Simultaneous Detection of Food Contaminants Using Surface-Enhanced Raman Scattering (SERS): A Review
Abstract
1. Introduction
2. SERS Simultaneous Detection Strategy
- (1)
- MBA
- (2)
- DTNB
- (3)
- NTP
- (4)
- ATP
- (5)
- MPBA
- (6)
- MPY
- (7)
- MBN
- (8)
- PB
3. Application of SERS Simultaneous Detection
Contaminants | SERS Substrates | Strategy | Extra Technology | LOD | References |
---|---|---|---|---|---|
P. aeruginosa, S. aureus, S. epidermidis, M. smegmatis | AuNPs | Labeled | PCR; SERS reporter molecules: MBA, DTNB, MMC, TFMBA | 100 copies of target gDNA | [78] |
E. coli, S. aureus, S. typhimurium | Au@Ag@SiO2 | Label-free | Machine learning | / | [79] |
E. coli, S. aureus | AuNPs | Labeled | Aptamer; SERS reporter molecules: Cy3, ROX | 10 CFU/mL | [80] |
E. coli, S. aureus | Fe3O4@SiO2@Ag; Au-MPBA/DTNB@Ag | Labeled | Aptamer; SERS reporter molecules: DTNB, MPBA | 1 CFU/mL | [81] |
AFB1, OTA | Gold nanoparticles grafted onto silica photonic crystals | Labeled | Aptamer; LFIA, SERS reporter molecules: DTNB, NBA | 0.36 pg/mL (AFB1), 0.034 pg/mL (OTA) | [82] |
OTA, ZEN | Au@AgNPs | Labeled | Aptamer; SERS reporter molecules: MPY, MBN | 0.94 pg/mL (OTA), 59 pg/mL (ZEN) | [83] |
OTA, AFB1, DON | 3D-Psi/AgNPs, AuNPs | Labeled | Antibody, SERS reporter molecules: NBA | 3.35 pg/mL (OTA), 0.36 pg/mL (AFB1), 2.70 pg/mL (DON) | [84] |
FB1, AFB1, ZEN | 3D Au nanofilm | Labeled | Antibody, LFIA, SERS reporter molecules: DTNB | 0.529 pg/mL (FB1), 0.745 pg/mL (AFB1), 5.90 pg/mL (ZEN) | [85] |
IMI, PYR, AFB1 | Au@AgNPs | Labeled | Antibody, LFIA, SERS reporter molecules: MBA | 8.6 pg/mL (IMI), 97.4 pg/mL (PYR), 8.9 pg/mL (AFB1) | [86] |
ACE, CBZ | Au@AgNPs | Labeled | Aptamer, SERS reporter molecules: PB, MBN | 9.43 μg/kg (ACE), 9.17 μg/kg (CBZ) | [87] |
CHL, IMI, OXY | Ag@AuNPs | Labeled | Antibody, LFIA, SERS reporter molecules: NTP | 0.00015 ng/mL (CHL), 0.001 ng/mL (IMI), 0.0022 ng/mL (OXY) | [88] |
CBZ, flumetralin | SiO2@Ag nanoparticles | Label-free | / | 0.1 mg/kg (CBZ), 1 mg/kg (flumetralin) | [89] |
ZIR, TBZ | Au@AgTGANRs | Label-free | / | 0.003 mg/kg (ZIR), 0.028 mg/kg (TBZ) | [90] |
TCP, OXA | Au@Ag@2-MCENPs | Label-free | / | 0.006 mg/kg (TCP in pear), 0.008 mg/kg (TCP in apple), 0.007 mg/kg (OXA in pear), 0.009 mg/kg (OXA in pear) | [91] |
MG, CV | AgNPs | Label-free | / | 100 fg/mL (MG), 1 pg/mL (CV) | [92] |
ENR, ENX, CPX | Flexible cotton fabric/Ca-doped TiO2 | Label-free | / | 7.08 × 10−9 M | [93] |
ENR, ENX | Flexible Cotton fabric/TiO2 | Label-free | / | 7.24 × 10−7 M | [94] |
AM, TC, OFX | Ag-coated Au nanorod | Label-free | Chemometrics algorithms | 1.8 × 10−5 μM (AM), 5 × 10−6 μM (TC), 1.5 × 10−5 μM (OFX) | [95] |
ENR, ENX, CPX, CAP | (001) facet-supported TiO2 facet heterojunction | Label-free | / | 6.6 × 10−10 M (ENR), 8.13 × 10−10 M (ENX), 6.17 × 10−10 M (CPX), 1.24 × 10−9 M (CAP) | [96] |
ENR, ENX, CAP | TiO2/ZnO | Label-free | / | 9.62 × 10−10 M (ENR), 8.57 × 10−10 M (ENX), 8.6 × 10−10 M (CAP) | [97] |
TC, penicillin | Au@AgNPs | Labeled | Antibody, LFIA, SERS reporter molecules: DTNB, MBA | 0.015 ng/mL and 0.010 ng/mL | [98] |
CAP, TC | Au@AgNSs | Labeled | Antibody, SERS reporter molecules: DTNB, MBA | 159.49 fg/mL (CAP), 294.12 fg/mL (TC) | [99] |
NEO, LIN | AuNPs | Labeled | Antibody, LFIA, SERS reporter molecules: DTNB, ATP | 0.33 pg/mL (NEO), 0.29 pg/mL (LIN) | [100] |
ENR, MG, nitrofurazone, and Sudan I | Cu2O-Ag/AF-C3N4 | Label-free | / | 4.67 × 10−4 mg/L (ENR), 2.57 × 10−5 mg/L (MG), 5.7 × 10−7 mg/L (nitrofurazone), 6.92 × 10−5 mg/L (Sudan I) | [101] |
Hg2+, Ag+ | AuNPs | Labeled | cascade nucleic acid amplification, SERS reporter molecules: Cy3, ROX | 4.4 aM (Hg2+), 9.97 aM (Ag+) | [102] |
Sunset yellow, lemon yellow, carmine, erythrosine | Raspberry-like Ag nanoparticles | Label-free | Chemometrics algorithms | 0.01 mg/L (colorant standard), 0.5 mg/L (black tea samples) | [103] |
Ractopamine, salbutamol | AuNPs | Label-free | / | / | [104] |
3.1. Detection of Harmful Microbes
3.2. Detection of Mycotoxins
3.3. Detection of Pesticides
3.4. Detection of Antibiotic
3.5. Detection of Other Contaminants
4. Challenges and Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SERS | Surface-enhanced Raman scattering |
HPLC | High-performance liquid chromatography |
TBZ | Thiabendazole |
LOD | Limit of detection |
TRM | Thiram |
ZEN | Zearalenone |
PRQ | Paraquat |
TYR | Tyramine |
RAC | Ractopamine |
MBA | 4-mercaptobenzoic acid |
DTNB | 5,5′-dithiobis-(2-nitrobenzoic acid) |
NTP | 4-nitrothiophenol |
ATP | 4-aminothiophenol |
MPBA | 4-mercaptophenylboronic acid |
MPY | 4-mercaptopyridine |
MBN | 4-(mercaptomethyl) benzonitrile |
PB | Prussian blue |
P. aeruginosa | Pseudomonas aeruginosa |
S. aureus | Staphylococcus aureus |
S. epidermidis | Staphylococcus epidermidis |
M. smegmatis | Mycobacterium smegmatis |
PCR | Polymerase chain reaction |
MMC | 7-mercapto-4-methylcoumarin |
TFMBA | 2,3,5,6-tetrafluoro-4-mercaptobenzoic acid |
E. coli | Escherichia coli |
S. typhimurium | Salmonella typhimurium |
Cy3 | Cyanine 3 |
ROX | Carboxy-X-rhodamine |
AFB1 | Aflatoxin B1 |
OTA | Ochratoxin A |
LFIA | Lateral flow immunoassay |
