Preliminary Study on the Mechanism of the Influence of Saline Oat Pasture on Muscle Metabolism and Meat Quality of Tibetan Sheep
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.1.1. Oat Sample Collection
2.1.2. Experimental Design of Oat Feeding in Different Areas of Cultivation
2.1.3. Tibetan Sheep Meat Sample Collection
2.2. Determination of Soil Mineral Elements
2.3. Oat Quality Analysis
2.3.1. Nutritional Values Analysis of Oats
2.3.2. Determination of Oats Quality Indices
2.3.3. Free Amino Acid-Targeted Metabolomics Determination of Oats
2.3.4. Fatty Acid-Targeted Metabolomics Determination of Oats
2.3.5. Monosaccharide-Targeted Metabolomics Determination of Oats
2.3.6. Untargeted Metabolomics Determination of Oats
2.4. Determination of Meat Quality
2.4.1. Determination of Carcass Traits
2.4.2. Determination of Meat-Eating Quality
2.4.3. Determination of Meat Sensory Evaluation
2.4.4. Determination of Meat Nutritional Quality
2.4.5. Free Amino Acid and Fatty Acid Contents in Tibetan Sheep Meat
2.4.6. Untargeted Metabolomics Determination of Tibetan Sheep Meat
2.5. Data Processing and Analysis
3. Results
3.1. Analysis of Soil Mineral Elements
3.2. Regional Variations in Oat Nutritional Quality and Metabolite Composition
3.2.1. Analysis of Oat Nutritional Values
3.2.2. Calculation of Oat Quality Indices
3.2.3. Targeted Metabolomics Analysis of Oats
Free Amino Acid-Targeted Metabolomics Analysis of Oats
Fatty-Acid-Targeted Metabolomics Analysis of Oats
Monosaccharide-Targeted Metabolomics Analysis in Oats
3.2.4. Untargeted Metabolomics Analysis of Oats Metabolites
Identification and Analysis of Differential Metabolites in Oats
Bioinformatics Analysis of Differential Metabolites in Oats
3.2.5. Correlation Between Oats Quality Parameters and Metabolomics
3.3. Meat Quality Analysis
3.3.1. Carcass Traits
3.3.2. Meat Sensory Evaluation Analysis
3.3.3. Meat-Eating Quality Analysis
3.3.4. Meat Nutritional Quality Analysis
3.3.5. Targeted Metabolomics Analysis of Meat
Free Amino Acid Analysis of Meat
Fatty Acid Analysis of Meat
3.3.6. Untargeted Metabolomics Analysis of Tibetan Sheep Meat
Quality Control Analysis
Bioinformatics Analysis of Differential Metabolites in Meat
3.3.7. Correlation Analysis
3.4. Relationship Between Quality and Metabolites of Oats Grown in Saline Soil and Quality and Metabolites of Tibetan Sheep Meat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Li, R.; Ying, Y.; Zhang, Y.; Huang, Y.; Wu, H.; Lin, K. Non-Genetic Factors Affecting the Meat Quality and Flavor of Inner Mongolian Lambs: A Review. Front. Vet. Sci. 2022, 9, 1067880. [Google Scholar] [CrossRef]
- Liang, M. Microbial Characteristics and Functions and Their Influencing Factors of Rhizosphere Soil of Four Plants in the Caka Salt Lake area of Qinghai, China. Master’s Thesis, Forestry Northwest A & F University, Xi’an, China, 2023. [Google Scholar]
- Morsy, S.; Elbasyoni, I.S.; Baenziger, S.; Abdallah, A.M. Gypsum Amendment Influences Performance and Mineral Absorption in Wheat Cultivars Grown in Normal and Saline-sodic Soils. J. Agron. Crop Sci. 2022, 208, 675–692. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Zhang, Z.; Li, X.; Li, L.; Chai, X.; Zeng, F. Soil Improvement Effect of Planting Seven Gramineous Plants in Saline-Alkali Soil in the Northern Xinjiang. Pratacultural Sci. 2023, 40, 1210–1219. [Google Scholar]
- Wu, W.; Ge, R.; Wang, J.; Wei, X.; Zhao, Y.; Pu, X.; Xu, C. Comparative Study on Production Performance of Different Oat (Avena sativa) Varieties and Soil Physicochemical Properties in Qaidam Basin. Plants 2025, 14, 1978. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Peng, D.; Kong, X.; Zhang, Q.; Wang, X.; Liu, H.; Yang, H. Evaluation of Production Performance and Nutritional Value of Five Forage Oats Varieties in Saline-Alkali Soil of Songnen Plain. Feed. Res. 2023, 46, 132–136. [Google Scholar]
- Bai, J.; Liu, J.; Zhang, N.; Yang, J.; Sa, R.; Wu, L. Effect of Alkali Stress on Soluble Sugar, Antioxidant Enzymes and Yield of Oat. J. Integr. Agric. 2013, 12, 1441–1449. [Google Scholar] [CrossRef]
- Yang, S.; Chu, N.; Zhou, H.; Li, J.; Feng, N.; Su, J.; Deng, Z.; Shen, X.; Zheng, D. Integrated Analysis of Transcriptome and Metabolome Reveals the Regulation of Chitooligosaccharide on Drought Tolerance in Sugarcane (Saccharum spp. Hybrid) under Drought Stress. Int. J. Mol. Sci. 2022, 23, 9737. [Google Scholar] [CrossRef]
