Urea-Reassembled Soy Lipophilic Protein Nanoparticles for Resveratrol Delivery: Structure, Interfaces, and Digestion
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. LP Preparation
2.3. Preparation of Recombinant LP Samples Treated with Urea
2.4. Characterization of Urea-Induced LP Decomposition and Reorganization Structure
2.5. Urea-Induced Reassembled LP Microstructure
2.6. Preparation of LP-Resveratrol (LP-Res) Nanoparticles
2.7. Characterization of Urea-Induced LP-Res Nanoparticles
2.8. Characterization of the Interface Properties of Nanoparticles
2.8.1. Oil–Water Interface
2.8.2. Air–Water Interface
2.9. AFM Measurement of the Microstructure of Nanoparticle Interface
2.10. Foam Properties of Nanoparticles
2.11. Digestive Properties
2.12. Statistical Analysis
3. Results and Discussion
3.1. Urea-Induced Disassembly and Reassembly of LP
3.2. Characterization of Urea-Induced LP-Res Nanoparticles
3.3. Interfacial Properties of Urea-Induced LP-Res Nanoparticles
3.3.1. Oil–Water Interfacial Properties
3.3.2. Air–Water Interface Properties of LP-Res Nanoparticles
3.4. Foam Stability of LP-Res Nanoparticles
3.5. Digestive Characteristics of LP-Res Nanoparticles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronym | Full Term |
LP | Lipophilic protein |
Res | Resveratrol |
EE | Encapsulation efficiency |
LA | Loading ability |
PSD | Particle size distribution |
DLS | Dynamic light scattering |
PDI | Polydispersity index |
ζ-potential | Zeta potential |
H0 | Surface hydrophobicity index |
FI | Fluorescence intensity |
SEM | Scanning electron microscopy |
TEM | Transmission electron microscopy |
FTIR | Fourier transform infrared spectroscopy |
DSC | Differential scanning calorimetry |
EAI | Emulsifying activity index |
ESI | Emulsifying stability index |
ANS | 1-anilinyl-8-naphthalenesulfonate |
AFM | Atomic force microscopy |
SGF | Simulated gastric fluid |
SIF | Simulated intestinal fluid |
LAOD | Large-amplitude oscillatory dilatation |
HPLC | High-performance liquid chromatography |
References
- Pateiro, M.; Gómez, B.; Munekata, P.E.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules 2021, 26, 1547. [Google Scholar] [CrossRef]
- Visentini, F.F.; Perez, A.A.; Santiago, L.G. Bioactive compounds: Application of albumin nanocarriers as delivery systems. Crit. Rev. Food Sci. Nutr. 2023, 63, 7238–7268. [Google Scholar] [CrossRef]
- Hadidi, M.; Tan, C.; Assadpour, E.; Kharazmi, M.S.; Jafari, S.M. Emerging plant proteins as nanocarriers of bioactive compounds. J. Control. Release 2023, 355, 327–342. [Google Scholar] [CrossRef]
- Zhong, M.; Sun, Y.; Qayum, A.; Liang, Q.; Rehman, A.; Gan, R.; Ma, H.; Ren, X. Research progress in soybean lipophilic protein (LP): Extraction, structural, techno-functional properties, and high-performance food applications. Trends Food Sci. Technol. 2024, 147, 104440. [Google Scholar] [CrossRef]
- Taheri, A.; Jafari, A.; Jafari, F. Production of Modified Superplasticizer by Two-Step Synthesis of Nanosilica-Polycarboxylate Ether. Adv. J. Chem. B 2024, 6, 31–45. [Google Scholar] [CrossRef]
- Ijinu, T.P.; De Lellis, L.F.; Shanmugarama, S.; Pérez-Gregorio, R.; Sasikumar, P.; Ullah, H.; Buccato, D.G.; Di Minno, A.; Baldi, A.; Daglia, M. Anthocyanins as immunomodulatory dietary supplements: A nutraceutical perspective and micro-/nano-strategies for enhanced bioavailability. Nutrients 2023, 15, 4152. [Google Scholar] [CrossRef]
