A Study of Nutritional and Sensory Qualities of Pea Protein Isolate Beverages with a View to Their Potential Use in Patients with Psychiatric Disorders
Abstract
1. Introduction
2. Materials and Methods
2.1. Thermal and Microbiological Safety of Beverage Processing
2.2. Summary of the Pea Protein Isolate Beverages Used in This Study
2.3. Laboratory Methods Used in Nutrient Analysis
2.4. The Sensory Evaluation of the Beverages
2.5. Statistical Analysis and Evaluation of Sensory Data
2.6. Ethical Considerations
3. Results
3.1. Nutritional Value Analysis of Pea Protein Isolate Beverages
3.2. The Amino Acid Composition of Pea Protein Isolate Beverages
3.3. The Fatty Acid Profile of Pea Protein Isolate Beverages
3.4. Mineral and Vitamin Composition of Pea Protein Isolate Beverages
3.5. The Sensory Evaluation of Pea Protein Isolate Beverages
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Mental Disorders. World Health Organization 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on 16 May 2025).
- Yasir Arafat, S.M.; Jeyagurunathan, A.; Yotsidi, V.; Ayalew, M. Health Related Quality of Life among People with Mental Illness: The Role of Socio-Clinical Characteristics and Level of Functional Disability. Front. Public Health 2023, 11, 1134032. [Google Scholar] [CrossRef]
- Teasdale, S.B.; Ward, P.B.; Samaras, K.; Firth, J.; Stubbs, B.; Tripodi, E.; Burrows, T.L. Dietary Intake of People with Severe Mental Illness: Systematic Review and Meta-Analysis. Br. J. Psychiatry 2019, 214, 251–259. [Google Scholar] [CrossRef]
- Perica, M.M.; Delaš, I. Essential Fatty Acids and Psychiatric Disorders. Nutr. Clin. Pract. 2011, 26, 409–425. [Google Scholar] [CrossRef]
- Goldfarb, M.; De Hert, M.; Detraux, J.; Di Palo, K.; Munir, H.; Music, S.; Piña, I.; Ringen, P.A. Severe Mental Illness and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 80, 918–933. [Google Scholar] [CrossRef] [PubMed]
- Hawryluk, G.W.J.; Rubiano, A.M.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; Shutter, L.; et al. Guidelines for the Management of Severe Traumatic Brain Injury: 2020 Update of the Decompressive Craniectomy Recommendations. Neurosurgery 2020, 87, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, S.; Mörkl, S.; Müller-Stierlin, A.S. Nutritional Psychiatry in the Treatment of Psychotic Disorders: Current Hypotheses and Research Challenges. Brain Behav. Immun. Health 2020, 5, 100070. [Google Scholar] [CrossRef]
- Kvamme, J.M.; Grønli, O.; Florholmen, J.; Jacobsen, B.K. Risk of Malnutrition Is Associated with Mental Health Symptoms in Community Living Elderly Men and Women: The Tromsø Study. BMC Psychiatry 2011, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Bulbul, F.; Tamam, L.; Demirkol, M.E.; Cakmak, S.; Namli, Z.; Ersahinoglu, E. The Prevalence of Sarcopenia in Patients with Schizophrenia. Psychiatry Clin. Psychopharmacol. 2021, 31, 60–66. [Google Scholar] [CrossRef]
- Conde, K.M.; Wong, H.Z.; Fang, S.; Li, Y.; Yu, M.; Deng, Y.; Liu, Q.; Fang, X.; Wang, M.; Shi, Y.; et al. Serotonin Neurons Integrate GABA and Dopamine Inputs to Regulate Meal Initiation. Metabolism 2025, 163, 156099. [Google Scholar] [CrossRef]
- de Bartolomeis, A.; Barone, A.; Vellucci, L.; Mazza, B.; Austin, M.C.; Iasevoli, F.; Ciccarelli, M. Linking Inflammation, Aberrant Glutamate-Dopamine Interaction, and Post-Synaptic Changes: Translational Relevance for Schizophrenia and Antipsychotic Treatment: A Systematic Review. Mol. Neurobiol. 2022, 59, 6460–6501. [Google Scholar] [CrossRef]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the Nervous System: Current Knowledge of the Biochemical Modes of Action and Synergies of Thiamine, Pyridoxine, and Cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef]
- Zielińska, M.; Łuszczki, E.; Dereń, K. Dietary Nutrient Deficiencies and Risk of Depression (Review Article 2018–2023). Nutrients 2023, 15, 2433. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Seemüller, F.; Voggt, A.; Obermeier, M.; Kirchberg, F.; Löw, A.; Riedel, M.; von Schacky, C.; Severus, E. Omega-3 Fatty Acids in Bipolar Patients with a Low Omega-3 Index and Reduced Heart Rate Variability: The “BIPO-3” Trial. Int. J. Bipolar Disord. 2022, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, S.; Manohar, K.; Shariff, A.; Kinattingal, N.; Wani, S.U.D.; Alshehri, S.; Imam, M.T.; Shakeel, F.; Krishna, K.L. Omega-3 Fatty Acids Supplementation in the Treatment of Depression: An Observational Study. J. Pers. Med. 2023, 13, 224. [Google Scholar] [CrossRef] [PubMed]
- Kelaiditis, C.F.; Gibson, E.L.; Dyall, S.C. Effects of Long-Chain Omega-3 Polyunsaturated Fatty Acids on Reducing Anxiety and/or Depression in Adults; A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Prostagland. Leukot. Essent. Fatty Acids 2023, 192, 102572. [Google Scholar] [CrossRef]
- Liao, Y.; Xie, B.; Zhang, H.; He, Q.; Guo, L.; Subramaniapillai, M.; Fan, B.; Lu, C.; Mclntyer, R.S. Efficacy of Omega-3 PUFAs in Depression: A Meta-Analysis. Transl. Psychiatry 2019, 9, 190. [Google Scholar] [CrossRef]
- Serefko, A.; Jach, M.E.; Pietraszuk, M.; Świąder, M.; Świąder, K.; Szopa, A. Omega-3 Polyunsaturated Fatty Acids in Depression. Int. J. Mol. Sci. 2024, 25, 8675. [Google Scholar] [CrossRef]
- Akpınar, Ş.; Karadağ, M.G. Is Vitamin D Important in Anxiety or Depression? What Is the Truth? Curr. Nutr. Rep. 2022, 11, 675–681. [Google Scholar] [CrossRef]