NBA | Nile blue A |
DON | Deoxynivalenol |
3D-Psi | 3D porous silicon |
FB1 | Fumonisin B1 |
IMI | Imidacloprid |
PYR | Pyraclostrobin |
ACE | Acetamiprid |
CBZ | Carbendazim |
CHL | Chlorothalonil |
OXY | Oxyfluorfen |
ZIR | Ziram |
TGA | Thioglycolic acid |
TCP | Thiacloprid |
OXA | Oxamyl |
2-MCE | 2-mercaptoethylamine |
MG | Malachite green |
CV | Crystal violet |
ENR | Enrofloxacin |
ENX | Enoxacin |
CPX | Ciprofloxacin |
CAP | Chloramphenicol |
AM | Amoxicillin |
TC | Tetracycline |
OFX | Ofloxacin |
NEO | Neomycin |
LIN | Lincomycin |
AF-C3N4 | Oxygen-linked graphitic carbon nitride |
CIL | Class-incremental learning |
COF | Covalent organic framework |
MNPs@ConA | Lectin-functionalized magnetic nanoparticle |
Ag@Au | Silver-core gold-shell |
AMP | Antimicrobial peptide |
MNPs | Magnetic nanoparticles |
PGNAs/Si | PAMAM-based gold nanoassemblies on silicon wafer |
CES | Co-recognition, enrichment, and sensing |
VFA | Vertical flow immunoassay |
DQT | Diquat |
PLS-DA | Partial least squares discriminant analysis |
SVR | Support vector machine regression |
AuNSs | Gold nanostars |
PMMA | Poly(methyl methacrylate) |
NFT | Nitrofurantoin |
PP | Penicillin potassium |
TCH | Tetracycline hydrochloride |
LEV | Levofloxacin |
PCA | Principal component analysis |
CNN | Convolutional neural networks |
NN-EN | Non-negative elastic network |
TLC | Thin-layer chromatography |
AuNPs | Gold nanoparticles |
APC | Ampicillin |
TMIP | Dual-template imprinted polymers |
CLE | Clenbuterol |
AgNPs | Silver nanoparticles |
FDTD | Finite difference time domain |
CARS-PLS | Competitive adaptive weighted sampling–partial least squares |
DFT | Density functional theory |
AuNR-MF | Au nanorod-incorporated melamine foam |
SEB | Staphylococcal enterotoxin B |
BoNT/A | Botulinum neurotoxin type A |
HIS | Histamine |
RGO/AgNPs | Reduced graphene oxide/silver nanoparticles |
References
- Mohan, B.; Priyanka; Singh, G.; Chauhan, A.; Pombeiro, A.J.L.; Ren, P. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. J. Hazard. Mater. 2023, 453, 131324. [Google Scholar] [CrossRef]
- Garvey, M. Food pollution: A comprehensive review of chemical and biological sources of food contamination and impact on human health. Nutrire 2019, 44, 1. [Google Scholar] [CrossRef]
- Ouyang, Q.; Liu, Y.; Chen, Q.; Guo, Z.; Zhao, J.; Li, H.; Hu, W. Rapid and specific sensing of tetracycline in food using a novel upconversion aptasensor. Food Control 2017, 81, 156–163. [Google Scholar] [CrossRef]
- Yang, N.; Xie, L.-L.; Pan, C.; Yuan, M.-F.; Tao, Z.-H.; Mao, H.-P. A novel on-chip solution enabling rapid analysis of melamine and chloramphenicol in milk by smartphones. J. Food Process Eng. 2019, 42, e12976. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.; Aheto, J.H.; Osae, R. Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: A review. J. Food Sci. Technol. 2020, 57, 1977–1990. [Google Scholar] [CrossRef]
- Wen, R.; Han, Y.; Tang, X.; Zeng, W.; Zhang, S.; Wu, L. Advancing food safety with SERS: The role of noble metal nanomaterials in detecting food contaminants. Trends Food Sci. Technol. 2025, 160, 104995. [Google Scholar] [CrossRef]
- Gamal, A.; Abdel-Megeed, M.; Mahmoud, H.; Soliman, M.; Al-Anany, M.; Eissa, F. Pesticide residues in Green, roasted, and capsule coffee from the Egyptian market: Occurrence, processing effects, and health risk assessment. Food Chem. 2025, 486, 144671. [Google Scholar] [CrossRef]
- Yuan, S.; Li, C.; Zhang, Y.; Yu, H.; Xie, Y.; Guo, Y.; Yao, W. Ultrasound as an emerging technology for the elimination of chemical contaminants in food: A review. Trends Food Sci. Technol. 2021, 109, 374–385. [Google Scholar] [CrossRef]
- Song, Y.; Xu, X.; Xu, H. Nanomaterials-driven paper-based biosensors for food contaminants detection: Classification, mechanism and applications. Coordin. Chem. Rev. 2025, 532, 216512. [Google Scholar] [CrossRef]
- Kitts, D.D.; Pratap-Singh, A.; Singh, A.; Chen, X.; Wang, S. A Risk–Benefit Analysis of First Nation’s Traditional Smoked Fish Processing. Foods 2023, 12, 111. [Google Scholar] [CrossRef]
- Uldbjerg, C.S.; Rantakokko, P.; Lim, Y.-H.; Petersen, J.H.; Sørensen, K.M.; Coull, B.A.; Lindh, C.; Hauser, R.; Bräuner, E.V.; Skakkebæk, N.E.; et al. Prenatal exposure to organochlorine pesticides and polychlorinated biphenyls and risk of testicular germ cell cancer later in life. Sci. Total Environ. 2025, 970, 179054. [Google Scholar] [CrossRef]
- Hu, X.; Shi, J.; Shi, Y.; Zou, X.; Arslan, M.; Zhang, W.; Huang, X.; Li, Z.; Xu, Y. Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites. Food Chem. 2019, 272, 58–65. [Google Scholar] [CrossRef]
- Sharma, A.S.; Ali, S.; Sabarinathan, D.; Murugavelu, M.; Li, H.; Chen, Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5765–5801. [Google Scholar] [CrossRef]