- Ge, S.; Han, L.; Hou, S.; Yuan, Z.; Gui, L.; Sun, S.; Yang, C.; Wang, Z.; Yang, B. Influence of Cooking Methods on Flavor Parameters and Sensory Quality of Tibetan Sheep Meat Examined Using an Electronic Nose, an Electronic Tongue, GC-IMS, and GC-MS. Foods 2025, 14, 2181. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Hou, S.; Raza, S.H.A.; Wang, Z.; Yang, B.; Sun, S.; Ding, B.; Gui, L.; Simal-Gandara, J.; et al. Effects of Different Feeding Regimes on Muscle Metabolism and Its Association with Meat Quality of Tibetan Sheep. Food Chem. 2022, 374, 131611. [Google Scholar] [CrossRef] [PubMed]
- Liang, J. Effects of Salicornia europaea L. Extract on Growth Performance, Digestibility, Slaughter Performance and Meat Quality of Sheep. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2022. [Google Scholar]
- Qiu, J.; Huang, M.; Wang, Z.; Wang, X.; Feng, Q.; Qian, X.; Gao, Y.; Zhang, Z.; Li, H.; Guo, H. Effects of Alfalfa Grown in Saline Alkali Soil on Growth and Slaughter Performance, Meat Quality, Organ Development and Serum Biochemical Indexes of Mutton Sheep. J. Econ. Anim. 2022, 27, 84–89. [Google Scholar]
- Moreno, G.M.; Borba, H.; Araújo, G.G.; Sañudo, C.; Sobrinho, A.G.S.; Buzanskas, M.E.; Júnior, D.M.L.; de Almeida, V.V.; Neto, O.B. Oscar Boaventura. Meat Quality of Lambs Fed Different Saltbush Hay (Atriplex Nummularia) Levels. Ital. J. Anim. Sci. 2015, 14, 3302. [Google Scholar] [CrossRef]
- Pearce, K.L.; Norman, H.C.; Hopkins, D.L. The Role of Saltbush-Based Pasture Systems for the Production of High Quality Sheep and Goat Meat. Small Rumin. Res. 2009, 91, 29–38. [Google Scholar] [CrossRef]
- Liu, H.; Xu, T.; Xu, S.; Ma, L.; Han, X.; Wang, X.; Zhang, X.; Hu, L.; Zhao, N.; Chen, Y.; et al. Effect of Dietary Concentrate to Forage Ratio on Growth Performance, Rumen Fermentation and Bacterial Diversity of Tibetan Sheep under Barn Feeding on the Qinghai-Tibetan Plateau. PeerJ 2019, 7, e7462. [Google Scholar] [CrossRef]
- Ma, T.; Deng, K.-D.; Tu, Y.; Jiang, C.-G.; Zhang, N.-F.; Li, Y.-L.; Si, B.-W.; Lou, C.; Diao, Q.-Y. Effect of Dietary Concentrate:Forage Ratios and Undegraded Dietary Protein on Nitrogen Balance and Urinary Excretion of Purine Derivatives in Dorper × thin-Tailed Han Crossbred Lambs. Asian-Australas. J. Anim. Sci. 2014, 27, 161–168. [Google Scholar] [CrossRef]
- Song, X.; Yang, N.; Su, Y.; Lu, X.; Liu, J.; Liu, Y.; Zhang, Z.; Tang, Z. Suaeda Glauca and Suaeda Salsa Employ Different Adaptive Strategies to Cope with Saline–Alkali Environments. Agronomy 2022, 12, 2496. [Google Scholar] [CrossRef]
- Han, F.; Fu, G.; Yu, C.; Wang, S. Modeling Nutrition Quality and Storage of Forage Using Climate Data and Normalized-Difference Vegetation Index in Alpine Grasslands. Remote Sens. 2022, 14, 3410. [Google Scholar] [CrossRef]
- Shahi, M.; Azarnivand, H.; Esfahan, E.Z.; Jafari, M. Exploring the Potential Forage Quality of Some Halophytic Species at Different Phenological Stages. BMC Plant Biol. 2025, 25, 794. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Liu, Z.; Chen, L.; Wu, J. Nutritional Quality of Common Forage Species and Their Influences across Natural Alpine Rangelands, Northern Tibetan Plateau. Acta Agrestia Sin. 2024, 32, 3797–3806. [Google Scholar]
- Gao, Y.; Cheng, T.; Zhang, C.; Yan, Y.; Zhang, L.; Liu, Q.; Liu, Y.; Qiao, Q. Analysis of Leaf Forage Value and Screening of Different Populations of Pteroceltis Tatarinowii, A Rare and Endemic Species in China. Front. Plant Sci. 2023, 14, 1164451. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Han, L.; Zhang, S.; Zhang, X.; Hou, S.; Gui, L.; Sun, S.; Yuan, Z.; Wang, Z.; Yang, B. Insight into the Differences of Meat Quality Between Qinghai White Tibetan Sheep and Black Tibetan Sheep from the Perspective of Metabolomics and Rumen Microbiota. Food Chem. X 2023, 19, 100843. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, L.; Tian, H.; Ma, Z.; Zhang, Q.; Pu, M.; Cao, P.; Zhang, D.; Zhang, Y.; Zhao, Y.; et al. Integrative Analysis of Transcriptomics and Metabolomics Provides Insights into Meat Quality Differences in Hu Sheep with Different Carcass Performance. Foods 2025, 14, 2477. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Song, X.; Su, Y.; Zheng, J.; Zhang, Z.; Liang, Z.; Tang, Z. Study on the Effects of Salt Tolerance Type, Soil Salinity and Soil Characteristics on the Element Composition of Chenopodiaceae Halophytes. Plants 2022, 11, 1288. [Google Scholar] [CrossRef]