- Babault, N.; Païzis, C.; Deley, G.; Guérin-Deremaux, L.; Saniez, M.H.; Lefranc-Millot, C.; Allaert, F.A. Pea Proteins Oral Supplementation Promotes Muscle Thickness Gains during Resistance Training: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial vs. Whey Protein. J. Int. Soc. Sports Nutr. 2015, 12, 3–9. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Punia, S.; Dhakane-Lad, J.; Dhumal, S.; Changan, S.; Senapathy, M.; Berwal, M.K.; Sampathrajan, V.; Sayed, A.A.S.; et al. Plant-Based Proteins and Their Multifaceted Industrial Applications. LWT 2022, 154, 112620. [Google Scholar] [CrossRef]
- Kennedy, D.O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients 2016, 8, 68. [Google Scholar] [CrossRef]
- Vancampfort, D.; Stubbs, B.; Venigalla, S.K.; Probst, M. Adopting and Maintaining Physical Activity Behaviours in People with Severe Mental Illness: The Importance of Autonomous Motivation. Prev. Med. 2015, 81, 216–220. [Google Scholar] [CrossRef] [PubMed]
- David, M.; Fava, M. Role of S- Adenosyl-L-Methionine in the Treatment of Depression: A Review of the Evidence. Am. J. Clin. Nutr. 2002, 76, 1158S–1161S. [Google Scholar] [CrossRef]
- Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.J.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017, 80, 6–15. [Google Scholar] [CrossRef]
- Goldstein, B.I.; Carnethon, M.R.; Matthews, K.A.; McIntyre, R.S.; Miller, G.E.; Raghuveer, G.; Stoney, C.M.; Wasiak, H.; McCrindle, B.W. Major Depressive Disorder and Bipolar Disorder Predispose Youth to Accelerated Atherosclerosis and Early Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2015, 132, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Hur, K.; Choi, J.S.; Zheng, M.; Shen, J.; Wrobel, B. Association of Alterations in Smell and Taste with Depression in Older Adults. Laryngoscope Investig. Otolaryngol. 2018, 3, 94–99. [Google Scholar] [CrossRef]
- Okayama, T.; Watanabe, H. Association between Taste Perception, Nutrient Intake, and Mental Health in Young Japanese Women. Nutr. Res. Pract. 2019, 13, 41–46. [Google Scholar] [CrossRef]
- Baik, H.W. Mental Health and Micronutrients: A Narrative Review. Ann. Clin. Nutr. Metab. 2024, 16, 112–119. [Google Scholar] [CrossRef]
- Liene, O. Development of Food Products for Special Medical Purposes = Īpašiem Medicīniskiem Nolūkiem Paredzētas Pārtikas Izstrāde; Latvia University of Life Sciences and Technologies: Jelgava, Latvia, 2021. [Google Scholar]
- Cabinet of Ministers Requirements for Food Quality Schemes, Procedures for Their Implementation, Operation, Monitoring and Control. 2014. Available online: https://likumi.lv/ta/id/268347-prasibas-partikas-kvalitates-shemam-to-ieviesanas-darbibas-uzraudzibas-un-kontroles-kartiba (accessed on 16 June 2025).
- Commission of the European Communities. Microbiological Criteria for Foodstuffs. 2005. Available online: https://eur-lex.europa.eu/eli/reg/2005/2073/oj/eng (accessed on 16 June 2025).
- Ozolina, K.; Beitane, I.; Radenkovs, V.; Straumite, E.; Valdovska, A.; Muizniece-Brasava, S. The Evaluation of Roasted Lentils (L. culinaris L.) Quick Meals as An Alternative to Meat Dishes. Foods 2024, 13, 99. [Google Scholar] [CrossRef]
- Plocina, L.; Beitane, I. Study of Amino Acid Profile and Solubility of Pea Protein Isolate for the Production of Beverages for Psychiatric Patients. Rural. Sustain. Res. 2024, 51, 94–102. [Google Scholar] [CrossRef]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers; Official Journal of the European Union: Brussels, Belgium, 2011.
- J.S. Hamilton Poland Sp. z o.o. PB-116 ed. 4. Internal Laboratory Method for Protein Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2024. [Google Scholar]
- ISO 13903:2005; Animal Feeding Stuffs—Determination of Amino Acids Content. International Organization for Standardization: Geneva, Switzerland, 2005.
- Commission Regulation (EC) No 152/2009 of 27 January 2009 Laying down the Methods of Sampling and Analysis for the Official Control of Feed; Official Journal of the European Union: Brussels, Belgium, 2009.
- J.S. Hamilton Poland Sp. z o.o. PB-286 ed. 2. Internal Laboratory Method for Fat Determination—Gravimetric Method; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2025. [Google Scholar]
- PN-EN ISO 12966-1:2015; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. Polish Committee for Standardization: Warsaw, Poland, 2015.
- J.S. Hamilton Poland Sp. z o.o. PB-429 ed. 3. Internal Laboratory Method for Determination of Total Sugars; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2024. [Google Scholar]
- AOAC International. AOAC Official Method 991.43. Total, Soluble, and Insoluble Dietary Fiber in Foods—Enzymatic-Gravimetric Method, MES-TRIS Buffer; AOAC International: Rockville, MD, USA, 1994. [Google Scholar]
- J.S. Hamilton Poland Sp. z o.o. PB-285 ed. 1. Internal Laboratory Method for Moisture Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2014. [Google Scholar]
- J.S. Hamilton Poland Sp. z o.o. PB-285 ed. 2. Internal Laboratory Method for Ash Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2014. [Google Scholar]
- PN-EN 12821:2009; Foodstuffs—Determination of Vitamin D by High Performance Liquid Chromatography—Measurement of Cholecalciferol (Vitamin D3). Polish Committee for Standardization: Warsaw, Poland, 2009.
