Two-Dimensional GC–ToFMS Analysis of Volatile Organic Compounds in Fermented Camel Milk (Shubat)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Volatile Metabolite Analysis
2.2.1. Headspace Solid-Phase Microextraction (HS-SPME)
2.2.2. GC×GC–ToFMS Analysis
2.3. Data Preprocessing, Compound Identification, and Visualization
3. Results
3.1. Major Volatile Compound Categories in Shubat Samples
3.2. Core and Unique Volatile Compounds Across Shubat Samples
3.3. Alpha and Beta Diversity Analysis of Volatile Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhadyra, S.; Han, X.; Anapiyayev, B.B.; Tao, F.; Xu, P. Bacterial Diversity Analysis in Kazakh Fermented Milks Shubat and Ayran by Combining Culture-Dependent and Culture-Independent Methods. LWT Food Sci. Technol. 2021, 141, 110877. [Google Scholar] [CrossRef]
- Sepehr, A.; Miri, S.T.; Aghamohammad, S.; Rahimirad, N.; Milani, M.; Pourshafie, M.-R.; Rohani, M. Health Benefits, Antimicrobial Activities, and Potential Applications of Probiotics: A Review. Medicine 2024, 103, e32412. [Google Scholar] [CrossRef]
- Bilal, Z.; Kondybayev, A.; Ospanova, A.; Tormo, H.; Akhmetsadykova, S.; Amutova, F.; Faye, B.; Konuspayeva, G. Volatile Organic Compounds of Camel Milk and Shubat across Kazakhstan’s Regions, Seasons, and Breeds. Heliyon 2024, 10, e35365. [Google Scholar] [CrossRef] [PubMed]
- Ragavan, M.L.; Hemalatha, S. The Functional Roles of Short Chain Fatty Acids as Postbiotics in Human Gut: Future Perspectives. Food Sci. Biotechnol. 2024, 33, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Malviya, J.; Alameri, A.A.; Al-Janabi, S.S.; Fawzi, O.F.; Azzawi, A.L.; Obaid, R.F.; Alsudani, A.A.; Alkhayyat, A.S.; Gupta, J.; Mustafa, Y.F. Metabolomic Profiling of Bacterial Biofilm: Trends, Challenges, and an Emerging Antibiofilm Target. World J. Microbiol. Biotechnol. 2023, 39, 212. [Google Scholar] [CrossRef]
- Viant, M.R.; Sommer, U. Mass Spectrometry Based Environmental Metabolomics: A Primer and Review. Metabolomics 2013, 9, 144–158. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; Carpena, M.; Garcia-Oliveira, P.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Analytical Metabolomics and Applications in Health, Environmental and Food Science. Crit. Rev. Anal. Chem. 2022, 52, 712–734. [Google Scholar] [CrossRef] [PubMed]
- An, F.; Wu, J.; Feng, Y.; Pan, G.; Ma, Y.; Jiang, J.; Yang, X.; Xue, R.; Wu, R.; Zhao, M. A Systematic Review on the Flavor of Soy-based Fermented Foods: Core Fermentation Microbiome, Multisensory Flavor Substances, Key Enzymes, and Metabolic Pathways. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2773–2801. [Google Scholar] [CrossRef]
- Lin, J.; Hua, B.; Xu, Z.; Li, S.; Ma, C. The Impact of Proteolytic Pork Hydrolysate on Microbial, Flavor and Free Amino Acids Compounds of Yogurt. Korean J. Food Sci. Anim. Resour. 2016, 36, 558. [Google Scholar] [CrossRef]
