± 5.16 | 64.11 ± 1.41 | 33.53 ± 4.12 | 36.00 ± 7.27 | 56.70 ± 2.62 |
#14 | 475.84 ± 5.98 | 193.23 ± 2.61 | 121.45 ± 8.12 | 214.89 ± 7.47 | 79.95 ± 1.07 | 27.53 ± 2.05 | 17.04 ± 7.62 | 38.99 ± 4.12 |
#15 | 57.77 ± 3.35 | 20.18 ± 1.31 | 19.62 ± 2.91 | 34.52 ± 5.09 | 7.45 ± 3.69 | 3.78 ± 4.76 | 3.72 ± 6.71 | 3.85 ± 0.41 |
#16 | 93.59 ± 1.60 | 101.47 ± 5.94 | 66.06 ± 1.47 | 72.22 ± 3.24 | 34.66 ± 3.76 | 3.43 ± 4.37 | 4.27 ± 5.45 | 9.30 ± 5.08 |
#17 | 157.32 ± 4.66 | 63.69 ± 1.53 | 56.53 ± 6.22 | 66.97 ± 1.73 | 43.24 ± 1.44 | 37.35 ± 3.59 | 32.99 ± 3.83 | 35.10 ± 6.45 |
#18 | 1.91 ± 2.45 | 5.79 ± 1.37 | 12.83 ± 2.68 | 13.78 ± 2.15 | 0.74 ± 4.55 | 1.91 ± 2.88 | 0.63 ± 4.81 | 0.33 ± 5.76 |
#19 | 211.29 ± 3.11 | 30.07 ± 1.99 | 37.29 ± 8.51 | 73.05 ± 2.17 | 85.62 ± 4.18 | 26.39 ± 1.91 | 16.63 ± 6.54 | 35.01 ± 5.91 |
LOD (mg/L) | 0.30 | 0.05 | 0.10 | 0.06 | 0.13 | 0.30 | 0.08 | 0.27 |
LOQ (mg/L) | 1.00 | 0.10 | 0.38 | 0.18 | 0.43 | 0.99 | 0.26 | 0.91 |
Sample | Labeled | Estimated by UHPLC-MS/MS | ||
---|---|---|---|---|
Terpene Lactones | Flavonol Glycosides 1/ Flavonoids 2 | Terpene Lactones | Flavonol Aglycones | |
Concentration (mg/kg) | ||||
#1 | 7826.1 | 31,304.3 1 | 1380.8 | 1619.2 |
#2 | 33,333.3 2 | 668.7 | 430.1 | |
#4 | 240,000.0 2 | 5245.1 | 8407.9 | |
#5 | 13,856.8 | 55,427.3 1 | 10,964.7 | 1070.6 |
Concentration (mg/L) | ||||
#11 | 2000 2 | 1251.0 | 97.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grazina, L.; Paíga, P.; Amaral, J.S.; Costa, J.; Moreira, M.M.; Delerue-Matos, C.; Mafra, I. Towards Botanical Authentication of Ginkgo Food Supplements: A Holistic Approach Based on Phytochemical and Genomic Markers. Foods 2025, 14, 3111. https://doi.org/10.3390/foods14173111
Grazina L, Paíga P, Amaral JS, Costa J, Moreira MM, Delerue-Matos C, Mafra I. Towards Botanical Authentication of Ginkgo Food Supplements: A Holistic Approach Based on Phytochemical and Genomic Markers. Foods. 2025; 14(17):3111. https://doi.org/10.3390/foods14173111
Chicago/Turabian StyleGrazina, Liliana, Paula Paíga, Joana S. Amaral, Joana Costa, Manuela M. Moreira, Cristina Delerue-Matos, and Isabel Mafra. 2025. "Towards Botanical Authentication of Ginkgo Food Supplements: A Holistic Approach Based on Phytochemical and Genomic Markers" Foods 14, no. 17: 3111. https://doi.org/10.3390/foods14173111
APA StyleGrazina, L., Paíga, P., Amaral, J. S., Costa, J., Moreira, M. M., Delerue-Matos, C., & Mafra, I. (2025). Towards Botanical Authentication of Ginkgo Food Supplements: A Holistic Approach Based on Phytochemical and Genomic Markers. Foods, 14(17), 3111. https://doi.org/10.3390/foods14173111