- J.S. Hamilton Poland Sp. z o.o. PB-470 ed. 1. Internal Laboratory Method for Vitamin B6 Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2021. [Google Scholar]
- J.S. Hamilton Poland Sp. z o.o. PB-326 ed. 3. Internal Laboratory Method for Biotin (Vitamin B7) Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2025. [Google Scholar]
- J.S. Hamilton Poland Sp. z o.o. PB-327 ed. 3. Internal Laboratory Method for Folic Acid (Vitamin B9) Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2025. [Google Scholar]
- J.S. Hamilton Poland Sp. z o.o. PB-328 ed. 3. Internal Laboratory Method for Vitamin B12 Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2025. [Google Scholar]
- J.S. Hamilton Poland Sp. z o.o. PB-135/HPLC ed. II. Internal Laboratory Method for Vitamin C Determination by HPLC; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2015. [Google Scholar]
- J.S. Hamilton Poland Sp. z o.o. PB-36/ICP ed. 8. Internal Laboratory Method for Zinc Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2022. [Google Scholar]
- J.S. Hamilton Poland Sp. z o.o. PB-223/ICP ed. 4. Internal Laboratory Method for Iron Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2022. [Google Scholar]
- J.S. Hamilton Poland Sp. z o.o. PB-36/ICP ed. 8. Internal Laboratory Method for Calcium Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2022. [Google Scholar]
- J.S. Hamilton Poland Sp. z o.o. PB-36/ICP ed. 8. Internal Laboratory Method for Magnesium Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2022. [Google Scholar]
- J.S. Hamilton Poland Sp. z o.o. PB-223/ICP ed. 4. Internal Laboratory Method for Selenium Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2022. [Google Scholar]
- J.S. Hamilton Poland Sp. z o.o. PB-318 ed. 3. Internal Laboratory Method for Sodium Chloride (NaCl) Determination; Accredited Laboratory of Nutritional Value Analysis: Gdynia, Poland, 2024. [Google Scholar]
- Addo-Preko, E.; Amissah, J.G.N.; Adjei, M.Y.B. The Relevance of the Number of Categories in the Hedonic Scale to the Ghanaian Consumer in Acceptance Testing. Front. Food Sci. Technol. 2023, 3, 1071216. [Google Scholar] [CrossRef]
- ISO 6658:2017; Sensory Analysis—Methodology—General Guidance. International Organization for Standardization: Geneva, Switzerland, 2017.
- The Ministry of Health of the Republic of Latvia. Recommended Energy and Nutrient Intakes for the Population of Latvia. 2017. Available online: https://www.vvc.gov.lv/en/laws-and-regulations-republic-latvia-english/energy-and-nutrition-recommendations-population-latvia?utm_source=https%3A%2F%2Fwww.google.com%2F (accessed on 16 June 2025).
- The Ministry of Health of the Republic of Latvia. Healthy Eating Recommendations for Adults. 2020. Available online: https://www.vm.gov.lv/lv/media/3733/download?attachment (accessed on 16 June 2025).
- Fernstrom, J.D. Large Neutral Amino Acids: Dietary Effects on Brain Neurochemistry and Function. Amino Acids 2013, 45, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Solís-Ortiz, S.; Arriaga-Avila, V.; Trejo-Bahena, A.; Guevara-Guzmán, R. Deficiency in the Essential Amino Acids L-Isoleucine, l-Leucine and l-Histidine and Clinical Measures as Predictors of Moderate Depression in Elderly Women: A Discriminant Analysis Study. Nutrients 2021, 13, 3875. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef]
- World Health Organization. Saturated Fatty Acid and Trans-Fatty Acid Intake for Adults and Children WHO Guideline. 2023. Available online: https://iris.who.int/bitstream/handle/10665/370419/9789240073630-eng.pdf?sequence=1 (accessed on 16 May 2025).
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef]
- EFSA. Panel on Dietetic Products, N. and A. (NDA)EFSA P. on D.P.N. and A. (NDA) Scientific Opinion on Dietary Reference Values for Protein. EFSA J. 2012, 10, 2557. [Google Scholar] [CrossRef]
- Guu, T.W.; Mischoulon, D.; Sarris, J.; Hibbeln, J.; McNamara, R.K.; Hamazaki, K.; Freeman, M.P.; Maes, M.; Matsuoka, Y.J.; Belmaker, R.H.; et al. International Society for Nutritional Psychiatry Research Practice Guidelines for Omega-3 Fatty Acids in the Treatment of Major Depressive Disorder. Psychother. Psychosom. 2019, 88, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Gautam, M.; Agrawal, M.; Gautam, M.; Sharma, P.; Gautam, A.; Gautam, S. Role of Antioxidants in Generalised Anxiety Disorder and Depression. Indian J. Psychiatry 2012, 54, 244–247. [Google Scholar] [CrossRef]