- Tang, C.H. Strategies to utilize naturally occurring protein architectures as nanovehicles for hydrophobic nutraceuticals. Food Hydrocoll. 2021, 112, 106344. [Google Scholar] [CrossRef]
- Tang, C.H. Nano-architectural assembly of soy proteins: A promising strategy to fabricate nutraceutical nanovehicles. Adv. Colloid Interface Sci. 2021, 291, 102402. [Google Scholar] [CrossRef]
- Shen, Y.; Du, Z.; Wu, X.; Li, Y. Modulating molecular interactions in pea protein to improve its functional properties. J. Agric. Food Res. 2022, 8, 100313. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Zhao, G. Ferritin nanocage: A versatile nanocarrier utilized in the field of food, nutrition, and medicine. Nanomaterials 2020, 10, 1894. [Google Scholar] [CrossRef]
- Hammonds, W.M.; Keating, E.A.; Smetana, M.E.; Smetana, K.S.; Bond, M.M. Safety and efficacy of urea for hyponatremia. Hosp. Pharm. 2022, 57, 365–369. [Google Scholar] [CrossRef]
- Liu, L.L.; Li, X.T.; Zhang, N.; Tang, C.H. Novel soy β-conglycinin nanoparticles by ethanol-assisted disassembly and reassembly: Outstanding nanocarriers for hydrophobic nutraceuticals. Food Hydrocoll. 2019, 91, 246–255. [Google Scholar] [CrossRef]
- Liu, L.L.; Liu, P.Z.; Li, X.T.; Zhang, N.; Tang, C.H. Novel soy β-conglycinin core–shell nanoparticles as outstanding ecofriendly nanocarriers for curcumin. J. Agric. Food Chem. 2019, 67, 6292–6301. [Google Scholar] [CrossRef]
- Yang, J.; Faber, I.; Berton-Carabin, C.C.; Nikiforidis, C.V.; van Der Linden, E.; Sagis, L.M. Foams and air-water interfaces stabilised by mildly purified rapeseed proteins after defatting. Food Hydrocoll. 2021, 112, 106270. [Google Scholar] [CrossRef]
- Ab Rasid, S.A.; Mahmood, S.M.; Kechut, N.I.; Akbari, S. A review on parameters affecting nanoparticles stabilized foam performance based on recent analyses. J. Pet. Sci. Eng. 2022, 208, 109475. [Google Scholar] [CrossRef]
- Meng, Y.; Li, C. Conformational changes and functional properties of whey protein isolate-polyphenol complexes formed by non-covalent interaction. Food Chem. 2021, 364, 129622. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wei, Q.; Chen, Y.; Feng, A.; Zhang, W. Enhancement of hydrogen bonds between proteins and polyphenols through magnetic field treatment: Structure, interfacial properties, and emulsifying properties. Food Res. Int. 2024, 192, 114822. [Google Scholar] [CrossRef]
- Zhong, M.; Sun, Y.; Sun, Y.; Song, H.; Zhang, S.; Qi, B.; Li, Y. Sodium dodecyl sulfate-dependent disassembly and reassembly of soybean lipophilic protein nanoparticles: An environmentally friendly nanocarrier for resveratrol. J. Agric. Food Chem. 2022, 70, 1640–1651. [Google Scholar] [CrossRef]
- An, W.; Gao, Y.; Liu, L.; Bai, Q.; Zhao, J.; Zhao, Y.; Zhang, X.C. Structural basis of urea transport by Arabidopsis thaliana DUR3. Nat. Commun. 2025, 16, 1782. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Zhou, F.; Zhang, Y.; Yuan, D.; Zhao, Q.; Zhao, M. Formation and characterization of soy protein nanoparticles by controlled partial enzymatic hydrolysis. Food Hydrocoll. 2020, 105, 105844. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Q.; Yang, H.; Shi, H.; Dong, A.; Wang, L.; Yu, S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int. J. Biol. Macromol. 2022, 206, 175–187. [Google Scholar] [CrossRef]