- Belardi, R.P.; Pawliszyn, J.B. The Application of Chemically Modified Fused Silica Fibers in the Extraction of Organics from Water Matrix Samples and Their Rapid Transfer to Capillary Columns. Water Qual. Res. J. 1989, 24, 179–191. [Google Scholar] [CrossRef]
- Starowicz, M. Analysis of Volatiles in Food Products. Separations 2021, 8, 157. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Z.; Li, J.; Wei, M.; Wang, Y.; Jiang, W.; Fang, Y.; Sun, X.; Ge, Q. Aroma Identification and Traceability of the Core Sub-Producing Area in the Helan Mountain Eastern Foothills Using Two-Dimensional Gas Chromatography and Time-of-Flight Mass Spectrometry and Chemometrics. Foods 2024, 13, 3644. [Google Scholar] [CrossRef] [PubMed]
- Scarlett, A.G.; Despaigne-Diaz, A.I.; Wilde, S.A.; Grice, K. An Examination by GC×GC-TOFMS of Organic Molecules Present in Highly Degraded Oils Emerging from Caribbean Terrestrial Seeps of Cretaceous Age. Geosci. Front. 2019, 10, 5–15. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, S.; Fang, Y.; Li, J.; Ma, M.; Yang, Z.; Shang, L.; Guo, X.; Hua, R.; Sun, D. Volatile Flavor of Tricholoma Matsutake from the Different Regions of China by Using GC×GC-TOF MS. Foods 2025, 14, 1824. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, T.-T.; Guo, R.-R.; Ye, Q.; Zhao, H.-L.; Huang, X.-H. The Regulation of Key Flavor of Traditional Fermented Food by Microbial Metabolism: A Review. Food Chem. X 2023, 19, 100871. [Google Scholar] [CrossRef]
- Zhadyra, S.; Tao, F.; Xu, P. Exploring the Microbiome and Functional Metabolism of Fermented Camel Milk (Shubat) Using Metagenomics. Foods 2025, 14, 1102. [Google Scholar] [CrossRef]
- Shao, D.; Cheng, W.; Jiang, C.; Pan, T.; Li, N.; Li, M.; Li, R.; Lan, W.; Du, X. Machine-Learning-Assisted Aroma Profile Prediction in Five Different Quality Grades of Nongxiangxing Baijiu Fermented During Summer Using Sensory Evaluation Combined with GC×GC–TOF-MS. Foods 2025, 14, 1714. [Google Scholar] [CrossRef]
- Li, N.; Zheng, F.-P.; Chen, H.-T.; Liu, S.-Y.; Gu, C.; Song, Z.-Y.; Sun, B.-G. Identification of Volatile Components in Chinese Sinkiang Fermented Camel Milk Using SAFE, SDE, and HS-SPME-GC/MS. Food Chem. 2011, 129, 1242–1252. [Google Scholar] [CrossRef]
- Amaral, M.S.S.; Marriott, P.J. The Blossoming of Technology for the Analysis of Complex Aroma Bouquets—A Review on Flavour and Odorant Multidimensional and Comprehensive Gas Chromatography Applications. Molecules 2019, 24, 2080. [Google Scholar] [CrossRef]
- Szeitz, A.; Sutton, A.G.; Hallam, S.J. A Matrix-Centered View of Mass Spectrometry Platform Innovation for Volatilome Research. Front. Mol. Biosci. 2024, 11, 1421330. [Google Scholar] [CrossRef]
- Fisher, K.; Perrault, K. Detangling the Complex Web of GC×GC Method Development to Support New Users; LCGC International: Iselin, NJ, USA, 2024. [Google Scholar]