- Zhang, L.; He, Y.; Wu, Y.; Zhang, J.; Li, S.; Zhang, Z. Highly sensitive ratiometric fluorescence detection of tetracycline residues in food samples based on Eu/Zr-MOF. Food Chem. 2024, 436, 137717. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Cui, Y.; Hong, X.; Du, D. Using of Tyramine Signal Amplification to Improve the Sensitivity of ELISA for Aflatoxin B1 in Edible Oil Samples. Food Anal. Methods 2018, 11, 2553–2560. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Cui, Z.; Liu, S.; Xu, J.; Jia, C.; Chen, Y.; Wang, L.; Sun, J.; Zhang, D.; et al. Chemical staining enhanced Enzyme-linked immunosorbent assay for sensitive determination of Clenbuterol in food. Food Chem. 2023, 400, 134012. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications. J. Hazard. Mater. 2023, 441, 129889. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, J.; Yuan, X.; Xiong, J.; Zong, M.-H.; Wu, X.; Lou, W.-Y. A dual-mode sensing platform based on metal–organic framework for colorimetric and ratiometric fluorescent detection of organophosphorus pesticide. Food Chem. 2024, 432, 137272. [Google Scholar] [CrossRef]
- Srivastava, P.; Prasad, D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech 2023, 13, 200. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Xie, H.; Zhou, S.; Sheng, X.; Chen, L.; Zhong, M. Construction of AuNPs/reduced graphene nanoribbons co-modified molecularly imprinted electrochemical sensor for the detection of zearalenone. Food Chem. 2023, 423, 136294. [Google Scholar] [CrossRef]
- Li, G.; Qi, X.; Wu, J.; Wan, X.; Wang, T.; Liu, Y.; Chen, Y.; Xia, Y. Highly stable electrochemical sensing platform for the selective determination of pefloxacin in food samples based on a molecularly imprinted-polymer-coated gold nanoparticle/black phosphorus nanocomposite. Food Chem. 2024, 436, 137753. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, S.; Li, B.; Wu, L. Advances in Multifunctional Nanoagents and SERS-Based Multimodal Sensing for Biotoxin in Foods. Foods 2025, 14, 1393. [Google Scholar] [CrossRef]
- Zuo, H.; Sun, Y.; Huang, M.; Marie Fowler, S.; Liu, J.; Zhang, Y.; Mao, Y. Classification and Identification of Foodborne Bacteria in Beef by Utilising Surface-Enhanced Raman Spectroscopy Coupled with Chemometric Methods. Foods 2024, 13, 3688. [Google Scholar] [CrossRef]
- Li, H.; Chen, Q.; Ouyang, Q.; Zhao, J. Fabricating a Novel Raman Spectroscopy-Based Aptasensor for Rapidly Sensing Salmonella typhimurium. Food Anal. Methods 2017, 10, 3032–3041. [Google Scholar] [CrossRef]
- Zhu, J.; Agyekum, A.A.; Kutsanedzie, F.Y.H.; Li, H.; Chen, Q.; Ouyang, Q.; Jiang, H. Qualitative and quantitative analysis of chlorpyrifos residues in tea by surface-enhanced Raman spectroscopy (SERS) combined with chemometric models. LWT 2018, 97, 760–769. [Google Scholar] [CrossRef]
- Long, Y.; Li, H.; Du, Z.; Geng, M.; Liu, Z. Confined Gaussian-distributed electromagnetic field of tin(II) chloride-sensitized surface-enhanced Raman scattering (SERS) optical fiber probe: From localized surface plasmon resonance (LSPR) to waveguide propagation. J. Colloid. Interface Sci. 2021, 581, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Ding, Z.; Shen, Z.; Yan, Z.; Han, K.; Li, J.; Zhang, M.; Zhang, W. Nano-arrayed Cu2S@MoS2 heterojunction SERS sensor for highly sensitive and visual detection of polystyrene in environmental matrices. Talanta 2025, 292, 127934. [Google Scholar] [CrossRef]
- Shameer, P.M.; Vijai Anand, K.; Columbus, S.; Alawadhi, H.; Daoudi, K.; Gaidi, M.; Govindaraju, K. Highly efficient, multiplexed SERS sensing of para-aminobenzoic acid using reusable silver nanoarrays for environmental monitoring. Mater. Sci. Eng. B-Adv. 2023, 295, 116576. [Google Scholar] [CrossRef]
- Sun, J.; Shi, Z.; Wang, L.; Zhang, X.; Luo, C.; Hua, J.; Feng, M.; Chen, Z.; Wang, M.; Xu, C. Construction of a microcavity-based microfluidic chip with simultaneous SERS quantification of dual biomarkers for early diagnosis of Alzheimer’s disease. Talanta 2023, 261, 124677. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Chen, G.; Deng, J.; Gu, Y.; Mao, Y.; Zhou, X.; Li, G. Multiplex signal amplification strategy-based early-stage diagnosis of Parkinson’s disease on a SERS-enabled LoC system. Anal. Chim. Acta 2023, 1247, 340890. [Google Scholar] [CrossRef]
- Chen, J.; Li, M.; Wang, X.; Liu, H.; Jiang, W.; Zhao, B.; Song, W. Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis. Angew. Chem. Int. Edit. 2025, 64, e202424986. [Google Scholar] [CrossRef]
- Li, P.; Ma, B.; Yang, L.; Liu, J. Hybrid single nanoreactor for in situ SERS monitoring of plasmon-driven and small Au nanoparticles catalyzed reactions. Chem. Commun. 2015, 51, 11394–11397. [Google Scholar] [CrossRef]
- Wang, L.; Gao, X.; Han, J.; Yuan, J.; Wang, Z.; Ma, X. Core-shell SERS nanoprobes for ROS detection and imaging during apoptosis. Food Biosci. 2025, 67, 106339. [Google Scholar] [CrossRef]
- Li, W.; Dai, S.; Li, X.; Li, Q.; Li, J. Highly sensitive SERS detection of melamine based on 3D Ag@porous silicon photonic crystal. Talanta 2024, 280, 126789. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, S.; Zhao, Y.; Zhang, L.; Lyu, X.; Zhang, S.; Liang, J.; He, Y.; Quan, X.; Zhang, M.; et al. An ultra-sensitive, intelligent platform for food safety monitoring: Label-free detection of illegal additives using self-assembled SERS substrates and machine learning. Food Chem. 2025, 479, 143754. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Shi, J.; Zhang, W.; Zhang, X.; Huang, X.; Zou, X.; Li, Z.; Wei, R. Facile synthesis of Au@Ag core–shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Food Chem. 2022, 370, 131276. [Google Scholar] [CrossRef]