- Ullah, A.; Tariq, A.; Sardans, J.; Peñuelas, J.; Zeng, F.; Graciano, C.; Asghar, M.A.; Raza, A.; Xiong, Y.-C.; Chai, X.; et al. Alhagi Sparsifolia Acclimatizes to Saline Stress by Regulating Its Osmotic, Antioxidant, and Nitrogen Assimilation Potential. BMC Plant Biol. 2022, 22, 453. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, Y.; Li, S. Cu and Na Contents Regulate N Uptake of Leymus Chinensis Growing in Soda Saline-Alkali Soil. PLoS ONE 2020, 15, e0243172. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Wang, J.; Liu, X.; Chang, J.; Li, C.; Lu, G. Potassium Fulvate Alleviates Salt–Alkali Stress and Promotes Comprehensive Growth of Oats in Saline–Alkali Soils of the Qaidam Basin. Plants 2025, 14, 1982. [Google Scholar] [CrossRef]
- Li, Z. Evaluation of Salt Tolerance and Nutritional Quality for Wild Barley New Cultivar (Hordeum brevisubulatum cv. Hexi). Master’s Thesis, Lanzhou University, Lanzhou, China, 2021. [Google Scholar]
- Ge, S.; Liu, D.; Chu, M.; Liu, X.; Wei, Y.; Che, X.; Zhu, L.; He, L.; Xu, J. Dynamic and adaptive membrane lipid remodeling in leaves of sorghum under salt stress. Crop J. 2022, 10, 1557–1569. [Google Scholar] [CrossRef]
- Singer, S.D.; Lehmann, M.; Zhang, Z.; Subedi, U.; Burton Hughes, K.; Lim, N.Z.; Ortega Polo, R.; Chen, G.; Acharya, S.; Hannoufa, A.; et al. Elucidation of Physiological, Transcriptomic and Metabolomic Salinity Response Mechanisms in Medicago sativa. Plants 2023, 12, 2059. [Google Scholar] [CrossRef]
- Qian, G.; Wang, M.; Zhou, J.; Wang, X.; Zhang, Y.; Liu, Y.; Zhu, P.; Han, L.; Li, X.; Liu, C.; et al. Analysis of Widely Targeted Metabolites of Quinoa Sprouts (Chenopodium quinoa Willd.) under Saline-Alkali Stress Provides New Insights into Nutritional Value. Food Chem. 2024, 448, 138575. [Google Scholar] [CrossRef]
- Gao, Y.; Long, R.; Kang, J.; Wang, Z.; Zhang, T.; Sun, H.; Li, X.; Yang, Q. Comparative Proteomic Analysis Reveals That Antioxidant System and Soluble Sugar Metabolism Contribute to Salt Tolerance in Alfalfa (Medicago sativa L.) Leaves. J. Proteome Res. 2019, 18, 191–203. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Karaca, A.C.; Deng, L.; Colussi, R.; Narita, I.M.P.; Kaur, K.; Aaliya, B.; Sunooj, K.V.; Falsafi, S.R. Oat Starch—How Physical and Chemical Modifications Affect the Physicochemical Attributes and Digestibility? Carbohydr. Polym. 2022, 296, 119931. [Google Scholar] [CrossRef]
- Yagoubi, Y.; Hajji, H.; Smeti, S.; Mahouachi, M.; Kamoun, M.; Atti, N. Growth Performance, Carcass and Noncarcass Traits and Meat Quality of Barbarine Lambs Fed Rosemary Distillation Residues. Animal 2018, 12, 2407–2414. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, A.; Gatzke, C.; Bipfubusa, M.; Lévesque, V.; Chalifour, F.P.; Claessens, A.; Rocher, S.; Tremblay, G.F.; Beauchamp, C.J. Physiological and Biochemical Responses to Salt Stress of Alfalfa Populations Selected for Salinity Tolerance and Grown in Symbiosis with Salt-Tolerant Rhizobium. Agronomy 2020, 10, 569. [Google Scholar] [CrossRef]
- Lee, S.; Ko, K.; Kim, G.; Park, J.; Ryu, Y. Comparison of Meat Quality, Including Fatty Acid Content and Amino Acid Profile, and Transcriptome Profile among Hanwoo, Korea Black Cattle, and Jeju Black Cattle. Food Sci. Anim. Resour. 2025, 45, 553–572. [Google Scholar] [CrossRef]
- Torrecilhas, J.A.; Pereira, G.L.; Vito, E.S.; Fiorentini, G.; Ramirez-Zamudio, G.D.; Fonseca, L.S.; Torres, R.d.N.S.; Simioni, T.A.; Duarte, J.M.; Machado Neto, O.R.; et al. Changes in the Lipid Metabolism of the Longissimus thoracis Muscle in Bulls When Using Different Feeding Strategies during the Growing and Finishing Phases. Metabolites 2023, 13, 1042. [Google Scholar] [CrossRef]
- Yi, J.; Chen, F.; Li, H.; Yu, Q.; Sun, C.; Wen, R. Oxidative-Textural Coupling Mechanisms in Chicken Breast Stored at Low-Temperature Gradients: Super-Chilling as a Quality Preserving Strategy. Food Res. Int. 2025, 217, 116740. [Google Scholar] [CrossRef]
- Friha, M.; Hamdi, H.; Ayeb, N.; Hajlaoui, A.; Durand, D.; Majdoub-Mathlouthi, L. Potential Use of Natural Saline Pasture for Grazing Lambs: Effect on Digestibility, Growth Performances, Carcass and Meat Quality. Small Rumin. Res. 2022, 210, 106669. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Wang, J.; Jin, H.; Qian, S.; Chen, P.; Wang, M.; Chen, N.; Ding, L. Comparison of Antioxidant Capacity and Muscle Amino Acid and Fatty Acid Composition of Nervous and Calm Hu Sheep. Antioxidants 2023, 12, 459. [Google Scholar] [CrossRef] [PubMed]
