Uncovering Novel DPP-IV Inhibitory Peptides from Amphibian (Lithobates catesbeiana) Skin via Peptidomics and Molecular Simulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of L. catesbeiana Skin Gelatin Hydrolysates (LSGHs)
2.3. Degree of Hydrolysis (DH) and Protein Recovery (PR)
2.4. DPP-IV Inhibition Assay
2.5. Molecular Weight Distribution
2.6. Size Exclusion Chromatography (SEC) Separation
2.7. LC–MS/MS Analysis
2.8. In Silico Analysis and Screening of Potential DPP-IV Inhibitory Peptides
2.9. Validation of Peptide Sequence Synthesis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Property of Different LSGHs
3.2. DPP-IV Inhibitory Activity of LSGHs
3.3. Molecular Weight Distribution of LSGHs
3.4. Separation of DPP-IV Inhibitory Peptides Using SEC
3.5. Identification of DPP-IV Inhibitory Peptides
3.6. Mechanism of Peptide–DPP-IV Interaction
3.7. Stability Analysis of DPP-IV Inhibitory Peptide Binding to DPP-IV
3.8. Synthesis of Peptides and Confirmation of DPP-IV Inhibitory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Zheng, L.; Udenigwe, C.C.; Lin, L.; Zhao, M. Molecular Mechanistic Insights into Dipeptidyl Peptidase-IV Inhibitory Peptides to Decipher the Structural Basis of Activity. J. Agric. Food Chem. 2024, 72, 11230–11240. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; Dellafiora, L.; Paolella, S.; Galaverna, G.; Cozzini, P.; FitzGerald, R.J. In Silico Approaches Applied to the Study of Peptide Analogs of Ile-Pro-Ile in Relation to Their Dipeptidyl Peptidase IV Inhibitory Properties. Front. Endocrinol. 2018, 9, 329. [Google Scholar] [CrossRef]
- Xu, Q.; Zheng, L.; Huang, M.; Zhao, M. Collagen derived Gly-Pro-type DPP-IV inhibitory peptides: Structure-activity relationship, inhibition kinetics and inhibition mechanism. Food Chem. 2024, 441, 138370. [Google Scholar] [CrossRef]
- Kieffer, T.J.; McIntosh, C.H.; Pederson, R.A. Degradation of Glucose-Dependent Insulinotropic Polypeptide and Truncated Glucagon-Like Peptide 1 in vitro and in vivo by Dipeptidyl Peptidase IV. Endocrinology 1995, 136, 3585–3596. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Cui, F.; Xi, L.; Zhao, G.; Wang, D.; Tan, X.; Li, J.; Li, T. Screening of xanthine oxidase inhibitory peptides by ligand fishing and molecular docking technology. Food Biosci. 2022, 50 Pt B, 102152. [Google Scholar] [CrossRef]
- Zhao, T.; Su, G.; Zhang, L.; Chen, J.; Zhang, Y.; Liu, W.; Zhao, M.; Zhang, J.; Huang, Q. A comprehensive review of specific activity and intrinsic connections of food-derived bioactive peptides for human health. Food Front. 2024, 5, 1145–1165. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Espejo-Carpio, F.J.; Guadix, E.M. Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources. Food Chem. 2021, 354, 129473. [Google Scholar] [CrossRef]
- Gallego, M.; Mora, L.; Toldrá, F. Effect of ultrasound and enzymatic pre-treatments on the profile of bioactive peptides of beef liver hydrolysates. Food Res. Int. 2024, 197 Pt 1, 115240. [Google Scholar] [CrossRef]
- Sarabandi, K.; Karami, Z.; Akbarbaglu, Z.; Duangmal, K.; Jafari, S.M. Spray-drying stabilization of oleaster-seed bioactive peptides within biopolymers: Pan-bread formulation and bitterness-masking. Food Bio. 2024, 58, 103837. [Google Scholar] [CrossRef]
- Nan, J.; Zou, M.; Wang, H.; Xu, C.; Zhang, J.; Wei, B.; He, L.; Xu, Y. Effect of ultra-high pressure on molecular structure and properties of bullfrog skin collagen. Int. J. Biol. Macromol. 2018, 111, 200–207. [Google Scholar] [CrossRef]