- Barimah, A.O.; Chen, P.; Yin, L.; El-Seedi, H.R.; Zou, X.; Guo, Z. SERS nanosensor of 3-aminobenzeneboronic acid labeled Ag for detecting total arsenic in black tea combined with chemometric algorithms. J. Food Compos. Anal. 2022, 110, 104588. [Google Scholar] [CrossRef]
- Cheshari, E.C.; Ren, X.; Li, X. Core–shell Ag-dual template molecularly imprinted composite for detection of carbamate pesticide residues. Chem. Pap. 2021, 75, 3679–3693. [Google Scholar] [CrossRef]
- Castro, R.C.; Saraiva, M.L.M.F.S.; Santos, J.L.M.; Ribeiro, D.S.M. Multiplexed detection using quantum dots as photoluminescent sensing elements or optical labels. Coordin. Chem. Rev. 2021, 448, 214181. [Google Scholar] [CrossRef]
- Jiao, S.; Wu, L.; Jiang, H.; Zhang, S.; Han, Y.; Huang, H. A review on SERS-based techniques for mycotoxin detection: From construction to application. TrAC Trends Anal. Chem. 2025, 184, 118120. [Google Scholar] [CrossRef]
- Chang, K.; Zhao, Y.; Wang, M.; Xu, Z.; Zhu, L.; Xu, L.; Wang, Q. Advances in metal-organic framework-plasmonic metal composites based SERS platforms: Engineering strategies in chemical sensing, practical applications and future perspectives in food safety. Chem. Eng. J. 2023, 459, 141539. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, D.-W.; Pu, H. Porous materials nanohybridized with metal nanoparticles as substrates for enhancing SERS detection in food safety applications. Trends Food Sci. Technol. 2023, 141, 104202. [Google Scholar] [CrossRef]
- Wu, W.; Dai, T.; Pu, J.; Zhong, K.; Zhu, D.; Li, X.; Zheng, S.; Liu, B. AgNPs-modified IOPC-based flexible SERS patch for rapid label-free analysis of pesticide residues. Sens. Actuators B Chem. 2025, 442, 138108. [Google Scholar] [CrossRef]
- Thi Linh, D.; Mai, Q.-D.; Thi Hanh Trang, D.; Anh, N.T.; Vu, X.H.; Le, A.-T. Ultrasensitive detection of carbendazim pesticide in tea leaves using a green Ag/CuO(Cu2O) nanocomposite-based SERS sensor: Role of metal/semiconductor transition in sensing performance. RSC Adv. 2025, 15, 17635–17647. [Google Scholar] [CrossRef]
- Tang, X.; Wen, R.; Ji, C.; Wei, J.; Han, Y.; Wu, L. Electrochemical potential enhanced EC-SERS sensor for sensitive and label-free detection of acetamiprid. Microchem. J. 2024, 206, 111524. [Google Scholar] [CrossRef]
- Senapati, S.; Kaushik, A.; Kaur, M.; Rana, S.; Singh, N.; Kulkarni, S.S.; Singh, J.P. Gold-capped silver nanorods fabricated via glancing angle deposition: Label free, ultra stable SERS substrates for polymicrobial bacteria detection and antibiotics susceptibility testing. Appl. Surf. Sci. 2025, 709, 163814. [Google Scholar] [CrossRef]
- Wang, M.; Diao, H.; Dou, C.; Wu, Z.; Ruan, L.; Wang, Z.; Wang, Z.; Ye, W.; Duan, J.; Li, Y. Label-free detection of pathogenic microorganism using Ag NPs@PDMS sponge SERS substrate and machine learning. Sens. Actuators B Chem. 2024, 413, 135811. [Google Scholar] [CrossRef]
- Kim, J.-M.; Kim, J.; Choi, K.; Nam, J.-M. Plasmonic Dual-Gap Nanodumbbells for Label-Free On-Particle Raman DNA Assays. Adv. Mater. 2023, 35, 2208250. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Hassan, M.M.; Zhu, J.; Wang, A.; Ouyang, Q.; Zareef, M.; Chen, Q. Amplification of Raman spectra by gold nanorods combined with chemometrics for rapid classification of four Pseudomonas. Int. J. Food Microbiol. 2019, 304, 58–67. [Google Scholar] [CrossRef]
- Wang, J.; Ahmad, W.; Mehedi Hassan, M.; Zareef, M.; Viswadevarayalu, A.; Arslan, M.; Li, H.; Chen, Q. Landing microextraction sediment phase onto surface enhanced Raman scattering to enhance sensitivity and selectivity for chromium speciation in food and environmental samples. Food Chem. 2020, 323, 126812. [Google Scholar] [CrossRef]
- Li, H.; Geng, W.; Zheng, Z.; Haruna, S.A.; Chen, Q. Flexible SERS sensor using AuNTs-assembled PDMS film coupled chemometric algorithms for rapid detection of chloramphenicol in food. Food Chem. 2023, 418, 135998. [Google Scholar] [CrossRef]
- Yin, L.; You, T.; Arslan, M.; El-Seedi, H.R.; Guo, Z.; Zou, X.; Cai, J. Dual-layers Raman reporter-tagged Au@Ag combined with core-satellite assemblies for SERS detection of Zearalenone. Food Chem. 2023, 429, 136834. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ye, Z.; Xiang, Q.; Xu, Z.; Yue, W.; Li, C.; Xu, Y.; Wang, L.; Cao, X.; Zhang, J. Boosting electromagnetic enhancement for detection of non-adsorbing analytes on semiconductor SERS substrates. Chem 2023, 9, 1464–1476. [Google Scholar] [CrossRef]
- Lv, Q.; Tan, J.; Wang, Z.; Gu, P.; Liu, H.; Yu, L.; Wei, Y.; Gan, L.; Liu, B.; Li, J.; et al. Ultrafast charge transfer in mixed-dimensional WO3−x nanowire/WSe2 heterostructures for attomolar-level molecular sensing. Nat. Commun. 2023, 14, 2717. [Google Scholar] [CrossRef]
- Qiu, B.; Xing, M.; Yi, Q.; Zhang, J. Chiral Carbonaceous Nanotubes Modified with Titania Nanocrystals: Plasmon-Free and Recyclable SERS Sensitivity. Angew. Chem. Int. Ed. 2015, 54, 10643–10647. [Google Scholar] [CrossRef]