- Hvas, A.M.; Juul, S.; Bech, P.; Nexø, E. Vitamin B 6 Level Is Associated with Symptoms of Depression. Psychother. Psychosom. 2004, 73, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Wolf, B. Clinical Issues and Frequent Questions about Biotinidase Deficiency. Mol. Genet. Metab. 2010, 100, 6–13. [Google Scholar] [CrossRef]
- Young, S.N. Editorial Éditorial Folate and Depression-a Neglected Problem. J. Psychiatry Neurosci. 2007, 32, 80–82. [Google Scholar] [PubMed]
- Miller, A. The Methylation, Neurotransmitter, and Antioxidant Connections Between Folate and Depression. Altern. Med. Rev. 2008, 13, 216–226. [Google Scholar]
- de Koning, E.J.; Elstgeest, L.E.M.; Comijs, H.C.; Lips, P.; Rijnhart, J.J.M.; van Marwijk, H.W.J.; Beekman, A.T.F.; Visser, M.; Penninx, B.W.J.H.; van Schoor, N.M. Vitamin D Status and Depressive Symptoms in Older Adults: A Role for Physical Functioning? Am. J. Geriatr. Psychiatry 2018, 26, 1131–1143. [Google Scholar] [CrossRef]
- Swardfager, W.; Herrmann, N.; Mazereeuw, G.; Goldberger, K.; Harimoto, T.; Lanctôt, K.L. Zinc in Depression: A Meta-Analysis. Biol. Psychiatry 2013, 74, 872–878. [Google Scholar] [CrossRef]
- Beard, J. Iron Deficiency Alters Brain Development and Functioning. J. Nutr. 2003, 133, 1468S–1472S. [Google Scholar] [CrossRef] [PubMed]
- Klocke, B.; Krone, K.; Tornes, J.; Moore, C.; Ott, H.; Pitychoutis, P.M. Insights into the Role of Intracellular Calcium Signaling in the Neurobiology of Neurodevelopmental Disorders. Front. Neurosci. 2023, 17, 1093099. [Google Scholar] [CrossRef]
- Eby, G.A.; Eby, K.L. Rapid Recovery from Major Depression Using Magnesium Treatment. Med. Hypotheses 2006, 67, 362–370. [Google Scholar] [CrossRef]
- Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants 2018, 7, 66. [Google Scholar] [CrossRef]
- Siegel, A.J. Hyponatremia in Psychiatric Patients: Update on Evaluation and Management. Harv. Rev. Psychiatry 2008, 16, 13–24. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Dietary Reference Values for Nutrients Summary Report. EFSA Support. Publ. 2017, 14, e15121. [Google Scholar] [CrossRef]
- Grajek, M.; Krupa-Kotara, K.; Białek-Dratwa, A.; Sobczyk, K.; Grot, M.; Kowalski, O.; Staśkiewicz, W. Nutrition and Mental Health: A Review of Current Knowledge about the Impact of Diet on Mental Health. Front. Nutr. 2022, 9, 943998. [Google Scholar] [CrossRef]
- Pourmotabbed, A.; Moradi, S.; Babaei, A.; Ghavami, A.; Mohammadi, H.; Jalili, C.; Symonds, M.E.; Miraghajani, M. Food Insecurity and Mental Health: A Systematic Review and Meta-Analysis. Public. Health Nutr. 2020, 23, 1778–1790. [Google Scholar] [CrossRef]
- Jacka, F.N.; Kremer, P.J.; Leslie, E.R.; Berk, M.; Patton, G.C.; Toumbourou, J.W.; Williams, J.W.; Patton, G. Associations between Diet. Quality and Depressed Mood in Adolescents: Results from the Australian Healthy Neighbourhoods Study. Aust. N. Z. J. Psychiatry 2010, 44, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Brennan, S.L.; Williams, L.J.; Maps, A.; Pasco, J.A.; Berk, M.; Jacka, F.N. Relationship Between Diet and Mental Health in Children and Adolescents: A Systematic Review. Am. J. Public Health 2014, 104, e31–e42. [Google Scholar] [CrossRef]
- Popova, A.; Mihaylova, D.; Lante, A. Insights and Perspectives on Plant-Based Beverages. Plants 2023, 12, 3345. [Google Scholar] [CrossRef] [PubMed]
- De La Fuente-Carmelino, L.; Anticona, M.; Ramos-Escudero, F.; Casimiro-Gonzales, S.; Muñoz, A.M. Commercial Plant-Based Functional Beverages: A Comparative Study of Nutritional Composition and Bioactive Compounds. Beverages 2025, 11, 26. [Google Scholar] [CrossRef]
- He, S. Research Progress on the Effects of Thermal Processing on Different Food Allergen Proteins. Theor. Nat. Sci. 2023, 22, 184–190. [Google Scholar] [CrossRef]
- Leser, S. The 2013 FAO Report on Dietary Protein Quality Evaluation in Human Nutrition: Recommendations and Implications. Nutr. Bull. 2013, 38, 421–428. [Google Scholar] [CrossRef]
- Xie, A.; Dong, Y.; Liu, Z.; Li, Z.; Shao, J.; Li, M.; Yue, X. A Review of Plant-Based Drinks Addressing Nutrients, Flavor, and Processing Technologies. Foods 2023, 12, 3952. [Google Scholar] [CrossRef]
- Plitman, E.; Nakajima, S.; de la Fuente-Sandoval, C.; Gerretsen, P.; Chakravarty, M.M.; Kobylianskii, J.; Chung, J.K.; Caravaggio, F.; Iwata, Y.; Remington, G.; et al. Glutamate-Mediated Excitotoxicity in Schizophrenia: A Review. Eur. Neuropsychopharmacol. 2014, 24, 1591–1605. [Google Scholar] [CrossRef]