- Kamei, Y.; Hatazawa, Y.; Uchitomi, R.; Yoshimura, R.; Miura, S. Regulation of Skeletal Muscle Function by Amino Acids. Nutrients 2020, 12, 261. [Google Scholar] [CrossRef]
- Kang, L.; Li, X.; Zhao, X.; Liu, T.; Jin, Y.; Duan, Y. Effects of L-Arginine Supplementation on Fat Deposition and Meat Quality in Growing Lambs: Interactions with Gut Microbiota and Metabolic Signalling Pathways. Food Chem. 2025, 479, 143677. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, Q.; Li, Q.; Yu, Y.; Song, Z.; He, L.; Sun, Y.; Ye, L.; Wang, G.; Xu, J. Molecular Adaptations and Quality Enhancements in a Hybrid (Erythroculter ilishaeformis ♀ × Ancherythroculter nigrocauda ♂) Cultured in Saline-Alkali Water. Biology 2025, 14, 718. [Google Scholar] [CrossRef]
- Zhang, M.; Dunshea, F.R.; Warner, R.D.; DiGiacomo, K.; Osei-Amponsah, R.; Chauhan, S.S. Impacts of Heat Stress on Meat Quality and Strategies for Amelioration: A Review. Int. J. Biometeorol. 2020, 64, 1613–1628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Han, L.; Gui, L.; Raza, S.H.A.; Hou, S.; Yang, B.; Wang, Z.; Ma, Y.; Makhlof, R.T.M.; Alhuwaymil, Z.; et al. Metabolome and Microbiome Analysis Revealed the Effect Mechanism of Different Feeding Modes on the Meat Quality of Black Tibetan Sheep. Front. Microbiol. 2022, 13, 1076675. [Google Scholar] [CrossRef]
- Lamberigts, C.; Wang, Y.; Dierckx, T.; Buys, N.; Everaert, N.; Buyse, J. The Influence of Thyroid State on Hypothalamic AMP-Activated Protein Kinase Pathways in Broilers. Gen. Comp. Endocrinol. 2021, 311, 113838. [Google Scholar] [CrossRef]
- Liang, G.; Ma, Y.; Deng, P.; Li, S.; He, C.; He, H.; Liu, H.; Fan, Y.; Li, Z. Hexokinases in Gastrointestinal Cancers: From Molecular Insights to Therapeutic Opportunities. Semin. Oncol. 2025, 52, 152351. [Google Scholar] [CrossRef]
- Li, B.; Ming, H.; Qin, S.; Nice, E.C.; Dong, J.; Du, Z.; Huang, C. Redox Regulation: Mechanisms, Biology and Therapeutic Targets in Diseases. Signal Transduct. Target. Ther. 2025, 10, 72. [Google Scholar] [CrossRef]
- Vetrovoy, O.; Stratilov, V.; Potapova, S.; Tyulkova, E. Oxidative Stress Accompanies HIF1-Dependent Impairment of Glucose Metabolism in the Hippocampus of Adult Rats That Survived Prenatal Severe Hypoxia. Dev. Neurosci. 2024, 46, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Bayramoglu Akkoyun, M.; Temel, Y.; Bengü, A.Ş.; Akkoyun, H.T. Ameliorative Effects of Astaxanthin against Copper(II) Ion-Induced Alteration of Pentose Phosphate Pathway and Antioxidant System Enzymes in Rats. Environ. Sci. Pollut. Res. Int. 2021, 28, 62919–62926. [Google Scholar] [CrossRef]
- Tripathi, S.; Parmar, D.; Raval, S.; Mishra, R.; Singh, G. Attenuation of Chromium (VI) and Arsenic (III)-Induced Oxidative Stress and Hepatic Apoptosis by Phloretin, Biochanin-a, and Coenzyme Q10 via Activation of SIRT1/Nrf2/HO-1/NQO1 Signaling. J. Biochem. Mol. Toxicol. 2024, 38, e23817. [Google Scholar] [CrossRef] [PubMed]
- Shojadoost, B.; Yitbarek, A.; Alizadeh, M.; Kulkarni, R.R.; Astill, J.; Boodhoo, N.; Sharif, S. Centennial Review: Effects of Vitamins A, D, E, and C on the Chicken Immune System. Poult. Sci. 2021, 100, 100930. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhong, K.; Zhong, J.; Fan, X.; Qin, X. Mitigating Effect of Taurine Combined with Corona Dormancy on Oxidative Stress in Trachinotus Ovatus under Low-Temperature Stress. Int. J. Mol. Sci. 2025, 26, 2927. [Google Scholar] [CrossRef]
Dietary Composition | B0 (%) | YB (%) |
---|---|---|
Corn | 27.6 | 27.6 |
Soybean meal | 3.6 | 3.6 |
Canola meal | 6.6 | 6.6 |
Cottonseed meal | 9.6 | 9.6 |
Wheat | 7.8 | 7.8 |
Sodium chloride | 0.6 | 0.6 |
Limestone | 0.6 | 0.6 |
Sodium bicarbonate | 0.6 | 0.6 |
Premix | 3 | 3 |
Total | 60 | 60 |
Roughage | 40 (Haiyan oats) | 40 (Gonghe oats) |
Mineral Elements | Groups | p | |
---|---|---|---|
Saline-Alkali Soils | Non-Saline-Alkali Soils | ||
Al | 68,035.35 ± 4736.96 | 34,008.04 ± 1424.82 | <0.001 |
Ca | 57,564.72 ± 209.07 | 13,656.04 ± 222.85 | <0.001 |
Fe | 26,630.92 ± 71.74 | 32,134.5 ± 44.50 | <0.001 |
K | 20,612.75 ± 182.08 | 16,377.34 ± 81.11 | <0.001 |
Mg | 13,457.35 ± 299.94 | 6690.74 ± 99.85 | <0.001 |
Mn | 691.79 ± 7.89 | 884.94 ± 6.80 | <0.001 |
Na | 15,369.20 ± 87.31 | 11,658.48 ± 5.98 | <0.001 |
P | 718.92 ± 1.80 | 1370.62 ± 26.10 | <0.001 |
S | 1071.58 ± 64.08 | 661.8 ± 28.56 | <0.001 |
V | 6.49 ± 0.30 | 99.45 ± 0.46 | <0.001 |