- Nirala, N.R.; Sadhasivam, S.; Sionov, E.; Shtenberg, G. A comparative study of aptasensor vs. immunosensor for ultrasensitive detection of aflatoxin B1 using Ag-pSi SERS substrate. Food Chem. 2025, 464, 141637. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Huang, M.; Ai, G.; Liu, X.; Zhang, Y.; Li, R.; Wu, J. A colorimetric and SERS-based LFIA for sensitive and simultaneous detection of three stroke biomarkers: An ultra-fast and sensitive point-of-care testing platform. Talanta 2025, 283, 127166. [Google Scholar] [CrossRef]
- Shan, Y.; Wang, M.; Shi, Z.; Lei, M.; Wang, X.; Wu, F.-G.; Ran, H.-H.; Arumugam, G.M.; Cui, Q.; Xu, C. SERS-encoded nanocomposites for dual pathogen bioassay. J. Mater. Sci. Technol. 2020, 43, 161–167. [Google Scholar] [CrossRef]
- Shen, W.; Li, J.; Zheng, S.; Wang, S.; Wang, C.; Yin, J.; Wang, C. 3D membrane-like tag mediated SERS encoding-lateral flow immunoassay for ultrasensitive and multiplex diagnosis of pathogens. Chem. Eng. J. 2025, 514, 163223. [Google Scholar] [CrossRef]
- Pan, H.; Ahmad, W.; Jiao, T.; Zhu, A.; Ouyang, Q.; Chen, Q. Label-free Au NRs-based SERS coupled with chemometrics for rapid quantitative detection of thiabendazole residues in citrus. Food Chem. 2022, 375, 131681. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Shi, J.; Zhang, W.; Zhang, X.; Hang, X.; Li, Z.; Zou, X. Convenient self-assembled PDADMAC/PSS/Au@Ag NRs filter paper for swift SERS evaluate of non-systemic pesticides on fruit and vegetable surfaces. Food Chem. 2023, 424, 136232. [Google Scholar] [CrossRef]
- Kutsanedzie, F.Y.H.; Agyekum, A.A.; Annavaram, V.; Chen, Q. Signal-enhanced SERS-sensors of CAR-PLS and GA-PLS coupled AgNPs for ochratoxin A and aflatoxin B1 detection. Food Chem. 2020, 315, 126231. [Google Scholar] [CrossRef]
- Hussain, A.; Sun, D.-W.; Pu, H. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS. Food Chem. 2020, 317, 126429. [Google Scholar] [CrossRef]
- Phan, H.T.; Haes, A.J. Impacts of pH and Intermolecular Interactions on Surface-Enhanced Raman Scattering Chemical Enhancements. J. Phys. Chem. C 2018, 122, 14846–14856. [Google Scholar] [CrossRef]
- Wang, K.; Li, J. Reliable SERS detection of pesticides with a large-scale self-assembled Au@4-MBA@Ag nanoparticle array. Spectrochim. Acta A 2021, 263, 120218. [Google Scholar] [CrossRef]
- Wang, K.; Yue, Z.; Fang, X.; Lin, H.; Wang, L.; Cao, L.; Sui, J.; Ju, L. SERS detection of thiram using polyacrylamide hydrogel-enclosed gold nanoparticle aggregates. Sci. Total Environ. 2023, 856, 159108. [Google Scholar] [CrossRef]
- Huang, P.B.; Qu, J.L.; Yang, S.; Shui, T.J.; Yang, H.H.; Cheng, L.P.; Qin, Y.; Xi, J. Multifunctional au-DTNB-ag nanoparticles immunoprobes based on color-Raman properties for lateral flow immunoassay detection of Glycinin. Food Chem. 2025, 487, 144788. [Google Scholar] [CrossRef]
- Jiang, L.-Y.; Li, X.-S.; Wang, A.-J.; Huang, H.; Feng, J.-J. l-Arginine-assisted one-pot synthesis of hierarchical Ag1Pt2 nanocorallines for surface-enhanced Raman spectroscopy. J. Colloid Interface Sci. 2017, 498, 128–135. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.L.; Shin, D.; Choi, J.-Y.; Shin, K.S. Surface-Enhanced Raman Scattering of 4-Aminobenzenethiol on Ag and Au: pH Dependence of b2-Type Bands. J. Phys. Chem. C 2012, 116, 4774–4779. [Google Scholar] [CrossRef]
- Mandavkar, R.; Lin, S.; Pandit, S.; Kulkarni, R.; Burse, S.; Habib, M.A.; Kunwar, S.; Lee, J. Hybrid SERS platform by adapting both chemical mechanism and electromagnetic mechanism enhancements: SERS of 4-ATP and CV by the mixture with GQDs on hybrid PdAg NPs. Surf. Interface 2022, 33, 102175. [Google Scholar] [CrossRef]
- Huang, X.; Chen, L.; Zhi, W.; Zeng, R.; Ji, G.; Cai, H.; Xu, J.; Wang, J.; Chen, S.; Tang, Y.; et al. Urchin-Shaped Au–Ag@Pt Sensor Integrated Lateral Flow Immunoassay for Multimodal Detection and Specific Discrimination of Clinical Multiple Bacterial Infections. Anal. Chem. 2023, 95, 13101–13112. [Google Scholar] [CrossRef]
- Gu, Z.; Chen, T.; Zu, D.; Yang, A.; Huang, W.; Wu, Y.; Gan, Y.; Chen, H.; Yang, J.; Yu, X.; et al. Versatile spiky spindle-shaped copper-based nanocomposites: A SERS substrate for discrimination, quantification and inactivation of multiple bacteria. J. Colloid Interface Sci. 2025, 691, 137448. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Hu, Y.; Liu, Z.; Ma, X.; Feng, F.; Zheng, F.; Guo, X.; Liu, W.; Liao, W.; et al. Rapid enrichment and SERS differentiation of various bacteria in skin interstitial fluid by 4-MPBA-AuNPs-functionalized hydrogel microneedles. J. Pharm. Anal. 2025, 15, 101152. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; He, Y.; Ye, Y.; An, J. SERS active fibers from wet-spinning of alginate with gold nanoparticles for pH sensing. Spectrochim. Acta A 2022, 271, 120848. [Google Scholar] [CrossRef]
- Ma, H.; Hu, L.; Ding, F.; Liu, J.; Su, J.; Tu, K.; Peng, J.; Lan, W.; Pan, L. Introducing high-performance star-shaped bimetallic nanotags into SERS aptasensor: An ultrasensitive and interference-free method for chlorpyrifos detection. Biosens. Bioelectron. 2024, 263, 116577. [Google Scholar] [CrossRef]