- Xing, H.; Wigham, C.; Lee, S.R.; Pereira, A.J.; de Campos, L.J.; Picco, A.S.; Huck-Iriart, C.; Escudero, C.; Perez-Chirinos, L.; Gajaweera, S.; et al. Enhanced hydrogen bonding by urea functionalization tunes the stability and biological properties of peptide amphiphiles. Biomacromolecules 2024, 25, 2823–2837. [Google Scholar] [CrossRef]
- Chen, F.P.; Li, B.S.; Tang, C.H. Nanocomplexation of soy protein isolate with curcumin: Influence of ultrasonic treatment. Food Res. Int. 2015, 75, 157–165. [Google Scholar] [CrossRef]
- Rong, Y.; Ali, S.; Ouyang, Q.; Wang, L.; Wang, B.; Chen, Q. A turn-on upconversion fluorescence sensor for acrylamide in potato chips based on fluorescence resonance energy transfer and thiolene Michael addition. Food Chem. 2021, 351, 129215. [Google Scholar] [CrossRef]
- González, A.; Gastelú, G.; Barrera, G.N.; Ribotta, P.D.; Igarzabal, C.I.Á. Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocoll. 2019, 89, 758–764. [Google Scholar] [CrossRef]
- Golly, M.K.; Ma, H.; Yuqing, D.; Dandan, L.; Quaisie, J.; Tuli, J.A.; Mintah, B.K.; Dzah, C.S.; Agordoh, P.D. Effect of multi-frequency countercurrent ultrasound treatment on extraction optimization, functional and structural properties of protein isolates from walnut (Juglans regia L.) meal. J. Food Biochem. 2020, 44, e13210. [Google Scholar] [CrossRef]
- Yang, J.; Thielen, I.; Berton-Carabin, C.C.; van der Linden, E.; Sagis, L.M. Nonlinear interfacial rheology and atomic force microscopy of air-water interfaces stabilized by whey protein beads and their constituents. Food Hydrocoll. 2020, 101, 105466. [Google Scholar] [CrossRef]
- Othmeni, I.; Karoui, R.; Blecker, C. Impact of pH on the structure, interfacial and foaming properties of pea protein isolate: Investigation of the structure–function relationship. Int. J. Biol. Macromol. 2024, 278, 134818. [Google Scholar] [CrossRef]
- Zhong, M.; Sun, Y.; Sun, Y.; Fang, L.; Qi, B.; Xie, F.; Li, Y. Dynamic gastric stability and in vitro lipid digestion of soybean protein isolate and three storage protein-stabilized emulsions: Effects of ultrasonic treatment. Food Res. Int. 2021, 149, 110666. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Sirison, J.; Ishi, T.; Matsumiya, K. Soybean lipophilic proteins—Origin and functional properties as affected by interaction with storage proteins. Curr. Opin. Colloid Interface Sci. 2017, 28, 120–128. [Google Scholar] [CrossRef]
- Lan, Q.; Li, L.; Dong, H.; Wu, D.; Chen, H.; Lin, D.; Qin, W.; Yang, W.; Vasanthan, T.; Zhang, Q. Effect of soybean soluble polysaccharide on the formation of glucono-δ-lactone-induced soybean protein isolate gel. Polymers 2019, 11, 1997. [Google Scholar] [CrossRef]
- Jing, H.; Sun, J.; Mu, Y.; Obadi, M.; McClements, D.J.; Xu, B. Sonochemical effects on the structure and antioxidant activity of egg white protein–tea polyphenol conjugates. Food Funct. 2020, 11, 7084–7094. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Yuan, X.; Yang, H.; Qin, S.; Hong, L.; Pu, L.; Li, L.; Zhang, P.; Zhang, J. Study of the molecular structure of proteins in fermented Maize-Soybean meal-based rations based on FTIR spectroscopy. Food Chem. 2024, 441, 138310. [Google Scholar] [CrossRef]