- Dallüge, J.; Beens, J.; Udo, A. Comprehensive Two-Dimensional Gas Chromatography: A Powerful and Versatile Analytical Tool. J. Chromatogr. A 2003, 1000, 69–108. [Google Scholar] [CrossRef]
- Kondybayev, A.; Zhakupbekova, A.A.; Amutova, F.B.; Omarova, A.S.; Nurseitova, M.; Akhmetsadykova, S.; Akhmetsadykov, N.; Konuspayeva, G.; Faye, B. Volatile Organic Compounds Profiles in Milk Fermented by Lactic Bacteria. Int. J. Biol. Chem. 2018, 11, 57. [Google Scholar] [CrossRef]
- Dan, T.; Wang, D.; Wu, S.; Jin, R.; Ren, W.; Sun, T. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus delbrueckii Subsp. Bulgaricus and Streptococcus thermophilus. Molecules 2017, 22, 1633. [Google Scholar]
- Li, N.; Huang, G.; Zhang, Y.; Zheng, N.; Zhao, S.; Wang, J. Diversity of Volatile Compounds in Raw Milk with Different N-6 to n-3 Fatty Acid Ratio. Animals 2022, 12, 252. [Google Scholar] [CrossRef]
- Dan, T.; Ren, W.; Liu, Y.; Tian, J.; Chen, H.; Li, T.; Liu, W. Volatile Flavor Compounds Profile and Fermentation Characteristics of Milk Fermented by Lactobacillus delbrueckii Subsp. Bulgaricus. Front. Microbiol. 2019, 10, 2183. [Google Scholar] [CrossRef]
- Mukdsi, M.C.A.; Medina, R.B.; Alvarez, M.d.F.; González, S.N. Ester Synthesis by Lactic Acid Bacteria Isolated from Goat’s and Ewe’s Milk and Cheeses. Food Chem. 2009, 117, 241–247. [Google Scholar] [CrossRef]
- Dan, T.; Jin, R.; Ren, W.; Li, T.; Chen, H.; Sun, T. Characteristics of Milk Fermented by Streptococcus Thermophilus MGA45-4 and the Profiles of Associated Volatile Compounds during Fermentation and Storage. Molecules 2018, 23, 878. [Google Scholar] [CrossRef]
- Friedrich, J.E.; Acree, T.E. Gas Chromatography Olfactometry (GC/O) of Dairy Products. Int. Dairy J. 1998, 8, 235–241. [Google Scholar] [CrossRef]
- Bills, D.D.; Day, E.A. Determination of the Major Free Fatty Acids of Cheddar Cheese. J. Dairy Sci. 1964, 47, 733–738. [Google Scholar] [CrossRef]
- Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef]
- Cadwallader, K.R.; Singh, T.K. Flavours and Off-Flavours in Milk and Dairy Products. In Advanced Dairy Chemistry: Volume 3: Lactose, Water, Salts and Minor Constituents; Springer: New York, NY, USA, 2009; pp. 631–690. [Google Scholar]
- Aghlara, A.; Mustafa, S.; Manap, Y.A.; Mohamad, R. Characterization of Headspace Volatile Flavor Compounds Formed during Kefir Production: Application of Solid Phase Microextraction. Int. J. Food Prop. 2009, 12, 808–818. [Google Scholar] [CrossRef]
- Fenster, K.M.; Rankin, S.A.; Steele, J.L. Accumulation of Short N-Chain Ethyl Esters by Esterases of Lactic Acid Bacteria under Conditions Simulating Ripening Parmesan Cheese. J. Dairy Sci. 2003, 86, 2818–2825. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Fox, P.F.; Smacchi, E.; Stepaniak, L.; Damiani, P. Purification and Characterization of a Lipase from Lactobacillus Plantarum 2739. J. Food Biochem. 1996, 20, 227–246. [Google Scholar] [CrossRef]