- Nagai, T.; Suzuki, N. Isolation of collagen from ®sh waste material Ð skin, bone and ®ns. Food Chem. 2000, 68, 277–281. [Google Scholar] [CrossRef]
- Zhang, C.-x.; Huang, K.-k.; Wang, L.; Song, K.; Zhang, L.; Li, P. Apparent digestibility coefficients and amino acid availability of common protein ingredients in the diets of bullfrog, Rana (Lithobates) catesbeiana. Aquaculture 2015, 437, 38–45. [Google Scholar] [CrossRef]
- Xu, X.; Lai, R. The Chemistry and Biological Activities of Peptides from Amphibian Skin Secretions. Chem. Rev. 2015, 115, 1760–1846. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Mechkarska, M.; Arafat, K.; Attoub, S.; Sonnevend, A. Analogues of the frog skin peptide alyteserin−2a with enhanced antimicrobial activities against Gram-negative bacteria. J. Pept. Sci. 2012, 18, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Attoub, S.; Arafat, H.; Mechkarska, M.; Conlon, J.M. Anti-tumor activities of the host-defense peptide hymenochirin-1B. Regulatory Peptides 2013, 187, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Bergaoui, I.; Zairi, A.; Tangy, F.; Aouni, M.; Selmi, B.; Hani, K. In vitro antiviral activity of dermaseptin S4 and derivatives from amphibian skin against herpes simplex virus type 2. J. Med. Virol. 2012, 85, 272–281. [Google Scholar] [CrossRef]
- Conlon, J.M.; Mechkarska, M.; Pantic, J.M.; Lukic, M.L.; Coquet, L.; Leprince, J.; Nielsen, P.F.; Rinaldi, A.C. An immunomodulatory peptide related to frenatin 2 from skin secretions of the Tyrrhenian painted frog Discoglossus sardus (Alytidae). Peptides 2013, 40, 65–71. [Google Scholar] [CrossRef]
- Conlon, J.M.; Mechkarska, M.; Prajeep, M.; Arafat, K.; Zaric, M.; Lukic, M.L.; Attoub, S. Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids 2012, 44, 715–723. [Google Scholar] [CrossRef]
- Mechkarska, M.; Ojo, O.O.; Meetani, M.A.; Coquet, L.; Jouenne, T.; Abdel-Wahab, Y.H.A.; Flatt, P.R.; King, J.D.; Conlon, J.M. Peptidomic analysis of skin secretions from the bullfrog Lithobates catesbeianus (Ranidae) identifies multiple peptides with potent insulin-releasing activity. Peptides 2011, 32, 203–208. [Google Scholar] [CrossRef]
- Ojo, O.O.; Conlon, J.M.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells. Biochem. Biophys. Res. Commun. 2013, 431, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Zahid, O.K.; Mechkarska, M.; Ojo, O.O.; Abdel-Wahab, Y.H.A.; Flatt, P.R.; Meetani, M.A.; Conlon, J.M. Caerulein-and xenopsin-related peptides with insulin-releasing activities from skin secretions of the clawed frogs, Xenopus borealis and Xenopus amieti (Pipidae). Gen. Comp. Endocrinol. 2011, 172, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, X.; Liu, X.; Wu, J.; Liu, C.; Gong, W.; Zhao, Z.; Hong, J.; Lin, D.; Wang, Y.; et al. Antioxidant Peptidomics Reveals Novel Skin Antioxidant System. Mol. Cell. Proteomics 2009, 8, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, B.L.; Gao, L.Z.; Chen, H.L. Studies on bullfrog skin collagen. Food Chem. 2004, 84, 65–69. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Li, S.; Liu, B.; Gao, L. Sustained Release of BSA from a Novel Drug Delivery Matrix–Bullfrog Skin Collagen Film. Macromol. Biosci. 2004, 4, 454–457. [Google Scholar] [CrossRef]
- Haddad, L.R.; Tejada-Ortigoza, V.; Martín-del-Campo, S.T.; Balderas-Leon, I.; Morales-de la Pena, M.; Garcia-Amezquita, L.E.; Welti-Chanes, J. Evaluation of nutritional composition and technological functionality of whole American Bullfrog (Lithobates catesbeianus), its skin, and its legs as potential food ingredients. Food Chem. 2022, 372, 131232. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, L.; Song, W.; Zhang, C.; Hua, Y.; Chen, Y.; Li, X. Separation, identification and molecular binding mechanism of dipeptidyl peptidase IV inhibitory peptides derived from walnut (Juglans regia L.) protein. Food Chem. 2021, 347, 129062. [Google Scholar] [CrossRef]