- Liu, P.; Jing, Y.; Collie, N.D.; Dean, B.; Bilkey, D.K.; Zhang, H. Altered Brain Arginine Metabolism in Schizophrenia. Transl. Psychiatry 2016, 6, e871. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Past, Present and Future: The Strength of Plant-Based Dairy Substitutes Based on Gluten-Free Raw Materials. Food Res. Int. 2018, 110, 42–51. [Google Scholar] [CrossRef]
- Wu, G.; Morris, S.M. Arginine Metabolism: Nitric Oxide and Beyond. Biochem. J. 1998, 336, 1–17. [Google Scholar] [CrossRef]
- Morris, S.M. Arginine Metabolism Revisited. J. Nutr. 2016, 146, 2579S–2586S. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Dietary Protein Intake and Human Health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Ng, F.; Berk, M.; Dean, O.; Bush, A.I. Oxidative Stress in Psychiatric Disorders: Evidence Base and Therapeutic Implications. Int. J. Neuropsychopharmacol. 2008, 11, 851–876. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ali, R.; Zhang, H.; Zafar, M.H.; Wang, M. Research Progress in the Role and Mechanism of Leucine in Regulating Animal Growth and Development. Front. Physiol. 2023, 14, 1252089. [Google Scholar] [CrossRef]
- Heaton, K.M.; Cornforth, D.P.; Moiseev, I.V.; Egbert, W.R.; Carpenter, C.E. Minimum Sodium Nitrite Levels for Pinking of Various Cooked Meats as Related to Use of Direct or Indirect-Dried Soy Isolates in Poultry Rolls. Meat Sci. 2000, 55, 321–329. [Google Scholar] [CrossRef] [PubMed]
- King, B.F.; Sanger, G.J. L-Lysine Acts like a Partial Serotonin Receptor 4 Antagonist and Inhibits Serotonin-Mediated Intestinal Pathologies and Anxiety in Rats. Proc. Natl. Acad. Sci. USA 2003, 100, 15370–15375. [Google Scholar] [CrossRef]
- Doi, M.; Yamaoka, I.; Nakayama, M.; Mochizuki, S.; Sugahara, K.; Yoshizawa, F. Isoleucine, a Blood Glucose-Lowering Amino Acid, Increases Glucose Uptake in Rat Skeletal Muscle in the Absence of Increases in AMP-Activated Protein Kinase Activity. J. Nutr. 2005, 135, 2103–2108. [Google Scholar] [CrossRef]
- Ashe, K.; Kelso, W.; Farrand, S.; Panetta, J.; Fazio, T.; De Jong, G.; Walterfang, M. Psychiatric and Cognitive Aspects of Phenylketonuria: The Limitations of Diet and Promise of New Treatments. Front. Psychiatry 2019, 10, 561. [Google Scholar] [CrossRef]
- Vassall, K.A.; Bessonov, K.; De Avila, M.; Polverini, E.; Harauz, G. The Effects of Threonine Phosphorylation on the Stability and Dynamics of the Central Molecular Switch Region of 18.5-KDa Myelin Basic Protein. PLoS ONE 2013, 8, e68175. [Google Scholar] [CrossRef]
- Zhang, N. Role of Methionine on Epigenetic Modification of DNA Methylation and Gene Expression in Animals. Anim. Nutr. 2018, 4, 11–16. [Google Scholar] [CrossRef]
- Dougherty, D.M.; Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int. J. Tryptophan Res. 2009, 2, 45–60. [Google Scholar] [CrossRef]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef]
- Millward, D.J. Meat or Wheat for the next Millennium? Plenary Lecture The Nutritional Value of Plant-Based Diets in Relation to Human Amino Acid and Protein Requirements. Proc. Nutr. Soc. 1999, 58, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Bottiglieri, T. S-Adenosyl-L-Methionine (SAMe): From the Bench to the Bedside-Molecular Basis of a Pleiotrophic Molecule. Am. J. Clin. Nutr. 2002, 76, 1151S–1157S. [Google Scholar] [CrossRef]
- Fernstrom, J.D.; Langham, K.A.; Marcelino, L.M.; Irvine, Z.L.E.; Fernstrom, M.H.; Kaye, W.H. The Ingestion of Different Dietary Proteins by Humans Induces Large Changes in the Plasma Tryptophan Ratio, a Predictor of Brain Tryptophan Uptake and Serotonin Synthesis. Clin. Nutr. 2013, 32, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization and Food and Agriculture Organization of the United Nations. Scientific Opinion on Dietary Reference Values for Cobalamin (Vitamin B12). EFSA J. 2015, 13, 4150. [Google Scholar] [CrossRef]
- Umekar, M.; Premchandani, T.; Tatode, A.; Qutub, M.; Raut, N.; Taksande, J.; Hussain, U.M. Vitamin B12 Deficiency and Cognitive Impairment: A Comprehensive Review of Neurological Impact. Brain Disord. 2025, 18, 100220. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.J.; Robitaille, L.; Eintracht, S.; MacNamara, E.; John Hoffer, L. Effects of Vitamin C and Vitamin D Administration on Mood and Distress in Acutely Hospitalized Patients. Am. J. Clin. Nutr. 2013, 98, 705–711. [Google Scholar] [CrossRef]