Cr | 65.84 ± 1.68 | 104.77 ± 0.85 | <0.001 |
Co | 0.86 ± 0.01 | 15.25 ± 0.10 | <0.001 |
Ni | 2.25 ± 0.19 | 38.21 ± 0.20 | <0.001 |
Cu | 15.56 ± 0.44 | 18.22 ± 0.28 | <0.001 |
Zn | 73.48 ± 0.13 | 109.20 ± 0.45 | <0.001 |
Se | 0.04 ± 0.01 | 0.50 ± 0.01 | <0.001 |
Rb | 5.49±0.35 | 18.97±0.82 | <0.001 |
Items | Groups | p | |
---|---|---|---|
GX | YX | ||
Analysis of oat nutritional values | |||
Moisture (%) | 73.94 ± 0.01 | 72.97 ± 0.01 | 0.520 |
Crude protein (%) | 9.03 ± 0.02 | 7.16 ± 0.04 | <0.001 |
Crude fat (g/kg) | 14.92 ± 0.87 | 7.45 ± 0.88 | 0.005 |
Crude fiber (%) | 6.37 ± 0.06 | 6.57 ± 0.15 | 0.139 |
NDF (%) | 53.37 ± 0.38 | 57.30 ± 0.30 | <0.001 |
ADF (%) | 31.37 ± 0.24 | 32.33 ± 0.05 | 0.073 |
DMI (%) | 2.25 ± 0.01 | 2.09 ± 0.01 | 0.010 |
DDM (%) | 63.84 ± 0.19 | 63.07 ± 0.40 | 0.147 |
RFV (%) | 111.28 ± 0.51 | 102.38 ± 0.49 | 0.001 |
Amino acid composition (mg/100 g) | |||
Serine | 1130.88 ± 16.86 | 512.06 ± 1.32 | <0.001 |
Valine | 961.42 ± 10.77 | 549.16 ± 21.54 | <0.001 |
Glycine | 1178.60 ± 8.73 | 398.49 ± 29.40 | 0.002 |
Lysine | 46.34 ± 0.53 | 34.43 ± 0.96 | 0.002 |
Arginine | 1458.35 ± 95.18 | 613.77 ± 16.49 | 0.003 |
Alanine | 208.71 ± 0.95 | 159.47 ± 3.46 | 0.004 |
Phenylalanine | 1474.83 ± 87.32 | 749.18 ± 31.37 | 0.004 |
Tyrosine | 368.95 ± 16.62 | 195.97 ± 3.90 | 0.004 |
Asparagine | 20.99 ± 2.66 | 7.09 ± 0.85 | 0.006 |
Glutamate | 238.90 ± 13.04 | 85.02 ± 20.90 | 0.009 |
Methionine | 107.60 ± 7.53 | 53.66 ± 2.05 | 0.010 |
Spermidine | 6.00 ± 0.73 | 2.82 ± 1.28 | 0.020 |
Choline | 310.25 ± 25.01 | 231.43 ± 8.31 | 0.024 |
Citrulline | 1.50 ± 0.32 | 0.51 ± 0.24 | 0.030 |
Threonine | 1549.18 ± 50.01 | 1149.47 ± 79.41 | 0.031 |
Glutamine | 0.27 ± 0.02 | 0.22 ± 0.01 | 0.040 |
Hydroxyproline | 0.15 ± 0.01 | 0.13 ± 0.00 | 0.040 |
Aspartate | 105.13 ± 2.35 | 68.86 ± 12.54 | 0.043 |
Aminoadipic Acid | 0.30 ± 0.02 | 0.36 ± 0.01 | 0.044 |
Creatinine | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.070 |
Histidine | 224.10 ± 10.95 | 198.97 ± 24.16 | 0.072 |
Proline | 387.29 ± 10.60 | 353.17 ± 10.22 | 0.091 |
Isoleucine | 445.08 ± 27.86 | 402.20 ± 3.80 | 0.120 |
Creatine | 0.08 ± 0.00 | 0.29 ± 0.18 | 0.150 |
Leucine | 412.86 ± 33.75 | 384.23 ± 3.80 | 0.220 |
Taurine | 0.06 ± 0.01 | 0.18 ± 0.09 | 0.220 |
Tryptophan | 4.44 ± 1.13 | 2.88 ± 0.56 | 0.340 |
Ornithine | 0.49 ± 0.08 | 0.44 ± 0.14 | 0.410 |
Putrescine | 1.49 ± 0.16 | 1.85 ± 1.11 | 0.690 |
Cystine | 4.74 ± 2.89 | 5.21 ± 2.85 | 0.910 |
Cysteine | 0.03 ± 0.00 | 0.03 ± 0.01 | 0.950 |
EAA | 5118.25 ± 173.30 | 3470.51 ± 52.00 | 0.012 |
NEAA | 5530.76 ± 131.29 | 2691.04 ± 58.33 | 0.002 |
TAA | 10,649.00 ± 214.13 | 6161.56 ± 106.44 | 0.003 |
Fatty acid composition (mg/100 g) | |||
Decanoic acid (c10:0) | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.001 |
Heneicosanoic acid (c21:0) | 0.09 ± 0.01 | 0.17 ± 0.01 | 0.002 |
Nervonic acid (c24:1n9) | 0.17 ± 0.01 | 0.25 ± 0.00 | 0.006 |
Eicosenoic acid (c20:1n9) | 0.56 ± 0.10 | 1.01 ± 0.04 | 0.010 |
Linoleic acid (c18:2n6) | 41.49 ± 4.66 | 23.61 ± 0.33 | 0.018 |
Docosapentaenoic acid (c22:5n3) | 0.05 ± 0.00 | 0.06 ± 0.01 | 0.019 |
Palmitoleic acid (c16:1n7) | 4.72 ± 0.41 | 2.71 ± 0.35 | 0.021 |
Heptadecanoic acid (c17:0) | 3.53 ± 0.55 | 1.89 ± 0.38 | 0.022 |
Eicosatrienoic acid (c20:3n3) | 0.25 ± 0.00 | 0.32 ± 0.02 | 0.027 |
Arachidic acid (c20:0) | 0.33 ± 0.04 | 0.23 ± 0.01 | 0.028 |
α-Linolenic acid (c18:3n3) | 1.09 ± 0.17 | 0.77 ± 0.05 | 0.035 |
Palmitic acid (c16:0) | 259.90 ± 19.93 | 156.37 ± 20.82 | 0.042 |
Eicosadienoic acid (c20:2n6) | 0.16 ± 0.05 | 40.63 ± 1.27 | 0.060 |
Eicosapentaenoic acid (c20:5n3) | 0.70 ± 0.07 | 0.07 ± 0.01 | 0.134 |
Lignoceric acid (c24:0) | 0.90 ± 0.08 | 0.69 ± 0.04 | 0.178 |
Pentadecenoic acid (c15:1n5) | 0.61 ± 0.02 | 0.79 ± 0.07 | 0.180 |
Pentadecanoic acid (c15:0) | 0.14 ± 0.02 | 0.80 ± 0.15 | 0.195 |
Heptadecenoic acid (c17:1n7) | 0.06 ± 0.02 | 0.14 ± 0.00 | 0.232 |
Myristoleic acid (c14:1n5) | 0.09 ± 0.03 | 0.05 ± 0.01 | 0.260 |
Docosadienoic acid (c22:2n6) | 0.05 ± 0.01 | 0.12 ± 0.01 | 0.318 |
Tricosanoic acid (c23:0) | 0.13 ± 0.02 | 0.05 ± 0.00 | 0.380 |
Myristic acid (c14:0) | 0.92 ± 0.22 | 0.16 ± 0.02 | 0.440 |
Lauric acid (c12:0) | 0.51 ± 0.14 | 0.72 ± 0.13 | 0.451 |
Octanoic acid (c8:0) | 0.01 ± 0.00 | 0.45 ± 0.05 | 0.480 |
Tridecanoic acid (c13:0) | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.570 |
Stearic acid (c18:0) | 3.75 ± 0.39 | 0.01 ± 0.01 | 0.600 |
Docosahexaenoic acid (c22:6n3) | 0.13 ± 0.02 | 4.11 ± 0.77 | 0.930 |