- Wu, B.; Qiu, C.; Guo, Y.; Zhang, C.; Li, D.; Gao, K.; Ma, J.; Ma, H. Comparative evaluation of physicochemical properties, microstructure, and antioxidant activity of jujube polysaccharides subjected to hot air, infrared, radio frequency, and freeze drying. Agriculture 2022, 12, 1606. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, T.; Chen, L.; Yagoub, A.E.A.; Chen, H.; Yu, X. Effect of dialysate type on ultrasound-assisted self-assembly Zein nanocomplexes: Fabrication, characterization, and physicochemical stability. Food Res. Int. 2022, 162, 111812. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, X.; Yagoub, A.E.A.; Owusu-Ansah, P.; Wahia, H.; Ma, H.; Zhou, C. Effects of low frequency multi-mode ultrasound and it’s washing solution’s interface properties on freshly cut cauliflower. Food Chem. 2022, 366, 130683. [Google Scholar] [CrossRef]
- Zhang, W.; Boateng, I.D.; Zhang, W.; Jia, S.; Wang, T.; Huang, L. Effect of ultrasound-assisted ionic liquid pretreatment on the structure and interfacial properties of soy protein isolate. Process Biochem. 2022, 115, 160–168. [Google Scholar] [CrossRef]
- Su, Z.; Dias, C.L. Molecular interactions accounting for protein denaturation by urea. J. Mol. Liq. 2017, 228, 168–175. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, W.; Liu, Y.; Ma, H. Chemical, structural and functional properties of pectin from tomato pulp under different peeling methods. Food Chem. 2023, 403, 134373. [Google Scholar] [CrossRef]
- Ravikumar, Y.P.; Lakshmi, N.; Zhang, G.Y.; Jun, H.; Qi, X.H. Harnessing l-arabinose isomerase for biological production of d-tagatose: Recent advances and its applications. Trends Food Sci. Technol. 2021, 107, 16–30. [Google Scholar] [CrossRef]
- Yuan, D.B.; Min, W.; Yang, X.Q.; Tang, C.H.; Huang, K.L.; Guo, J.; Wang, J.; Wu, N.; Zheng, H.; Qi, J.R. An improved isolation method of soy β-conglycinin subunits and their characterization. J. Am. Oil Chem. Soc. 2010, 87, 997–1004. [Google Scholar] [CrossRef]
- Kundu, S.; Egboluche, T.K.; Hossain, M.A. Urea-and thiourea-based receptors for anion binding. Acc. Chem. Res. 2023, 56, 1320–1329. [Google Scholar] [CrossRef]
- Atri, S.; Gusain, M.; Kumar, P.; Uma, S.; Nagarajan, R. Role of the solvent medium in the wet-chemical synthesis of CuSbS2, Cu3SbS3, and bismuth substituted Cu3SbS3. J. Chem. Sci. 2020, 132, 132. [Google Scholar] [CrossRef]
- Araiza-Calahorra, A.; Wang, Y.; Boesch, C.; Zhao, Y.; Sarkar, A. Pickering emulsions stabilized by colloidal gel particles complexed or conjugated with biopolymers to enhance bioaccessibility and cellular uptake of curcumin. Curr. Res. Food Sci. 2020, 3, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Z.; Meng, Y.; Lv, G.; Wang, J.; Zhang, D.; Shi, J.; Zhai, X.; Meng, X.; Zou, X. Co-delivery mechanism of curcumin/catechin complex by modified soy protein isolate: Emphasizing structure, functionality, and intermolecular interaction. Food Hydrocoll. 2024, 152, 109958. [Google Scholar] [CrossRef]
- Chen, F.P.; Li, B.S.; Tang, C.H. Nanocomplexation between curcumin and soy protein isolate: Influence on curcumin stability/bioaccessibility and in vitro protein digestibility. J. Agric. Food Chem. 2015, 63, 3559–3569. [Google Scholar] [CrossRef]
- Yang, Y.; Jin, H.; Jin, Y.; Jin, G.; Sheng, L. A new insight into the influence of pH on the adsorption at oil-water interface and emulsion stability of egg yolk protein. Int. J. Biol. Macromol. 2023, 246, 125711. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, T.; Zhang, F.; Huang, Y.; Zhang, Y.; Xu, B. Tea polyphenols on emulsifying and antioxidant properties of egg white protein at acidic and neutral pH conditions. LWT 2022, 153, 112537. [Google Scholar] [CrossRef]