- Petrilli, M.A.; Kranz, T.M.; Kleinhaus, K.; Joe, P.; Getz, M.; Johnson, P.; Chao, M.V.; Malaspina, D. The Emerging Role for Zinc in Depression and Psychosis. Front. Pharmacol. 2017, 8, 414. [Google Scholar] [CrossRef] [PubMed]
- Schoofs, H.; Schmit, J.; Rink, L. Zinc Toxicity: Understanding the Limits. Molecules 2024, 29, 3130. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific Opinion on Dietary Reference Values for Zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef]
- Tarleton, E.K.; Littenberg, B.; MacLean, C.D.; Kennedy, A.G.; Daley, C. Role of Magnesium Supplementation in the Treatment of Depression: A Randomized Clinical Trial. PLoS ONE 2017, 12, e180067. [Google Scholar] [CrossRef]
- Jujić, A.; Molvin, J.; Nilsson, E.D.; Holm Isholth, H.; Dieden, A.; Korduner, J.; Zaghi, A.; Nezami, Z.; Bergmann, A.; Schomburg, L.; et al. Low Levels of Selenoprotein P Are Associated With Cognitive Impairment in Patients Hospitalized for Heart Failure. J. Card. Fail. 2024, 30, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, A.E.; Zawada, A.; Rychter, A.M.; Dobrowolska, A.; Krela-Kaźmierczak, I. Milk and Dairy Products: Good or Bad for Human Bone? Practical Dietary Recommendations for the Prevention and Management of Osteoporosis. Nutrients 2021, 13, 1329. [Google Scholar] [CrossRef]
- Bertoni, C.; Pini, C.; Mazzocchi, A.; Agostoni, C.; Brambilla, P. The Role of Alpha-Linolenic Acid and Other Polyunsaturated Fatty Acids in Mental Health: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 12479. [Google Scholar] [CrossRef]
- Paduchová, Z.; Katrenčíková, B.; Vaváková, M.; Laubertová, L.; Nagyová, Z.; Garaiova, I.; Ďuračková, Z.; Trebatická, J. The Effect of Omega-3 Fatty Acids on Thromboxane, Brain-Derived Neurotrophic Factor, Homocysteine, and Vitamin d in Depressive Children and Adolescents: Randomized Controlled Trial. Nutrients 2021, 13, 1095. [Google Scholar] [CrossRef]
- Silva, E.; Ferchaud-Roucher, V.; Kramer, A.; Madi, L.; Pantham, P.; Chassen, S.; Jansson, T.; Powell, T.L. Oleic Acid Stimulation of Amino Acid Uptake in Primary Human Trophoblast Cells Is Mediated by Phosphatidic Acid and MTOR Signaling. FASEB Bioadv. 2024, 6, 1–11. [Google Scholar] [CrossRef]
- Chao, A.M.; Roy, A.; Franks, A.T.; Joseph, P.V. A Systematic Review of Taste Differences Among People With Eating Disorders. Biol. Res. Nurs. 2020, 22, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Speranza, L.; Miniaci, M.C.; Volpicelli, F. The Role of Dopamine in Neurological, Psychiatric, and Metabolic Disorders and Cancer: A Complex Web of Interactions. Biomedicines 2025, 13, 492. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, B.B.; Leopold, D.A. Clinical Assessment of Patients with Smell and Taste Disorders. Otolaryngol. Clin. N. Am. 2004, 37, 1127–1142. [Google Scholar] [CrossRef] [PubMed]
List of Products Used in the Beverages | Beverage with Lemon Flavour (V1) | Beverage with Pomegranate–Cranberry Flavour (V2) | Beverage with Blueberry–Vanilla Flavour (V3) | Beverage with Blueberry–Lemon Flavour (V4) | Beverage with Blackcurrant–Apple Flavour (V5) |
---|---|---|---|---|---|
Pea protein isolate | 20 | 20 | 20 | 20 | 20 |
Warm water | 92 | 78 | 82 | 62 | 61 |
Walnut powder | 10 | - | - | - | - |
Vitamins and minerals | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
B12 vitamin | 0.000025 | 0.000025 | 0.000025 | 0.000025 | 0.000025 |
Magnesium citrate | 2 | 2 | 2 | 2 | 2 |
Lemon juice | 60 | - | - | 10 | - |
Apple juice | 14 | - | - | - | 46 |
Hemp powder | - | 10 | - | - | - |
Pomegranate juice | - | 58 | - | - | - |
Cranberry juice | - | 29 | - | - | - |
Ascorbic acid | - | 1 | 1 | - | 1 |
Pine nut powder | - | - | 10 | 10 | 10 |
Blueberry juice | - | - | 77 | 78 | - |
Vanilla extract | - | - | 6 | - | |
Blueberry powder | - | - | - | 6 | - |
Inulin | - | - | - | 10 | - |
Blackcurrant juice | - | - | - | - | 50 |
Blackcurrant powder | - | - | - | - | 8 |
Total | 200 g | 200 g | 200 g | 200 g | 200 g |
No | Analytical Parameters | Method or Standard |
---|---|---|
1. | Energy value | Regulation (EU) No 1169/2011 of the European Parliament and of the Council [EN] [35] |
2. | Protein | PB-116 ed. 4 of 30.12.2024 [EN] [36] |
3. | Amino acids | ISO 13903:2005 (IC-UV); EU 152/2009 (LC-FLD) [37,38] |
4. | Fat | PB-286 ed. 2 of 16.01.2025 [EN] [39] |