- Wei, X.; Song, W.; Fan, Y.; Sun, Y.; Li, Z.; Chen, S.; Shi, J.; Zhang, D.; Zou, X.; Xu, X. A SERS aptasensor based on a flexible substrate for interference-free detection of carbendazim in apple. Food Chem. 2024, 431, 137120. [Google Scholar] [CrossRef]
- Liu, C.; Jiménez-Avalos, G.; Zhang, W.-s.; Sheen, P.; Zimic, M.; Popp, J.; Cialla-May, D. Prussian blue (PB) modified gold nanoparticles as a SERS-based sensing platform for capturing and detection of pyrazinoic acid (POA). Talanta 2024, 266, 125038. [Google Scholar] [CrossRef]
- Lyu, N.; Potluri, P.R.; Rajendran, V.K.; Wang, Y.; Sunna, A. Multiplex detection of bacterial pathogens by PCR/SERS assay. Analyst 2024, 149, 2898–2904. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Ning, Y.; Miao, P.; Li, Z.; Wang, H. Simultaneous quantitative analysis of Escherichia coli, Staphylococcus aureus and Salmonella typhimurium using surface-enhanced Raman spectroscopy coupled with partial least squares regression and artificial neural networks. Spectrochim. Acta A 2023, 293, 122510. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, Y.; Zhang, D.; Qi, P.; Liu, X.; Song, R.; Wang, P. SERS immunoassay analysis of Escherichia coli and Staphylococcus aureus based on sandwich-structured complex probe and target-induced strand displacement. Microchim. Acta 2023, 191, 17. [Google Scholar] [CrossRef]
- Mi, F.; Guan, M.; Wang, Y.; Chen, G.; Geng, P. A SERS biosensor based on aptamer-based Fe3O4@SiO2@Ag magnetic recognition and embedded SERS probes for ultrasensitive simultaneous detection of Staphylococcus aureus and Escherichia coli. Microchem. J. 2023, 190, 108605. [Google Scholar] [CrossRef]
- Song, L.; Li, J.; Li, H.; Chang, Y.; Dai, S.; Xu, R.; Dou, M.; Li, Q.; Lv, G.; Zheng, T. Highly sensitive SERS detection for Aflatoxin B1 and Ochratoxin A based on aptamer-functionalized photonic crystal microsphere array. Sens. Actuators B Chem. 2022, 364, 131778. [Google Scholar] [CrossRef]
- Xue, S.; Gao, L.; Yin, L.; El-Seedi, H.R.; Abolibda, T.Z.; Zou, X.; Guo, Z. SERS aptasensor for simultaneous detection of ochratoxin A and zearalenone utilizing a rigid enhanced substrate (ITO/AuNPs/GO) combined with Au@AgNPs. Spectrochim. Acta A 2025, 324, 124991. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.; Li, H.; Wang, X.; Xu, K.; Li, Q.; Zheng, T.; Li, J. Highly Sensitive Microarray Immunoassay for Multiple Mycotoxins on Engineered 3D Porous Silicon SERS Substrate with Silver Nanoparticle Magnetron Sputtering. Anal. Chem. 2024, 96, 2425–2434. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, C.; Li, J.; Wang, W.; Yu, Q.; Wang, C.; Wang, S. Graphene oxide-based three-dimensional Au nanofilm with high-density and controllable hotspots: A powerful film-type SERS tag for immunochromatographic analysis of multiple mycotoxins in complex samples. Chem. Eng. J. 2022, 448, 137760. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Wang, X.; Zhou, X.; Qiu, Y.; Qin, W.; ShenTu, X.; Wang, S.; Yu, X.; Ye, Z. Dosage-sensitive and simultaneous detection of multiple small-molecule pollutants in environmental water and agriproducts using portable SERS-based lateral flow immunosensor. Sci. Total Environ. 2024, 912, 169440. [Google Scholar] [CrossRef]
- Ma, L.; Xu, Q.; Yin, L.; Wu, W.; Han, E.; Wang, C.; Zhou, R.; Bai, J.; Cai, J. Simultaneous detection of acetamiprid and carbendazim based on Raman-silent spectral window tags-mediated surface-enhanced Raman scattering aptasensor coupled with magnetic separation. Sens. Actuators B Chem. 2024, 400, 134792. [Google Scholar] [CrossRef]
- Sheng, E.; Lu, Y.; Xiao, Y.; Li, Z.; Wang, H.; Dai, Z. Simultaneous and ultrasensitive detection of three pesticides using a surface-enhanced Raman scattering-based lateral flow assay test strip. Biosens. Bioelectron. 2021, 181, 113149. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, P.; Yang, X.; Guo, X.; Yu, J.; Du, L.; Shao, J.; Liang, H.; Jiang, H. Simultaneous detection of two pesticide residues in tobacco leaves using SiO2@Ag-SERS substrate and portable Raman spectrometer. J. Food Compos. Anal. 2024, 133, 106461. [Google Scholar] [CrossRef]
- Hussain, N.; Li, Y.; Qu, C.; Li, N.; Liu, H. Bimetallic coreshell nanorods with thioglycolic acid monolayer for highly sensitive and rapid SERS detection of thiabendazole and ziram residues in Prunus Persica peaches. Food Chem. 2025, 464, 141688. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Li, Y.; Li, N.; Hussain, A.; Hussain, M.; Su, M.; Liu, H. Facile synthesis of 2-MCE capped silver shell optimized core-shell nanosensor for simultaneous detection of insecticide residues in fruit samples. Food Res. Int. 2025, 207, 116107. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, X.; Fu, J.; Chen, Y.; Jin, S. Flexible Sponge Surface Enhances Raman Scattering (SERS) Substrate with Patterned Superwettability for Ultrasensitive Pesticide Detection. ACS Appl. Nano Mater. 2024, 7, 10852–10859. [Google Scholar] [CrossRef]