ΣPUFA | 302.81 ± 13.24 | 181.21 ± 17.73 | 0.020 |
ΣSFA | 55.37 ± 1.22 | 48.29 ± 1.57 | 0.040 |
ΣPUFA: ΣSFA | 5.48 ± 0.35 | 3.77 ± 0.47 | 0.062 |
ΣMUFA | 7.73 ± 0.05 | 6.83 ± 0.55 | 0.100 |
Σn-3 | 261.11 ± 17.30 | 157.49 ± 18.02 | 0.035 |
Σn-6 | 41.71 ± 4.06 | 23.72 ± 0.29 | 0.018 |
EPA | 0.70 ± 0.06 | 0.69 ± 0.03 | 0.452 |
DHA | 0.13 ± 0.02 | 0.14 ± 0.02 | 0.466 |
TFA | 365.91 ± 12.09 | 236.33 ± 16.91 | 0.016 |
Carbohydrate content (mg/100g) | |||
Sucrose | 4643.76 ± 78.41 | 1787.41 ± 158.78 | <0.001 |
Levoglucosan | 4.55 ± 0.03 | 3.45 ± 0.02 | 0.001 |
Mannose | 4.81 ± 0.09 | 3.35 ± 0.13 | 0.002 |
Xylulose | 1.18 ± 0.01 | 0.93 ± 0.01 | 0.003 |
Fructose | 2934.81 ± 51.76 | 2743.11 ± 38.97 | 0.003 |
Glucuronic Acid | 1.22 ± 0.03 | 1.45 ± 0.02 | 0.006 |
Galactose | 43.86 ± 0.74 | 40.51 ± 0.44 | 0.012 |
Arabinitol | 3.31 ± 0.37 | 1.61 ± 0.01 | 0.014 |
Maltose | 61.09 ± 5.51 | 32.99 ± 0.83 | 0.015 |
Galacturonic Acid | 0.85 ± 0.08 | 1.12 ± 0.09 | 0.019 |
D-Arabinose | 4.33 ± 0.21 | 3.56 ± 0.06 | 0.026 |
Xylose | 4.21 ± 0.16 | 3.71 ± 0.09 | 0.029 |
Trehalose | 10.91 ± 0.78 | 8.47 ± 0.12 | 0.036 |
Ribose | 8.56 ± 0.40 | 7.57 ± 0.20 | 0.036 |
2-Ace-2-Deo-D-Glucosamine | 1.46 ± 0.05 | 1.63 ± 0.08 | 0.093 |
Cellobiose | 44.77 ± 6.96 | 36.76 ± 3.10 | 0.121 |
Rhamnose | 1.49 ± 0.26 | 1.22 ± 0.00 | 0.164 |
Inositol | 32.38 ± 3.19 | 29.04 ± 3.79 | 0.183 |
Ribose-5-pho-Ba | 1.34 ± 0.13 | 1.80 ± 0.34 | 0.198 |
Phenylalanine | 3.51 ± 0.47 | 3.14 ± 0.18 | 0.516 |
Glutamic Acid | 4715.67 ± 130.46 | 4025.62 ± 189.39 | 0.704 |
Xylitol | 0.76 ± 0.03 | 0.75 ± 0.05 | 0.756 |
2-Deoxyribose | 0.62 ± 0.02 | 0.61 ± 0.01 | 0.785 |
Fucose | 2.06 ± 0.13 | 2.10 ± 0.14 | 0.820 |
Sorbitol | 2.68 ± 0.53 | 2.71 ± 0.21 | 0.956 |
Metabolic Pathways (GX vs. YX) | Metabolites |
---|---|
Upregulation in the GX group | |
cAMP signaling pathway | Succinate, 4-Aminobutyric acid (GABA) |
Taste transduction | Sucrose, Saccharose |
4-Aminobutyric acid (GABA) | |
GABAergic synapse | Succinate, Butanedionic acid |
4-Aminobutyric acid (GABA) | |
Ethylenesuccinic acid | |
Butanoate metabolism | Succinate, Succinic acid Butanedionic acid Ethylenesuccinic acid |
4-Aminobutyricacid (GABA) gamma-Aminobutyric acid | |
Starch and sucrose metabolism | Trehalose, Sucrose |
1-α-D-Glucopyranosyl-2-β-D-fructofuranoside | |
Galactose metabolism | Sucrose, Cane sugar |
Raffinose, Saccharose, Melibiose 1-α-D-Glucopyranosyl-2-β-D-fructofuranoside | |
Alanine, aspartate, and glutamate metabolism | Succinate, Butanedionic acid Ethylenesuccinic acid |
gamma-Aminobutyric acid | |
Ascorbate and aldarate metabolism | D-Galactarate, D-Mucic acid |
D-arabinose | |
L-Arabinono-1,4-lactone | |
Biosynthesis of secondary metabolites | Trehalose |
Citrate cycle (TCA cycle) | Succinate, Butanedionic acid Ethylenesuccinic acid |
Phenylalanine metabolism | Succinate, Butanedionic acid Ethylenesuccinic acid |
Pyruvate metabolism | Succinate, Butanedionic acid Ethylenesuccinic acid |
Amino sugar and nucleotide sugar metabolism | D-arabinose, L-Arabinose, L-Arabinopyranose |
Fructose and mannose metabolism | D-Allose |
Downregulation in the GX group | |
Purine metabolism | Deoxyguanosine, His-Lys |
Deoxyadenosine | |
Pyrimidine metabolism | Ile-Pro, His-ser, 5-Methyluracil |
Thymine, Cytosine, Cytidine | |
2′-deoxycytidine, Deoxythymidine |
Items | Groups | p | |
---|---|---|---|
YB | B0 | ||
Carcass quality | |||
Average daily feed intake (kg) | 1.45 ± 0.05 | 1.41 ± 0.08 | 0.441 |
Remaining after the feeding (kg) | 0.63 ± 0.06 | 0.71 ± 0.08 | 0.494 |
Refuse percentage (%) | 30.13 ± 0.02 | 33.46 ± 0.04 | 0.046 |
Initial weight (kg) | 15.73 ± 0.88 | 16.14 ± 0.65 | 0.316 |
Final weight (kg) | 34.55 ± 0.79 | 35.84 ± 1.23 | 0.154 |
Rib fat thickness (cm) | 1.56 ± 0.70 | 1.53 ± 0.23 | 0.800 |
Abdominal fat thickness (cm) | 1.79 ± 0.14 | 1.89 ± 0.17 | 0.360 |
Backfat thickness (cm) | 1.57 ± 0.12 | 1.60 ± 0.15 | 0.620 |
Eye muscle area (cm2) | 17.20 ± 1.64 | 26.00 ± 4.90 | 0.010 |
Edible quality | |||
Color | 6.89 ± 1.20 | 6.00 ± 1.59 | 0.255 |
Aroma | 7.78 ± 0.97 | 6.11 ± 1.45 | 0.011 |
Juiciness | 7.89 ± 1.45 | 6.11 ± 1.30 | 0.013 |
Taste | 8.22 ± 1.10 | 6.67 ± 1.41 | 0.019 |
Texture | 8.44 ± 0.73 | 6.22 ± 1.56 | 0.001 |
General acceptability | 8.44 ± 0.88 | 7.00 ± 1.41 | 0.019 |
pH45min | 6.16 ± 1.08 | 6.72 ± 0.28 | 0.080 |
pH24h | 5.91 ± 0.34 | 5.82 ± 0.43 | 0.510 |
L* | 32.79 ± 0.57 | 36.50 ± 0.97 | 0.001 |