- Xu, Q.; Zheng, L.; Huang, M.; Zhao, M. Exploring structural features of potent dipeptidyl peptidase IV (DPP-IV) inhibitory peptides derived from tilapia (Oreochromis niloticus) skin gelatin by an integrated approach of multivariate analysis and Gly-Pro-based peptide library. Food Chem. 2022, 397, 133821. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, L.; Su, G.; Zeng, X.A.; Sun, B.; Zhao, M. Evaluation and Exploration of Potentially Bioactive Peptides in Casein Hydrolysates against Liver Oxidative Damage in STZ/HFD-Induced Diabetic Rats. J. Agric. Food Chem. 2020, 68, 2393–2405. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J.; Feng, Y.; Yin, H.; Lai, H.; Xiao, R.; He, S.; Yang, Z.; He, Y. Process Optimization, Amino Acid Composition, and Antioxidant Activities of Protein and Polypeptide Extracted from Waste Beer Yeast. Molecules 2022, 27, 6825. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, Q.; Lin, L.; Zeng, X.A.; Sun, B.; Zhao, M. In vitro Metabolic Stability of a Casein-Derived Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptide VPYPQ and Its Controlled Release from Casein by Enzymatic Hydrolysis. J. Agric. Food Chem. 2019, 67, 10604–10613. [Google Scholar] [CrossRef]
- Zhou, L.; Xiao, C.; Gao, J.; Zhao, M.; Li, X.G.; Mora, L.; Toldrá, F. Preparation and identification of novel DPP-IV inhibitory peptides from Musculus senhousei: Peptidomic analysis, molecular simulation, and validation. Food Bio. 2024, 59, 103832. [Google Scholar] [CrossRef]
- Shao, G.; Cao, Y.; Chen, Z.; Liu, C.; Li, S.; Chi, H.; Dong, M.Q. How to use open-pFind in deep proteomics data analysis?—A protocol for rigorous identification and quantitation of peptides and proteins from mass spectrometry data. Biophys. Rep. 2021, 7, 207–226. [Google Scholar] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Softw. X 2015, 1-2, 19–25. [Google Scholar] [CrossRef]
- Spilianakis, C.B.; Spiliotopoulos, D.; Spitaleri, A.; Musco, G. Exploring PHD Fingers and H3K4me0 Interactions with Molecular Dynamics Simulations and Binding Free Energy Calculations: AIRE-PHD1, a Comparative Study. PLoS ONE 2012, 7, e46902. [Google Scholar]
- Li, Y.-J.; He, F.-Q.; Zhao, H.-H.; Li, Y.; Chen, J. Screening and identification of acetylcholinesterase inhibitors from Terminalia chebula fruits by immobilized enzyme on cellulose filter paper coupled with ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and molecular docking. J. Chromatogr. 2022, 1663, 462784. [Google Scholar]
- Tang, H.; Ma, F.; Zhao, D. Integrated multi-spectroscopic and molecular modelling techniques to probe the interaction mechanism between salvianolic acid A and α-glucosidase. Spectrochim. Acta, Part A 2019, 218, 51–61. [Google Scholar] [CrossRef]
- Daher, D.; Deracinois, B.; Courcoux, P.; Baniel, A.; Chollet, S.; Froidevaux, R.; Flahaut, C. Sensopeptidomic Kinetic Approach Combined with Decision Trees and Random Forests to Study the Bitterness during Enzymatic Hydrolysis Kinetics of Micellar Caseins. Foods 2021, 10, 1312. [Google Scholar] [CrossRef]
- Arroyo, C.; Kennedy, T.M.; Lyng, J.G.; O’Sullivan, M. Comparison of conventional heat treatment with selected non-thermal technologies for the inactivation of the commercial protease Protamex™. Food Bioprod. Process. 2017, 105, 95–103. [Google Scholar] [CrossRef]