5. | Fatty acid profile | Animal and vegetable fats and oils—Gas chromatography of fatty acid methyl esters. PN-EN ISO 12966-1:2015-01; PN-EN ISO 12966-2:2017-05 except p.5.3 and 5.5; PN-EN ISO 12966-4:2015-07 [40] |
6. | Carbohydrates | Regulation (EU) No 1169/2011 of the European Parliament and of the Council [EN] [35] |
7. | Total sugars | PB-429 ed. 3 of 29.11.2024 [41] |
8. | Dietary fibre | AOAC 991.43:1994 [42] |
9. | Moisture | PB-285 ed. I of 26.09.2014 p. 1 [EN] [43] |
10. | Ash | PB-285 wyd. I z dn. 26.09.2014 p. 2 [EN] [44] |
11. | ||
12. | Vitamin D3 (cholecalciferol) | PN-EN 12821:2009 [45] |
13. | Vitamin B6 | PB-470 ed. I of 11.10.2021 [46] |
14. | Vitamin B7 (biotin) | PB-326 ed. 3 of 15.04.2025 [47] |
15. | Vitamin B9 (folic acid) | PB-327 ed. 3 of 15.04.2025 [48] |
16. | Vitamin B12 (cyanocobalamin) | PB-328 ed. 3 of 15.04.2025 [49] |
17. | Vitamin C | PB-135/HPLC ed. II of 15.09.2015 [50] |
18. | Zinc (Zn) | PB-36/ICP ed. 8 of 29.12.2022 [51] |
19. | Iron (Fe) | PB-223/ICP ed. 4 of 29.12.2022 [52] |
20. | Calcium (Ca) | PB-36/ICP ed. 8 of 29.12.2022 [53] |
21. | Magnesium (Mg) | PB-36/ICP ed. 8 of 29.12.2022 [54] |
22. | Selenium (Se) | PB-223/ICP ed. 4 of 29.12.2022 [55] |
23. | Salt as sodium chloride (Nax2.5) | PB-318 ed. 3 of 11.10.2024 [56] |
Nutrients | V1 | V2 | V3 | V4 | V5 | RDI |
---|---|---|---|---|---|---|
Moisture, g | 83.7 ± 4.2 | 79.3 ± 4.0 | 78.9 ± 3.9 | 75.2 ± 3.8 | 75.5 ± 3.8 | |
Energy value, kcal | 70 | 81 | 86 | 89 | 97 | |
Energy value, E% * | 7.0 | 8.1 | 8.6 | 8.9 | 9.7 | 1840–2510 kcal/d [59] |
Fat, g | 2.3 ± 0.5 | 1.4 ± 0.5 | 1.6 ± 0.5 | 1.6 ± 0.5 | 1.7 ± 0.5 | |
Fat, E% * | 6.9 | 4.2 | 4.8 | 4.8 | 5.1 | 20–30% [59] |
Carbohydrates, g | 2.6 | 7.2 | 8.0 | 11.9 | 9.2 | |
Carbohydrates, E% * | 2.0 | 5.5 | 6.2 | 9.2 | 7.1 | 45–60% [59] |
Total sugars, g | 1.6 ± 0.3 | 3.6 ± 0.7 | 6.7 ± 1.3 | 3.6 ± 0.7 | 5.2 ± 1.0 | |
Total sugars, E% * | 12.8 | 28.8 | 53.6 | 28.8 | 41.6 | 10% [59] |
Dietary fibre, g | 0.6 ± 0.2 | 1.1 ± 0.4 | 0.5 ± 0.2 | 0.7 ± 0.3 | 1.4 ± 0.6 | 25–35 g [60] |
Protein, g | 9.3 ± 0.9 | 9.4 ± 0.9 | 9.9 ± 1.0 | 9.0 ± 0.9 | 10.4 ± 0.8 | |
Protein, E% * | 37.2 | 37.6 | 39.6 | 36.0 | 41.6 | 10–20% [59] |
Salt, g | 0.19 ± 0.04 | 0.19 ± 0.04 | 0.2 ± 0.05 | 0.19 ± 0.04 | 0.2 ± 0.05 | 5 g [60] |
Amino Acids | V1 | V2 | V3 | V4 | V5 |
---|---|---|---|---|---|
Alanine | 0.375 ± 0.053 | 0.372 ± 0.052 | 0.430 ± 0.060 | 0.434 ± 0.061 | 0.468 ± 0.066 |
Arginine | 0.799 ± 0.112 | 0.733 ± 0.102 | 0.949 ± 0.133 | 0.931 ± 0.130 | 1.01 ± 0.14 |
Aspartic acid | 1.03 ± 0.14 | 1.02 ± 0.14 | 1.12 ± 0.16 | 1.140.16 | 1.21 ± 0.17 |
Glutamic acid | 1.51 ± 0.21 | 1.44 ± 0.20 | 1.67 ± 0.23 | 1.68 ± 0.24 | 1.81 ± 0.25 |
Glycine | 0.367 ± 0.051 | 0.354 ± 0.050 | 0.405 ± 0.057 | 0.410 ± 0.057 | 0.440 ± 0.062 |
Histidine | 0.211 ± 0.029 | 0.214 ± 0.030 | 0.234 ± 0.033 | 0.236 ± 0.033 | 0.251 ± 0.035 |
Hydroxyproline * | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 |
Isoleucine | 0.395 ± 0.055 | 0.398 ± 0.056 | 0.440 ± 0.062 | 0.445 ± 0.062 | 0.465 ± 0.065 |
Leucine | 0.720 ± 0.101 | 0.712 ± 0.100 | 0.803 ± 0.112 | 0.814 ± 0.114 | 0.861 ± 0.121 |
Lysine | 0.592 ± 0.083 | 0.607 ± 0.085 | 0.679 ± 0.095 | 0.682 ± 0.095 | 0.729 ± 0.102 |
Ornithine | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Phenylalanine | 0.468 ± 0.066 | 0.466 ± 0.065 | 0.510 ± 0.071 | 0.511 ± 0.072 | 0.551 ± 0.077 |
Proline | 0.370 ± 0.052 | 0.361 ± 0.051 | 0.421 ± 0.059 | 0.432 ± 0.010 | 0.450 ± 0.063 |
Serine | 0.463 ± 0.065 | 0.452 ± 0.063 | 0.524 ± 0.073 | 0.525 ± 0.074 | 0.563 ± 0.079 |
Threonine | 0.323 ± 0.045 | 0.324 ± 0.045 | 0.357 ± 0.050 | 0.363 ± 0.051 | 0.390 ± 0.055 |
Tyrosine | 0.317 ± 0.044 | 0.304 ± 0.043 | 0.357 ± 0.050 | 0.368 ± 0.052 | 0.383 ± 0.054 |
Tryptophan | 0.0914 ± 0.0091 | 0.0850 ± 0.0085 | 0.0986 ± 0.0099 | 0.0996 ± 0.0100 | 0.105 ± −0.011 |
Valine | 0.444 ± 0.062 | 0.449 ± 0.063 | 0.500 ± 0.07 | 0.507 ± 0.071 | 0.541 ± 0.015 |
Cysteine + Cystine | 0.0830 ± 0.0116 | 0.0860 ± 0.0120 | 0.102 ± 0.014 | 0.100 ± 0.014 | 0.110 ± 0.015 |
Methionine | 0.0940 ± 0.013 | 0.109 ± 0.015 | 0.125 ± 0.018 | 0.125 ± 0.018 | 0.129 ± 0.018 |
Fatty Acids | V1 | V2 | V3 | V4 | V5 | RDI |
---|---|---|---|---|---|---|
Total saturated fatty acids (SFAs) | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | |
% of the RDI * | 2.7% | 1.8% | 1.8% | 1.8% | 1.8% | <10% of E% (20–25 g) [63,64] |