a* | 21.11 ± 0.95 | 16.89 ± 1.79 | 0.002 |
b* | 7.91 ± 0.83 | 10.57 ± 0.97 | 0.004 |
Thawing loss (%) | 6.94 ± 2.38 | 7.80 ± 1.11 | 0.001 |
Cooking loss (%) | 32.15 ± 4.79 | 52.25 ± 4.79 | 0.001 |
Cooked meat percentage (%) | 67.67 ± 1.86 | 32.94 ± 1.23 | 0.003 |
water holding capacity (%) | 15.70 ± 1.84 | 13.78 ± 1.85 | 0.036 |
Shear force (N) | 130.14 ± 18.66 | 177.99 ± 16.50 | 0.020 |
Hardness (g) | 11.00 ± 9.31 | 38.37 ± 32.58 | 0.010 |
Elasticity (mm) | 2.62 ± 0.43 | 3.07 ± 0.54 | 0.160 |
Adhesion (g) | 5.04 ± 3.90 | 22.52 ± 20.67 | 0.024 |
Chewability (mJ) | 17.75 ± 2.93 | 37.86 ± 6.67 | 0.015 |
Cohesion (g) | 0.46 ± 0.09 | 0.51 ± 0.14 | 0.312 |
Moisture (%) | 74.45 ± 0.01 | 70.97 ± 0.04 | 0.348 |
Protein (%) | 22.69 ± 0.36 | 19.80 ± 0.42 | 0.023 |
Fat (%) | 0.60 ± 0.07 | 0.80 ± 0.07 | 0.001 |
Amino acid composition (mg/100 g) | |||
Arginine | 1365.11 ± 15.35 | 260.31 ± 11.81 | <0.001 |
Threonine | 253.24 ± 0.57 | 774.26 ± 14.94 | <0.001 |
Proline | 236.12 ± 3.56 | 168.11 ± 1.79 | <0.001 |
Asparagine | 2.94 ± 0.05 | 6.03 ± 0.07 | <0.001 |
Histidine | 280.19 ± 8.70 | 1015.98 ± 23.55 | 0.001 |
Cystine | 27.91 ± 3.13 | 314.68 ± 14.38 | 0.001 |
Phenylalanine | 396.48 ± 37.01 | 551.87 ± 28.18 | 0.001 |
Glycine | 1061.81 ± 15.46 | 739.96 ± 5.44 | 0.001 |
Hydroxyproline | 3.40 ± 0.18 | 2.02 ± 0.08 | 0.002 |
Alanine | 315.43 ± 1.14 | 297.18 ± 1.31 | 0.002 |
Leucine | 580.62 ± 17.07 | 250.85 ± 14.56 | 0.003 |
Lysine | 610.88 ± 36.57 | 324.15 ± 21.30 | 0.004 |
Isoleucine | 383.43 ± 13.07 | 203.85 ± 13.79 | 0.007 |
Citrulline | 4.86 ± 0.41 | 2.60 ± 0.39 | 0.008 |
Creatinine | 2.41 ± 0.24 | 0.86 ± 0.10 | 0.008 |
Taurine | 36.16 ± 3.11 | 14.13 ± 0.78 | 0.008 |
Valine | 388.26 ± 16.68 | 216.45 ± 11.02 | 0.008 |
Glutamate | 153.96 ± 10.37 | 62.13 ± 8.04 | 0.010 |
Creatine | 125.90 ± 10.35 | 60.28 ± 2.06 | 0.013 |
Aminoadipic Acid | 0.47 ± 0.06 | 0.21 ± 0.04 | 0.015 |
Cysteine | 0.06 ± 0.01 | 0.23 ± 0.05 | 0.024 |
Glutamine | 19.03 ± 3.11 | 8.38 ± 0.33 | 0.029 |
Methionine | 45.60 ± 7.22 | 92.40 ± 10.33 | 0.032 |
Tryptophan | 1.92 ± 0.04 | 3.25 ± 0.44 | 0.038 |
Aspartate | 101.43 ± 7.93 | 80.51 ± 0.00 | 0.042 |
Serine | 270.82 ± 2.33 | 285.00 ± 7.57 | 0.060 |
Tyrosine | 336.99 ± 14.85 | 293.83 ± 10.74 | 0.087 |
Ornithine | 0.32 ± 0.02 | 0.28 ± 0.02 | 0.157 |
Choline | 332.25 ± 16.98 | 317.66 ± 20.87 | 0.342 |
EAA | 2940.62 ± 20.23 | 3433.06 ± 33.55 | 0.004 |
NEAA | 4397.37 ± 54.82 | 2914.39 ± 24.00 | 0.002 |
TAA | 7337.99 ± 64.91 | 6347.45 ± 55.70 | 0.001 |
Fatty acid composition (mg/100 g) | |||
Pentadecanoic acid (c15:0) | 1.63 ± 0.08 | 4.84 ± 0.04 | <0.001 |
Pentadecenoic acid (c15:1n5) | 0.40 ± 0.14 | 26.72 ± 0.30 | <0.001 |
Palmitic acid (c16:0) | 240.99 ± 25.20 | 223.98 ± 14.76 | <0.001 |
Eicosapentaenoic acid (c20:5n3) | 4.09 ± 0.26 | 7.17 ± 0.21 | <0.001 |
Behenic acid (c22:0) | 0.43 ± 0.03 | 28.76 ± 0.89 | <0.001 |
Erucic acid (c22:1n9) | 0.43 ± 0.10 | 3.35 ± 0.06 | <0.001 |
Docosapentaenoic acid (c22:5n3) | 6.41 ± 0.29 | 3.15 ± 1.74 | <0.001 |
Tricosanoic acid (c23:0) | 0.06 ± 0.00 | 19.85 ± 0.52 | <0.001 |
Lignoceric acid (c24:0) | 0.05 ± 0.00 | 77.22 ± 2.04 | <0.001 |
Palmitoleic acid (c16:1n7) | 20.43 ± 0.31 | 9.06 ± 0.30 | 0.001 |
Heptadecanoic acid (c17:0) | 5.87 ± 0.72 | 19.85 ± 0.31 | 0.001 |
Tridecanoic acid (c13:0) | 0.05 ± 0.00 | 0.21 ± 0.01 | 0.001 |
Nervonic acid (c24:1n9) | 1.34 ± 0.07 | 4.85 ± 0.28 | 0.002 |
Linoleic acid (c18:2n6) | 60.44 ± 1.47 | 80.84 ± 2.50 | 0.003 |
Octanoic acid (c8:0) | 0.01 ± 0.00 | 0.17 ± 0.02 | 0.004 |
Decanoic acid (c10:0) | 0.15 ± 0.02 | 1.13 ± 0.12 | 0.004 |
Linoleic acid (c18:3n6) | 0.90 ± 0.05 | 1.43 ± 0.02 | 0.004 |
Eicosenoic acid (c20:1n9) | 1.24 ± 0.24 | 5.59 ± 0.80 | 0.005 |
Eicosatrienoic acid (c20:3n6) | 2.60 ± 0.16 | 7.40 ± 0.51 | 0.005 |
Arachidonic acid (c20:4n6) | 31.03 ± 3.26 | 0.59 ± 0.10 | 0.006 |
Myristic acid (c14:0) | 17.29 ± 1.70 | 34.18 ± 1.60 | 0.007 |
Myristoleic acid (c14:1n5) | 0.89 ± 0.35 | 4.54 ± 0.73 | 0.009 |
Linolenic acid (c18:3n3) | 4.74 ± 0.59 | 7.61 ± 0.02 | 0.011 |
Docosadienoic acid (c22:2n6) | 0.33 ± 0.18 | 1.16 ± 0.03 | 0.011 |
Lauric acid (c12:0) | 0.87 ± 0.08 | 1.79 ± 0.18 | 0.015 |
Adrenic acid (c22:4n6) | 2.44 ± 0.25 | 1.17 ± 0.06 | 0.015 |
Oleic acid (c18:1n9) | 475.35 ± 39.93 | 303.06 ± 22.72 | 0.028 |
Elaidic acid (c18:1tn9) | 3.73 ± 0.27 | 4.61 ± 0.23 | 0.033 |
Heptadecenoic acid (c17:1n7) | 5.26 ± 1.09 | 30.72 ± 10.41 | 0.035 |
Stearic acid (c18:0) | 189.17 ± 12.95 | 148.05 ± 3.45 | 0.036 |