- Wang, B.; Yu, Z.; Yokoyama, W.; Chiou, B.-S.; Chen, M.; Liu, F.; Zhong, F. Collagen peptides with DPP-IV inhibitory activity from sheep skin and their stability to in vitro gastrointestinal digestion. Food Bio. 2021, 42, 101161. [Google Scholar] [CrossRef]
- Li-Chan, E.C.Y.; Hunag, S.-L.; Jao, C.-L.; Ho, K.-P.; Hsu, K.-C. Peptides Derived from Atlantic Salmon Skin Gelatin as Dipeptidyl-peptidase IV Inhibitors. J. Agric. Food Chem. 2012, 60, 973–978. [Google Scholar] [CrossRef]
- Rieder, A.; Afseth, N.K.; Böcker, U.; Knutsen, S.H.; Kirkhus, B.; Mæhre, H.K.; Ballance, S.; Wubshet, S.G. Improved estimation of in vitro protein digestibility of different foods using size exclusion chromatography. Food Chem. 2021, 358, 129830. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Mooney, C.; Shields, D.C.; FitzGerald, R.J. In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Huang, S.-L.; Jao, C.-L.; Ho, K.-P.; Hsu, K.-C. Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides 2012, 35, 114–121. [Google Scholar] [CrossRef]
- Pan, F.; Zhou, N.; Li, J.; Du, X.; Zhao, L.; Wang, C.; Zhang, M.; Ai, X. Identification of C-phycocyanin-derived Peptides as Angiotensin Converting Enzyme and Dipeptidyl Peptidase IV Inhibitors via Molecular Docking and Molecular Dynamic Simulation. ES Food Agrofor. 2020, 2, 58–69. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, D.; Yu, Z.; Ding, L.; Liu, J. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs. J. Funct. Foods 2020, 64, 103649. [Google Scholar] [CrossRef]
- Liang, Z.; Li, H.; Lu, X.; Lin, G.; Li, Y.; Zhang, R. 3D-QSAR, in vitro assay and MD simulations studies on the design, bioactivities and different inhibitory modes of the novel DPP-IV inhibitory peptides. J. Mol. Struct. 2023, 1283, 135271. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, W.; Zeng, J.; Liu, Y.; Li, H.; Wang, H.; Zhang, Z.; Lin, H.; Li, Z. Insight into the mechanism of allergenicity decreasing in recombinant sarcoplasmic calcium-binding protein from shrimp (Litopenaeus vannamei) with thermal processing via spectroscopy and molecular dynamics simulation techniques. Food Res. Int. 2022, 157, 111427. [Google Scholar] [CrossRef]
- Chen, D.; Shen, X.; Chen, W.; Wu, D.; Zhang, Z.; Liu, P.; Liu, Y.; Li, W.; Yang, Y. A screening strategy for bioactive peptides from enzymolysis extracts of Lentinula edodes based on molecular docking and molecular dynamics simulation. J. Future Foods 2025, 5, 388–397. [Google Scholar] [CrossRef]
- Hatanaka, T.; Inoue, Y.; Arima, J.; Kumagai, Y.; Usuki, H.; Kawakami, K.; Kimura, M.; Mukaihara, T. Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chem. 2012, 134, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. An in silico model to predict the potential of dietary proteins as sources of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Food Chem. 2014, 165, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Ashok, A.; Brijesha, N.; Aparna, H.S. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity. Eur. J. Med. Chem. 2019, 180, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yan, S.; Xiao, Y.; Han, L.; Sun, L.; Wang, M. Number of galloyl moiety and intramolecular bonds in galloyl-based polyphenols affect their interaction with alpha-glucosidase. Food Chem. 2022, 367, 129846. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Yang, W.; Li, X.; Qi, D.; Chen, H.; Liu, H.; Yu, S.; Pan, Y.; Liu, Y.; et al. Identification, Screening, and Comprehensive Evaluation of Novel DPP-IV Inhibitory Peptides from the Tilapia Skin Gelatin Hydrolysate Produced Using Ginger Protease. Biomolecules 2022, 12, 1866. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, J.; Wang, S.; He, R.; Wang, Z.; Zhao, L.; Ge, W. Preparation, characterization, and mechanism of DPP-IV inhibitory peptides derived from Bactrian camel milk. Int. J. Biol. Macromol. 2024, 277 Pt 3, 134232. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Zhang, C.; Ma, L.; Wei, T.; Zhao, Y.; Peng, X. Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose. Food Chem. 2021, 347, 129056. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Yu, J.; Chen, X.; Zhang, S.; Cai, Y.; Li, L. A new functionality study of vanillin as the inhibitor for α-glucosidase and its inhibition kinetic mechanism. Food Chem. 2021, 353, 129448. [Google Scholar] [CrossRef]
Peptide Sequence | Mw (Da) | RT (min) | Peptide Ranker Score a | CPPpred Score b | logS c | T1/2 d | Affinity (kcal/mol) | Accessions e |
---|---|---|---|---|---|---|---|---|
INTPVK | 671.41 | 9.37 | 0.12 | 0.22 | −1.33 | 1.16 | −7.4 | P15438 |
KNLVLT | 687.44 | 11.52 | 0.12 | 0.66 | −1.26 | 1.09 | −6.8 | Q28GH3, Q642Q1, Q7ZY60 |
LGPDGR | 614.33 | 10.8 | 0.55 | 0.24 | −2.32 | 1.02 | −7.5 | Q8AVH7 |
LGPQR | 570.34 | 9.37 | 0.52 | 0.55 | −1.98 | 0.81 | −8.2 | Q498F0 |
LPGPDGR | 727.37 | 9.92 | 0.65 | 0.21 | −2.62 | 1.04 | −7.8 | O42350 |
MGPVGPR | 729.37 | 9.42 | 0.69 | 0.31 | −2.37 | 0.94 | −8.0 | O42350 |
PVGPR | 525.31 | 10.59 | 0.55 | 0.44 | −2.09 | 1.13 | −7.5 | O42350 |
RGEGLPA | 699.38 | 10.03 | 0.30 | 0.32 | −2.03 | 1.02 | −7.2 | Q58HI1 |
RGFDQ | 622.30 | 10.48 | 0.47 | 0.11 | −3.05 | 1.04 | −9.1 | Q6P1W0 |
RGPVGP | 582.34 | 9.65 | 0.51 | 0.35 | −1.92 | 0.82 | −8.7 | O42350 |
RLDDVT | 718.37 | 15.69 | 0.11 | 0.30 | −2.06 | 1.53 | −8.4 | Q5U538 |
SVGPVGPR | 768.44 | 13.96 | 0.50 | 0.23 | −2.04 | 1.17 | −7.3 | O42350 |
VGPVGPR | 681.4 | 11.3 | 0.52 | 0.38 | −2.07 | 0.87 | −8.0 | O42350 |
Hydrogen Bonds | Hydrophobic | Electrostatic | |
---|---|---|---|
LGPQR | Arg125, Glu205, Lys554, Ser630, Tyr631, Tyr662 | Phe357, Tyr547, Lys554, Tyr666 | Arg125, Glu206 |
RGFDQ | Glu205, Glu206, Arg358, Tyr662, Asp709, Asp739, Gly741 | Arg125, Tyr547 | Arg125, His126, Glu205, Tyr666, Asp709 |
RGPVGP | Glu205, Glu206, Tyr456, Ser552, Gln553, Tyr547, Arg560, Tyr662 | Phe357, Tyr547, Tyr666 | Arg429, Tyr666 |
RLDDVT | Lys122, Glu205, Glu206, Ser209, Tyr547, Tyr662, Asp739, His740, Gly741 | Phe357, Trp629 | Lys122, Arg125, Tyr666 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Z.; Zhang, M.; Lian, J.; Xiao, Y.; Luo, D.; Zhao, M.; Lin, L. Uncovering Novel DPP-IV Inhibitory Peptides from Amphibian (Lithobates catesbeiana) Skin via Peptidomics and Molecular Simulation. Foods 2025, 14, 3023. https://doi.org/10.3390/foods14173023
Fang Z, Zhang M, Lian J, Xiao Y, Luo D, Zhao M, Lin L. Uncovering Novel DPP-IV Inhibitory Peptides from Amphibian (Lithobates catesbeiana) Skin via Peptidomics and Molecular Simulation. Foods. 2025; 14(17):3023. https://doi.org/10.3390/foods14173023
Chicago/Turabian StyleFang, Zongmu, Mei Zhang, Junhui Lian, Yangqing Xiao, Donghui Luo, Mouming Zhao, and Lianzhu Lin. 2025. "Uncovering Novel DPP-IV Inhibitory Peptides from Amphibian (Lithobates catesbeiana) Skin via Peptidomics and Molecular Simulation" Foods 14, no. 17: 3023. https://doi.org/10.3390/foods14173023
APA StyleFang, Z., Zhang, M., Lian, J., Xiao, Y., Luo, D., Zhao, M., & Lin, L. (2025). Uncovering Novel DPP-IV Inhibitory Peptides from Amphibian (Lithobates catesbeiana) Skin via Peptidomics and Molecular Simulation. Foods, 14(17), 3023. https://doi.org/10.3390/foods14173023