- Jiang, X.; Li, K.; Tang, Y.; Wang, X.; Kan, W.; Yang, L.; Zhao, B. A double defects-dominated flexible TiO2 matrix for in-situ SERS sensing of antibiotic residues in aquatic ecosystem (fish & fishpond water) and their on-site degradation in flowing water. Sci. Total Environ. 2024, 921, 171154. [Google Scholar] [CrossRef]
- Li, K.; Jiang, H.; Wang, L.; Wang, R.; Zhang, X.; Yang, L.; Jiang, X.; Song, W.; Zhao, B. A flexible semiconductor SERS substrate by in situ growth of tightly aligned TiO2 for in situ detection of antibiotic residues. Microchim. Acta 2024, 191, 113. [Google Scholar] [CrossRef]
- Peng, X.; Li, D.; Li, Y.; Xing, H.; Deng, W. Plasmonic tunable Ag-coated gold nanorod arrays as reusable SERS substrates for multiplexed antibiotics detection. J. Mater. Chem. B 2021, 9, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; He, S.; Wang, X.; Zhao, B.; Jiang, X.; Yang, L. (001) facet-supported TiO2 facet heterojunction with abundant active sites and high-efficiency carrier separation for ultrasensitive SERS detection of antibiotic residues in foods. Anal. Chim. Acta 2025, 1335, 343470. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, X.; Wang, R.; Zhang, H.; Yang, L.; Jiang, X.; Zhao, B. A TiO2/ZnO (nanoparticle/quantum dot) heterojunction with strong interfacial coupling for ultrasensitive SERS sensing of antibiotic residues in environment (water and soil) and their efficient degradation. J. Environ. Chem. Eng. 2025, 13, 115287. [Google Scholar] [CrossRef]
- Fan, R.; Tang, S.; Luo, S.; Liu, H.; Zhang, W.; Yang, C.; He, L.; Chen, Y. Duplex Surface Enhanced Raman Scattering-Based Lateral Flow Immunosensor for the Low-Level Detection of Antibiotic Residues in Milk. Molecules 2020, 25, 5249. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, S.; Li, H.; Xu, J.; Tang, H.; Wang, Y.; Wang, Y.; Sun, F.; Zhao, X. Ultrasensitive and facile detection of multiple trace antibiotics with magnetic nanoparticles and core-shell nanostar SERS nanotags. Talanta 2022, 237, 122955. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Tao, C.; Kong, D. Multiplex SERS-based lateral flow assay for one-step simultaneous detection of neomycin and lincomycin in milk. Eur. Food Res. Technol. 2022, 248, 2157–2165. [Google Scholar] [CrossRef]
- Liu, E.; Fan, X.; Yang, Z.; Han, L.; Li, S.; Huang, Y.; Liao, K.; Cai, L. Rapid and simultaneous detection of multiple illegal additives in feed and food by SERS with reusable Cu2O-Ag/AF-C3N4 substrate. Spectrochim. Acta A 2022, 276, 121229. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Zhao, L.; Zhu, J.; Zhang, S. Simultaneous detection of trace Hg2+ and Ag+ by SERS aptasensor based on a novel cascade amplification in environmental water. Chem. Eng. J. 2022, 435, 133879. [Google Scholar] [CrossRef]
- Cui, Q.; Shen, J.; Jia, H.; Li, T.; Cao, S.; Dong, S.; Wei, Y.; Zou, L.; Chen, Y.; Wang, Y.; et al. Simultaneous detection of mixed colorants adulterated in black tea based on various morphological SERS sensors. Food Res. Int. 2025, 199, 115364. [Google Scholar] [CrossRef]
- Viriyakitpattana, N.; Rattanabut, C.; Lertvachirapaiboon, C.; Pimalai, D.; Bamrungsap, S. Layer-by-Layer Biopolymer Assembly for the In Situ Fabrication of AuNP Plasmonic Paper—A SERS Substrate for Food Adulteration Detection. ACS Omega 2024, 9, 10099–10109. [Google Scholar] [CrossRef]
- Xu, Y.; Mehedi, H.M.; Selva, S.A.; Huanhuan, L.; Chen, Q. Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Crit. Rev. Food Sci. 2023, 63, 486–504. [Google Scholar] [CrossRef]
- Qiu, J.; Zhong, Y.; Shao, Y.; Zhang, G.; Yang, J.; Li, Z.; Cheng, Y. A dendrimer-based platform integrating surface-enhanced Raman scattering and class-incremental learning for rapidly detecting four pathogenic bacteria. Chem. Eng. J. 2024, 499, 155987. [Google Scholar] [CrossRef]
- Shang, W.; Xin, H.; Hou, X.; Wu, L.; Wu, L. Multifunctional SERS Substrate for Simultaneous Detection of Multiple Contaminants and Photothermal Removal of Pathogenic Bacteria. ACS Appl. Mater. Interfaces 2024, 16, 51679–51689. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Wang, P.; Fan, L.; Shi, Y. Highly sensitive multiplex detection of foodborne pathogens using a SERS immunosensor combined with novel covalent organic frameworks based biologic interference-free Raman tags. Talanta 2022, 243, 123369. [Google Scholar] [CrossRef]
- Li, J.; Shen, W.; Liang, X.; Zheng, S.; Yu, Q.; Wang, C.; Wang, C.; Gu, B. 2D Film-Like Magnetic SERS Tag with Enhanced Capture and Detection Abilities for Immunochromatographic Diagnosis of Multiple Bacteria. Small 2024, 20, 2310014. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Huang, Z.; Ping, T.; Su, H.; Yang, Q.; Wu, W. Dual-mode aptasensors based on AuNPs and Ag@Au NPs for simultaneous detection of foodborne pathogens. LWT 2023, 184, 115007. [Google Scholar] [CrossRef]
- Bai, X.; Shen, A.; Hu, J. A sensitive SERS-based sandwich immunoassay platform for simultaneous multiple detection of foodborne pathogens without interference. Anal. Methods 2020, 12, 4885–4891. [Google Scholar] [CrossRef]
- Huo, B.; Xia, L.; Hu, Y.; Li, G. Flexible microfluidic co-recognition coupled with magnetic enrichment and silent SERS sensing for simultaneous analysis of bacteria in food. Biosens. Bioelectron. 2024, 255, 116227. [Google Scholar] [CrossRef]