Undecanoic acid (c11:0) | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.085 |
Arachidic acid (c20:0) | 1.00 ± 0.10 | 1.17 ± 0.08 | 0.131 |
Heneicosanoic acid (c21:0) | 0.14 ± 0.01 | 0.50 ± 0.21 | 0.138 |
ΣPUFA | 112.98 ± 4.62 | 110.52 ± 2.13 | 0.338 |
ΣSFA | 457.72 ± 31.29 | 561.70 ± 20.37 | 0.059 |
ΣPUFA: ΣSFA | 0.25 ± 0.01 | 0.20 ± 0.01 | 0.050 |
ΣMUFA | 509.06 ± 40.10 | 392.51 ± 20.49 | 0.067 |
Σn-3 | 15.24 ± 0.20 | 17.93 ± 1.69 | 0.111 |
Σn-6 | 97.74 ± 4.45 | 92.60 ± 2.39 | 0.168 |
EPA | 4.09 ± 0.26 | 7.17 ± 0.21 | <0.001 |
TFA | 1079.75 ± 76.01 | 1064.73 ± 42.99 | 0.441 |
Metabolic Pathway (YB VS B0) | Metabolites |
---|---|
Upregulation in the YB group | |
Fructose and mannose metabolism | D-mannose 6-phosphate |
Carbohydrate digestion and absorption | D-glucose 6-phosphate, Robison ester |
Starch and sucrose metabolism | D-glucose 6-phosphate |
Robison ester | |
Aminoacyl–tRNA biosynthesis | Arginine, Isoleucine |
L-Lysine, DL-isoleucine | |
mTOR signaling pathway | Arginine, (S)-2-Amino-5-guanidinovaleric acid, |
L-Arg | |
Zeatin biosynthesis | Adenine, Thiomethyladenosine |
S-methyl-5′-thioadenosine | |
6-Aminopurine | |
ABC transporters | Arginine, Isoleucine, L-Lysine |
Deoxyadenosine, L-Arg | |
S-methyl-l-cysteine | |
(S)-2-Amino-5-guanidinovaleric acid | |
2-Amino-3-methylvaleric acid | |
2,6-Diaminohexanoic acid | |
Phosphotransferase system (PTS) | D-glucosamine 6-phosphate |
Vitamin C, Ascorbate, Ascorbic acid | |
D-mannose 6-phosphate | |
D-glucosaminic acid | |
D-glucose 6-phosphate | |
Pentose phosphate pathway (PPP) | D-glucosaminic acid |
D-Glucosaminate 2-Amino-2-deoxy-D-gluconate | |
Glycerophospholipid metabolism | 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine |
Lecithin | |
2-Oxocarboxylic acid metabolism | Isoleucine, N-.alpha.-acetyl-l-ornithine |
L-Lysine, 2-Amino-3-methylvaleric acid | |
N-Acetylornithine, 2,6-Diaminohexanoic acid | |
Biosynthesis of free amino acids | Arginine, Isoleucine, L-homoserine |
N-.alpha.-acetyl-l-ornithine | |
S-Adenosyl-L-homocysteine | |
Lysine acid, 2,6-Diaminohexanoic acid | |
2-Amino-3-methylvaleric acid | |
N-Acetylornithine, L-Homoserine | |
2-Amino-4-hydroxybutyric acid | |
Protein digestion and absorption | Arginine, Isoleucine, L-Lysine |
(S)-2-Amino-5-guanidinovaleric acid | |
Biofilm formation–Vibrio cholerae | D-glucose 6-phosphate, Robison ester |
Biosynthesis of various secondary metabolites—part 3 | Arginine, L-Lysine |
(S)-2-Amino-5-guanidinovaleric acid | |
Lysine biosynthesis | L-homoserine, L-Lysine |
2,6-Diaminohexanoic acid | |
Arginine biosynthesis | Arginine |
N-.alpha.-acetyl-l-ornithine | |
(S)-2-Amino-5-guanidinovaleric acid | |
N-Acetylornithine | |
Cysteine and methionine metabolism | L-homoserine |
S-methyl-5′-thioadenosine | |
S-Adenosyl-L-homocysteine | |
2-Amino-4-hydroxybutyric acid | |
Ascorbate and aldarate metabolism | Ascorbate, Vitamin C |
HIF-1 signaling pathway | Vitamin C, Ascorbate |
Vitamin digestion and absorption | Vitamin C, L-Ascorbic acid |
Bile secretion | Taurochenodeoxycholate, Chenodeoxycholoyltaurine |
Lipoic acid metabolism | Octanoic acid, Octanoate |
Cholesterol metabolism | Taurochenodeoxycholate Chenodeoxycholoyltaurine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, X.; Han, L.; Hou, S.; Gui, L.; Yuan, Z.; Sun, S.; Wang, Z.; Yang, B.; Yang, C. Preliminary Study on the Mechanism of the Influence of Saline Oat Pasture on Muscle Metabolism and Meat Quality of Tibetan Sheep. Foods 2025, 14, 3044. https://doi.org/10.3390/foods14173044
Xin X, Han L, Hou S, Gui L, Yuan Z, Sun S, Wang Z, Yang B, Yang C. Preliminary Study on the Mechanism of the Influence of Saline Oat Pasture on Muscle Metabolism and Meat Quality of Tibetan Sheep. Foods. 2025; 14(17):3044. https://doi.org/10.3390/foods14173044
Chicago/Turabian StyleXin, Xiaoming, Lijuan Han, Shengzhen Hou, Linsheng Gui, Zhenzhen Yuan, Shengnan Sun, Zhiyou Wang, Baochun Yang, and Chao Yang. 2025. "Preliminary Study on the Mechanism of the Influence of Saline Oat Pasture on Muscle Metabolism and Meat Quality of Tibetan Sheep" Foods 14, no. 17: 3044. https://doi.org/10.3390/foods14173044
APA StyleXin, X., Han, L., Hou, S., Gui, L., Yuan, Z., Sun, S., Wang, Z., Yang, B., & Yang, C. (2025). Preliminary Study on the Mechanism of the Influence of Saline Oat Pasture on Muscle Metabolism and Meat Quality of Tibetan Sheep. Foods, 14(17), 3044. https://doi.org/10.3390/foods14173044