Total monounsaturated fatty acids (MUFAs) | 0.5 ± 0.1 | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.2 ± 0.1 | 0.4 ± 0.1 | |
% of the RDI * | 3.3% | 2.0% | 2.7% | 1.3% | 2.7% | 12–20% of E% (25–40 g) [63,65] |
Total polyunsaturated fatty acids (PUFAs) | 1.6 ± 0.2 | 0.9 ± 0.1 | 0.8 ± 0.1 | 0.9 ± 0.1 | 1.0 ± 0.1 | |
% of the RDI * | 16.0% | 9.0% | 8.0% | 9.0% | 10.0% | 6–11% of E% (13–25 g) [63,66] |
Trans fatty acids are isomers | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | (<2 g) [63,64] |
Total omega-3 fatty acids | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | ≥1.6 g (M)/≥1.1 g (F) [66,67] |
Eicosapentaenoic acid (EPA) | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | EPA+DHA 1–2 g [67] |
Docosahexaenoic acid (DHA) | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | |
Total omega-6 fatty acids | 1.3 ± 0.1 | 0.7 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | |
% of the RDI * | 20.0% | 10.8% | 12.3% | 12.3% | 12.3% | 4–8% of E% (9–17 g) [63] |
Total omega-9 fatty acids | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.4 ± 0.1 | 0.4 ± 0.1 | |
% of the RDI * | 4.7% | 3.5% | 4.7% | 4.7% | 4.7% | 15–20 g/d [65] |
α-linolenic acid (ALA) | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | |
% of the RDI * | 30.8% | 30.8% | 15.4% | 15.4% | 30.8% | 1.1–1.6 g [63,66] |
Nutrients | V1 | V2 | V3 | V4 | V5 | RDI |
---|---|---|---|---|---|---|
Vitamin C | 42 ± 12.0 | 461 ± 129 | 429 ± 120 | 44 ± 12.0 | 458 ± 128.0 | |
% of the RDI * | 101.8% | 1117.6% | 1040.0% | 106.7% | 1110.3% | 75–90 mg [59,68] |
Vitamin B6 | 0.71 ± 0.14 | 0.63 ± 0.13 | 0.53 ± 0.13 | 0.65 ± 0.13 | 0.58 ± 0.12 | |
% of the RDI * | 94.7% | 84.0% | 70.7% | 86.7% | 77.3% | 1.3–1.7 mg [59,69] |
Vitamin B7 | 0.0209 ± 0.0042 | 0.018 ± 0.0036 | 0.02 ± 0.0040 | 0.0167 ± 0.0033 | 0.0215 ± 0.0043 | |
% of the RDI * | 139.3% | 120.0% | 133.3% | 111.3% | 143.3% | 0.03 mg [59,70] |
Vitamin B9 | 0.195 ± 0.039 | 0.158 ± 0.032 | 0.182 ± 0.036 | 0.157 ± 0.031 | 0.162 ± 0.032 | |
% of the RDI * | 97.5% | 79.0% | 91.0% | 78.5% | 81.0% | 0.4 mg [59,71] |
Vitamin B12 | 0.008 ± 1.72 | 0.008 ± 1.61 | 0.009 ± 1.87 | 0.007 ± 1.43 | 0.008 ± 1.66 | |
% of the RDI * | 800.0% | 800.0% | 900.0% | 700.0% | 800.0% | 0.002 mg [59,72] |
Vitamin D3 | 0.001 ± 0.69 | 0.002 ± 0.77 | 0.003 ± 0.92 | 0.003 ± 1.00 | 0.003 ± 0.93 | |
% of the RDI * | 11.1% | 22.2% | 33.3% | 33.3% | 33.3% | 0.015 mg–0.020 mg [59,73] |
Zinc | 6.0 ± 1.38 | 6.67 ± 1.53 | 7.32 ± 1.68 | 7.16 ± 1.65 | 7.54 ± 1.73 | |
% of the RDI * | 150.0% | 166.8% | 183.0% | 179.0% | 188.5% | 8 mg [59,74] |
Iron | 5.88 ± 1.35 | 5.74 ± 1.32 | 5.79 ± 1.33 | 5.54 ± 1.27 | 6.15 ± 1.41 | |
% of the RDI * | 71.5% | 69.6% | 70.2% | 67.2% | 74.5% | 15–18 mg [59,75] |
Calcium | 220 ± 0.05 | 230 ± 0.06 | 240 ± 0.06 | 230 ± 0.06 | 250 ± 0.06 | |
% of the RDI * | 40.0% | 41.8% | 43.6% | 41.8% | 45.5% | 1000–1200 mg [59,76] |
Magnesium | 148 ± 27.0 | 162 ± 29.0 | 165 ± 30.0 | 160 ± 29.00 | 168 ± 30.0 | |
% of the RDI * | 94.0% | 102.9% | 104.8% | 101.6% | 106.7% | 310–320 mg [59,77] |
Selenium | 0.018 ± 0.005 | 0.018 ± 0.005 | 0.017 ± 0.005 | 0.016 ± 0.004 | 0.018 ± 0.005 | |
% of the RDI * | 65.5% | 65.5% | 61.8% | 58.2% | 65.5% | 0.055 mg [59,78] |
Sodium | 76 ± 0.017 | 77 ± 0.018 | 80 ± 0.018 | 77 ± 0.018 | 79 ± 0.018 | |
% of the RDI * | 7.6% | 7.7% | 8.0% | 7.7% | 7.9% | 2000 mg [59,79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plocina, L.; Beitane, I. A Study of Nutritional and Sensory Qualities of Pea Protein Isolate Beverages with a View to Their Potential Use in Patients with Psychiatric Disorders. Foods 2025, 14, 2991. https://doi.org/10.3390/foods14172991
Plocina L, Beitane I. A Study of Nutritional and Sensory Qualities of Pea Protein Isolate Beverages with a View to Their Potential Use in Patients with Psychiatric Disorders. Foods. 2025; 14(17):2991. https://doi.org/10.3390/foods14172991
Chicago/Turabian StylePlocina, Lasma, and Ilze Beitane. 2025. "A Study of Nutritional and Sensory Qualities of Pea Protein Isolate Beverages with a View to Their Potential Use in Patients with Psychiatric Disorders" Foods 14, no. 17: 2991. https://doi.org/10.3390/foods14172991
APA StylePlocina, L., & Beitane, I. (2025). A Study of Nutritional and Sensory Qualities of Pea Protein Isolate Beverages with a View to Their Potential Use in Patients with Psychiatric Disorders. Foods, 14(17), 2991. https://doi.org/10.3390/foods14172991