- Holland, R.; Liu, S.-Q.; Crow, V.L.; Delabre, M.-L.; Lubbers, M.; Bennett, M.; Norris, G. Esterases of Lactic Acid Bacteria and Cheese Flavour: Milk Fat Hydrolysis, Alcoholysis and Esterification. Int. Dairy J. 2005, 15, 711–718. [Google Scholar] [CrossRef]
- Tsakalidou, E.; Kalantzopoulos, G. Purification and Partial Characterization of an Esterase from Lactococcus lactis Ssp lactis Strain ACA-DC 127. Le Lait 1992, 72, 533–543. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Holland, R.; Crow, V.L. Purification and Properties of Intracellular Esterases from Streptococcus Thermophilus. Int. Dairy J. 2001, 11, 27–35. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, S.; Hao, G.; Yu, H.; Tian, H.; Zhao, G. Role of Lactic Acid Bacteria on the Yogurt Flavour: A Review. Int. J. Food Prop. 2017, 20, S316–S330. [Google Scholar] [CrossRef]
- Liu, G.; Qiao, Y.; Zhang, Y.; Leng, C.; Chen, H.; Sun, J.; Fan, X.; Li, A.; Feng, Z. Metabolic Profiles of Carbohydrates in Streptococcus Thermophilus during PH-Controlled Batch Fermentation. Front. Microbiol. 2020, 11, 1131. [Google Scholar] [CrossRef]
- Price, C.E.; Zeyniyev, A.; Kuipers, O.P.; Kok, J. From Meadows to Milk to Mucosa–Adaptation of Streptococcus and Lactococcus Species to Their Nutritional Environments. FEMS Microbiol. Rev. 2012, 36, 949–971. [Google Scholar] [CrossRef]
- Thierry, A.; Valence, F.; Deutsch, S.M.; Even, S.; Falentin, H.; Le Loir, Y.; Jan, G.; Gagnaire, V. Strain-to-Strain Differences within Lactic and Propionic Acid Bacteria Species Strongly Impact the Properties of Cheese—A Review. Dairy Sci. Technol. 2015, 95, 895–918. [Google Scholar] [CrossRef]
- Etschmann, M.; Bluemke, W.; Sell, D.; Schrader, J. Biotechnological Production of 2-Phenylethanol. Appl. Microbiol. Biotechnol. 2002, 59, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chung Jr, H.; Lee, S.L.; Chou, C.C. Production and Molar Yield of 2-Phenylethanol by Pichia Fermentans L-5 as Affected by Some Medium Components. J. Biosci. Bioeng. 2000, 90, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Jollivet, N.; Bézenger, M.-C.; Vayssier, Y.; Belin, J.-M. Production of Volatile Compounds in Liquid Cultures by Six Strains of Coryneform Bacteria. Appl. Microbiol. Biotechnol. 1992, 36, 790–794. [Google Scholar] [CrossRef]
- Lomascolo, A.; Lesage-Meessen, L.; Haon, M.; Navarro, D.; Antona, C.; Faulds, C.; Marcel, A. Evaluation of the Potential of Aspergillus Niger Species for the Bioconversion of L-Phenylalanine into 2-Phenylethanol. World J. Microbiol. Biotechnol. 2001, 17, 99–102. [Google Scholar] [CrossRef]
- Alonso-Vargas, M.; Téllez-Jurado, A.; Gómez-Aldapa, C.A.; Ramírez-Vargas, M.d.R.; Conde-Báez, L.; Castro-Rosas, J.; Cadena-Ramírez, A. Optimization of 2-Phenylethanol Production from Sweet Whey Fermentation Using Kluyveromyces Marxianus. Fermentation 2022, 8, 39. [Google Scholar] [CrossRef]