- Gao, R.; Yu, Q.; Shen, Y.; Chu, Q.; Chen, G.; Fen, S.; Yang, M.; Yuan, L.; McClements, D.J.; Sun, Q. Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends Food Sci. Technol. 2021, 110, 687–699. [Google Scholar] [CrossRef]
- Liu, Q.; Chang, X.; Shan, Y.; Fu, F.; Ding, S. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles. J. Sci. Food Agric. 2021, 101, 3630–3643. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Sun, Y.; Pan, J.; Fang, Y.; Jin, Y.; Sheng, L. Adsorption kinetics of ovalbumin and lysozyme at the air-water interface and foam properties at neutral pH. Food Hydrocoll. 2022, 124, 107352. [Google Scholar] [CrossRef]
- Felix, M.; Yang, J.; Guerrero, A.; Sagis, L.M. Effect of cinnamaldehyde on interfacial rheological properties of proteins adsorbed at O/W interfaces. Food Hydrocoll. 2019, 97, 105235. [Google Scholar] [CrossRef]
- Yang, J.; Duan, Y.; Zhang, H.; Huang, F.; Wan, C.; Cheng, C.; Wang, L.; Peng, D.; Deng, Q. Ultrasound coupled with weak alkali cycling-induced exchange of free sulfhydryl-disulfide bond for remodeling interfacial flexibility of flaxseed protein isolates. Food Hydrocoll. 2023, 140, 108597. [Google Scholar] [CrossRef]
- Berton-Carabin, C.; Genot, C.; Gaillard, C.; Guibert, D.; Ropers, M.H. Design of interfacial films to control lipid oxidation in oil-in-water emulsions. Food Hydrocoll. 2013, 33, 99–105. [Google Scholar] [CrossRef]
- Sagis, L.M.C.; Humblet-Hua, K.N.P.; Van Kempen, S.E.H.J. Nonlinear stress deformation behavior of interfaces stabilized by food-based ingredients. J. Phys. Condens. Matter 2014, 26, 464105. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, Y.; Xu, B.; Jiang, S. Insight of the non-linear viscoelasticity of noodle dough using large amplitude oscillatory extension tests and the correlation with noodle quality. J. Food Eng. 2023, 341, 111320. [Google Scholar] [CrossRef]
- Voudouris, P.; Mocking-Bode, H.C.; Sagis, L.M.; Nikiforidis, C.V.; Meinders, M.B.; Yang, J. Effect of membrane filtration and direct steam injection on mildly refined rapeseed protein solubility, air-water interfacial and foaming properties. Food Hydrocoll. 2025, 160, 110754. [Google Scholar] [CrossRef]
- Sirison, J.; Ishii, T.; Matsumiya, K.; Samoto, M.; Kohno, M.; Matsumura, Y. Comparison of surface and foaming properties of soy lipophilic protein with those of glycinin and β-conglycinin. Food Hydrocoll. 2021, 112, 106345. [Google Scholar] [CrossRef]
- Shi, T.; Liu, H.; Song, T.; Xiong, Z.; Yuan, L.; McClements, D.J.; Gao, R. Use of l-arginine-assisted ultrasonic treatment to change the molecular and interfacial characteristics of fish myosin and enhance the physical stability of the emulsion. Food Chem. 2021, 342, 128314. [Google Scholar] [CrossRef]
- Pan, J.; Xu, H.; Dabbour, M.; Mintah, B.K.; Chen, W.; Yang, F.; Zhang, Z.; Cheng, Y.; Dai, C.; He, R.; et al. Effect of alkaline pH-shifting process on extraction rate, structural, and functional properties of black soldier fly (Hermetia illucens) larvae protein. LWT 2023, 185, 115180. [Google Scholar] [CrossRef]