- Ianni, A.; Bennato, F.; Martino, C.; Grotta, L.; Martino, G. Volatile Flavor Compounds in Cheese as Affected by Ruminant Diet. Molecules 2020, 25, 461. [Google Scholar] [CrossRef]
- Beale, D.J.; Pinu, F.R.; Kouremenos, K.A.; Poojary, M.M.; Narayana, V.K.; Boughton, B.A.; Kanojia, K.; Dayalan, S.; Jones, O.A.H.; Dias, D.A. Review of Recent Developments in GC–MS Approaches to Metabolomics-Based Research. Metabolomics 2018, 14, 1–31. [Google Scholar] [CrossRef]
- Quinn, R.A.; Navas-Molina, J.A.; Hyde, E.R.; Song, S.J.; Vázquez-Baeza, Y.; Humphrey, G.; Gaffney, J.; Minich, J.J.; Melnik, A.V.; Herschend, J. From Sample to Multi-Omics Conclusions in under 48 Hours. mSystems 2016, 1, e00038-16. [Google Scholar] [CrossRef]
- Ceccarani, C.; Foschi, C.; Parolin, C.; D’Antuono, A.; Gaspari, V.; Consolandi, C.; Laghi, L.; Camboni, T.; Vitali, B.; Severgnini, M. Diversity of Vaginal Microbiome and Metabolome during Genital Infections. Sci. Rep. 2019, 9, 14095. [Google Scholar] [CrossRef]
- Kers, J.G.; Saccenti, E. The Power of Microbiome Studies: Some Considerations on Which Alpha and Beta Metrics to Use and How to Report Results. Front. Microbiol. 2022, 12, 796025. [Google Scholar] [CrossRef]
Compounds | Relative Abundance (%) | ||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
Acetic acid | 24.27 | 14.01 | 15.13 | 25.62 | 31.17 | 27.01 | 0.01 |
Ethanol | 9.27 | 36.28 | 0.00 | 0.00 | 26.02 | 0.60 | 14.77 |
Ethyl Acetate | 37.87 | 2.52 | 3.99 | 12.52 | 7.00 | 22.73 | 20.26 |
Decanoic acid, ethyl ester | 0.45 | 6.52 | 32.85 | 1.64 | 0.17 | 0.59 | 0.50 |
Hexanoic acid | 3.46 | 4.48 | 1.25 | 4.94 | 6.24 | 3.10 | 5.05 |
Dodecanoic acid, ethyl ester | 3.42 | 10.09 | 2.47 | 1.91 | 0.25 | 0.81 | 0.73 |
Benzaldehyde | 0.17 | 1.91 | 3.53 | 9.56 | 1.31 | 4.72 | 1.80 |
1-Butanol, 3-methyl- | 2.02 | 1.40 | 1.29 | 7.99 | 0.73 | 7.42 | 2.12 |
Acetic acid, 2-phenylethyl ester | 1.92 | 1.49 | 2.63 | 1.16 | 0.94 | 1.51 | 14.05 |
Octanoic acid, ethyl ester | 2.48 | 3.47 | 3.01 | 4.47 | 0.29 | 0.84 | 0.79 |
ETHYL (S)-(-)-LACTATE | 0.00 | 0.00 | 0.00 | 6.31 | 1.37 | 5.42 | 10.07 |
Phenylethyl Alcohol | 0.88 | 0.51 | 2.19 | 4.64 | 1.27 | 3.49 | 4.01 |
Tetradecanoic acid, ethyl ester | 1.45 | 1.55 | 2.65 | 2.29 | 0.36 | 0.79 | 0.76 |
Pentadecanoic acid, ethyl ester | 1.15 | 1.62 | 4.26 | 0.13 | 0.00 | 0.00 | 0.00 |
Octanoic acid | 0.92 | 1.04 | 0.49 | 1.85 | 2.08 | 1.16 | 1.64 |
Dodecanoic acid | 1.00 | 1.25 | 2.02 | 1.47 | 0.27 | 0.19 | 0.27 |
Ethyl tridecanoate | 0.76 | 1.79 | 2.76 | 0.09 | 0.00 | 0.00 | 0.00 |
Tetradecanoic acid | 1.09 | 0.58 | 2.34 | 1.41 | 0.28 | 0.19 | 0.28 |
1-Hexanol | 0.14 | 0.00 | 0.00 | 0.26 | 0.93 | 3.08 | 4.58 |
Hexadecanoic acid, ethyl ester | 1.45 | 0.16 | 2.59 | 0.70 | 0.00 | 0.11 | 0.00 |
1,3,5,7-Cyclooctatetraene | 0.00 | 1.57 | 2.38 | 0.00 | 0.06 | 0.07 | 0.00 |