- Jia, Z.; Zheng, M.; Tao, F.; Chen, W.; Huang, G.; Jiang, J. Effect of covalent modification by (−)-epigallocatechin-3-gallate on physicochemical and functional properties of whey protein isolate. LWT 2016, 66, 305–310. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Z.; Zhao, J.; Liu, Y. The effect of non-covalent interaction of chlorogenic acid with whey protein and casein on physicochemical and radical-scavenging activity of in vitro protein digests. Food Chem. 2018, 268, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Peng, D.; Jin, W.; Geng, F.; Cheng, C.; Wang, L.; Zhang, H.; Duan, Y.; Deng, Q. Redesign of air/oil-water interface via physical fields coupled with pH shifting to improve the emulsification, foaming, and digestion properties of plant proteins. Crit. Rev. Food Sci. Nutr. 2025, 65, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Chen, Y.; Zhang, L.; Adhikari, B.; Xu, B.; Li, J.; Zheng, T. Synthesis and characterization of lotus seed protein-based curcumin microcapsules with enhanced solubility, stability, and sustained release. J. Sci. Food Agric. 2022, 102, 2220–2231. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, Y.; Gao, L.; Zhang, Y.; Yi, J. Improved chemical stability and cellular antioxidant activity of resveratrol in zein nanoparticle with bovine serum albumin-caffeic acid conjugate. Food Chem. 2018, 261, 283–291. [Google Scholar] [CrossRef] [PubMed]
Sample | α-Helix (%) | β-Sheet (%) | β-Turn (%) | Random Coil (%) |
---|---|---|---|---|
0U | 30.44 ± 0.1 a | 39.45 ± 0.2 a | 17.64 ± 0.1 e | 12.47 ± 0.1 b |
2U | 27.69 ± 0.1 c | 35.28 ± 0.2 c | 22.84 ± 0.1 b | 11.36 ± 0.1 c |
4U | 27.25 ± 0.1 d | 34.26 ± 0.1 d | 21.73 ± 0.1 c | 10.48 ± 0.1 d |
6U | 27.14 ± 0.2 d | 35.20 ± 0.1 c | 20.20 ± 0.2 d | 12.77 ± 0.2 b |
8U | 28.42 ± 0.1 b | 37.97 ± 0.1 b | 21.97 ± 0.2 c | 11.35 ± 0.1 c |
10U | 26.26 ± 0.1 e | 33.18 ± 0.2 e | 23.85 ± 0.2 a | 17.61 ± 0.1 a |
Sample | Average Particle Size (nm) | PDI | ζ-Potential (mV) | Surface Hydrophobicity (H0) |
---|---|---|---|---|
0U | 397.44 ± 10.31 a | 0.45 ± 0.23 a | −17.35 ± 0.75 e | 2376.63 ± 10.24 i |
2U | 373.69 ± 5.17 c | 0.28 ± 0.25 c | −22.86 ± 0.65 b | 3526.74 ± 4.48 b |
4U | 282.25 ± 6.58 d | 0.26 ± 0.13 d | −23.83 ± 0.78 c | 4054.54 ± 7.63 a |
6U | 263.14 ± 7.35 d | 0.20 ± 0.15 c | −24.54 ± 0.26 d | 4694.31 ± 4.65 f |
8U | 208.42 ± 7.46 b | 0.97 ± 0.14 b | −27.67 ± 0.97 c | 5123.55 ± 5.17 d |
10U | 326.26 ± 3.56 e | 0.18 ± 0.25 e | −23.85 ± 0.37 a | 4224.66 ± 6.68 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, M.; Sun, Y.; Abdul, Q.; Liang, Q.; Zhang, F.; Ma, H.; Ren, X. Urea-Reassembled Soy Lipophilic Protein Nanoparticles for Resveratrol Delivery: Structure, Interfaces, and Digestion. Foods 2025, 14, 3000. https://doi.org/10.3390/foods14173000
Zhong M, Sun Y, Abdul Q, Liang Q, Zhang F, Ma H, Ren X. Urea-Reassembled Soy Lipophilic Protein Nanoparticles for Resveratrol Delivery: Structure, Interfaces, and Digestion. Foods. 2025; 14(17):3000. https://doi.org/10.3390/foods14173000
Chicago/Turabian StyleZhong, Mingming, Yufan Sun, Qayum Abdul, Qiufang Liang, Fan Zhang, Haile Ma, and Xiaofeng Ren. 2025. "Urea-Reassembled Soy Lipophilic Protein Nanoparticles for Resveratrol Delivery: Structure, Interfaces, and Digestion" Foods 14, no. 17: 3000. https://doi.org/10.3390/foods14173000
APA StyleZhong, M., Sun, Y., Abdul, Q., Liang, Q., Zhang, F., Ma, H., & Ren, X. (2025). Urea-Reassembled Soy Lipophilic Protein Nanoparticles for Resveratrol Delivery: Structure, Interfaces, and Digestion. Foods, 14(17), 3000. https://doi.org/10.3390/foods14173000