n-Decanoic acid | 1.18 | 0.60 | 1.01 | 0.95 | 0.41 | 0.29 | 0.36 |
Butanoic acid | 0.25 | 0.88 | 1.58 | 0.39 | 0.79 | 0.24 | 0.44 |
2-Nonenal, (E)- | 0.03 | 0.02 | 0.04 | 0.40 | 1.87 | 2.52 | 1.71 |
Hexanal | 0.18 | 0.06 | 0.08 | 0.78 | 0.58 | 3.52 | 0.26 |
Furan, 2-ethyl- | 0.04 | 0.02 | 0.05 | 0.30 | 2.43 | 0.88 | 1.83 |
Ethyl 9-decenoate | 0.40 | 0.80 | 1.47 | 0.56 | 0.02 | 0.05 | 0.04 |
Heptanoic acid | 0.07 | 0.08 | 0.15 | 0.14 | 2.21 | 0.57 | 1.36 |
Hexanoic acid, ethyl ester | 0.39 | 0.21 | 1.04 | 1.74 | 0.04 | 0.18 | 0.15 |
(E)-9-Octadecenoic acid ethyl ester | 0.54 | 0.77 | 1.07 | 0.23 | 0.00 | 0.07 | 0.03 |
Benzoic acid | 0.09 | 0.62 | 1.00 | 0.87 | 0.12 | 0.09 | 0.13 |
Acetoin | 0.02 | 0.01 | 0.01 | 0.12 | 1.76 | 0.18 | 2.10 |
Butanoic acid, ethyl ester | 0.12 | 0.64 | 1.25 | 0.25 | 0.00 | 0.05 | 0.05 |
Furan, 2-pentyl- | 0.06 | 0.04 | 0.04 | 0.29 | 0.93 | 1.12 | 1.36 |
Nonanal | 0.05 | 0.04 | 0.06 | 0.32 | 1.04 | 0.79 | 0.92 |
E-11-Hexadecenoic acid, ethyl ester | 0.08 | 1.01 | 0.37 | 0.02 | 0.03 | 0.14 | 0.13 |
Propanoic acid, 2-methyl- | 0.26 | 0.04 | 0.07 | 0.04 | 1.54 | 0.13 | 0.54 |
1-Heptanol | 0.00 | 0.00 | 0.01 | 0.14 | 0.45 | 0.98 | 1.79 |
n-Hexadecanoic acid | 0.16 | 0.48 | 0.65 | 0.35 | 0.08 | 0.07 | 0.10 |
9-Decenoic acid | 0.17 | 0.36 | 0.62 | 0.69 | 0.06 | 0.04 | 0.05 |
Benzene | 0.14 | 0.15 | 0.27 | 0.45 | 0.38 | 0.47 | 0.64 |
Ethyl 9-hexadecenoate | 0.75 | 0.10 | 0.17 | 0.72 | 0.03 | 0.13 | 0.11 |
2-Decenal, (Z)- | 0.04 | 0.02 | 0.04 | 0.18 | 0.84 | 0.77 | 0.90 |
Butanoic acid, 3-methyl- | 0.22 | 0.04 | 0.00 | 0.11 | 0.85 | 0.08 | 1.31 |
1-Penten-3-one | 0.01 | 0.00 | 0.01 | 0.10 | 1.63 | 0.22 | 0.23 |
1-Propanol, 2-methyl- | 0.23 | 0.16 | 0.05 | 0.05 | 0.09 | 1.08 | 0.47 |
Z-7-Tetradecenoic acid | 0.17 | 0.37 | 0.60 | 0.20 | 0.00 | 0.00 | 0.00 |
2-Octenal, (E)- | 0.02 | 0.01 | 0.02 | 0.31 | 0.49 | 0.96 | 0.31 |
2-Undecenal | 0.04 | 0.03 | 0.05 | 0.14 | 0.55 | 0.34 | 0.75 |
1-Propanol | 0.11 | 0.18 | 0.41 | 0.19 | 0.03 | 0.20 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhadyra, S.; Tao, F.; Xu, P. Two-Dimensional GC–ToFMS Analysis of Volatile Organic Compounds in Fermented Camel Milk (Shubat). Foods 2025, 14, 2995. https://doi.org/10.3390/foods14172995
Zhadyra S, Tao F, Xu P. Two-Dimensional GC–ToFMS Analysis of Volatile Organic Compounds in Fermented Camel Milk (Shubat). Foods. 2025; 14(17):2995. https://doi.org/10.3390/foods14172995
Chicago/Turabian StyleZhadyra, Sagyman, Fei Tao, and Ping Xu. 2025. "Two-Dimensional GC–ToFMS Analysis of Volatile Organic Compounds in Fermented Camel Milk (Shubat)" Foods 14, no. 17: 2995. https://doi.org/10.3390/foods14172995
APA StyleZhadyra, S., Tao, F., & Xu, P. (2025). Two-Dimensional GC–ToFMS Analysis of Volatile Organic Compounds in Fermented Camel Milk (Shubat). Foods, 14(17), 2995. https://doi.org/10.3390/foods14172995