- Ma, S.; Wang, M.; You, T.; Wang, K. Using Magnetic Multiwalled Carbon Nanotubes as Modified QuEChERS Adsorbent for Simultaneous Determination of Multiple Mycotoxins in Grains by UPLC-MS/MS. J. Agric. Food Chem. 2019, 67, 8035–8044. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, Y.; Li, M.; Garba, B.; Zhang, Q.; Wang, Y.; Zhang, H.; Li, P. Isolation and characterization of a Bacillus subtilis strain with aflatoxin B1 biodegradation capability. Food Control 2017, 75, 92–98. [Google Scholar] [CrossRef]
- Duan, N.; Chang, B.; Zhang, H.; Wang, Z.; Wu, S. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int. J. Food Microbiol. 2016, 218, 38–43. [Google Scholar] [CrossRef]
- Hassan, M.M.; Zareef, M.; Xu, Y.; Li, H.; Chen, Q. SERS based sensor for mycotoxins detection: Challenges and improvements. Food Chem. 2021, 344, 128652. [Google Scholar] [CrossRef]
- He, P.; Mehedi Hassan, M.; Yang, W.; Shi, Z.; Zhou, X.; Xu, Y.; Ouyang, Q.; Chen, Q. Rapid and stable detection of three main mycotoxins in rice using SERS optimized AgNPs@K30 coupled multivariate calibration. Food Chem. 2023, 398, 133883. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Mahoney, N.E.; Pan, Z.; Khir, R.; Wu, B.; Ma, H.; Zhao, L. Effectiveness of pulsed light treatment for degradation and detoxification of aflatoxin B1 and B2 in rough rice and rice bran. Food Control 2016, 59, 461–467. [Google Scholar] [CrossRef]
- Wu, S.; Liu, L.; Duan, N.; Li, Q.; Zhou, Y.; Wang, Z. Aptamer-Based Lateral Flow Test Strip for Rapid Detection of Zearalenone in Corn Samples. J. Agric. Food Chem. 2018, 66, 1949–1954. [Google Scholar] [CrossRef]
- Luo, L.; Ma, S.; Li, L.; Liu, X.; Zhang, J.; Li, X.; Liu, D.; You, T. Monitoring zearalenone in corn flour utilizing novel self-enhanced electrochemiluminescence aptasensor based on NGQDs-NH2-Ru@SiO2 luminophore. Food Chem. 2019, 292, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Gabbitas, A.; Ahlborn, G.; Allen, K.; Pang, S. Advancing Mycotoxin Detection: Multivariate Rapid Analysis on Corn Using Surface Enhanced Raman Spectroscopy (SERS). Toxins 2023, 15, 610. [Google Scholar] [CrossRef]
- Lai, J.; Ding, L.; Liu, Y.; Fan, C.; You, F.; Wei, J.; Qian, J.; Wang, K. A miniaturized organic photoelectrochemical transistor aptasensor based on nanorod arrays toward high-sensitive T-2 toxin detection in milk samples. Food Chem. 2023, 423, 136285. [Google Scholar] [CrossRef]
- Huang, X.; Xia, L.; Li, G. Gold-grafted melamine sponge as surface-enhanced Raman spectroscopy substrate for enzyme-linked immunoassay of mycotoxins in cereal samples. Microchim. Acta 2024, 191, 758. [Google Scholar] [CrossRef]
- Shen, G.; Cao, Y.; Yin, X.; Dong, F.; Xu, J.; Shi, J.; Lee, Y.-W. Rapid and nondestructive quantification of deoxynivalenol in individual wheat kernels using near-infrared hyperspectral imaging and chemometrics. Food Control 2022, 131, 108420. [Google Scholar] [CrossRef]
- Ge, K.; Hu, Y.; Li, G. Surface initiated encapsulation of MOF-74 (Ni) on magnetic prickly-like nickel rods combined with silver nanoparticle decoration for simultaneous and selective surface-enhanced Raman spectroscopy analysis of T-2 and deoxynivalenol. Sens. Actuators B Chem. 2023, 374, 132842. [Google Scholar] [CrossRef]
- Yin, L.; Cai, J.; Ma, L.; You, T.; Arslan, M.; Jayan, H.; Zou, X.; Gong, Y. Dual function of magnetic nanocomposites-based SERS lateral flow strip for simultaneous detection of aflatoxin B1 and zearalenone. Food Chem. 2024, 446, 138817. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Wang, H.; Sun, C.; Zhao, Y.; He, Y.; Nisar, M.S.; Wei, W.; Kang, H.; Xie, X.; Du, C.; et al. Au@SiO2 SERS nanotags based lateral flow immunoassay for simultaneous detection of aflatoxin B1 and ochratoxin A. Talanta 2023, 258, 124401. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Kang, X.; Su, J.; Qiu, J.; Liu, X.; Xu, J.; Shi, J.; Mohamed, S.R. Rapid detection of fumonisin B1 and B2 in ground corn samples using smartphone-controlled portable near-infrared spectrometry and chemometrics. Food Chem. 2022, 384, 132487. [Google Scholar] [CrossRef]
- Chen, R.; Wu, J.; Wang, H.; Nisar, M.S.; Li, Y.; Chen, Y.; Mao, Y.; Nan, X.; Zhang, F.; Yang, L.; et al. Fe3O4@Au magnetic SERS nanotags-based vertical flow immunoassay for simultaneous detection of fumonisin B1, aflatoxin B1 and deoxnivalenol. Anal. Chim. Acta 2025, 1348, 343837. [Google Scholar] [CrossRef]
- Marimuthu, M.; Xu, K.; Song, W.; Chen, Q.; Wen, H. Safeguarding food safety: Nanomaterials-based fluorescent sensors for pesticide tracing. Food Chem. 2025, 463, 141288. [Google Scholar] [CrossRef]
- Zhou, J.-W.; Zou, X.-M.; Song, S.-H.; Chen, G.-H. Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues. J. Agric. Food Chem. 2018, 66, 1307–1319. [Google Scholar] [CrossRef]
- Xu, Y.; Kutsanedzie, F.Y.H.; Hassan, M.; Zhu, J.; Ahmad, W.; Li, H.; Chen, Q. Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food. Food Chem. 2020, 315, 126300. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Zareef, M.; Jiao, T.; Liu, S.; Xu, Y.; Viswadevarayalu, A.; Li, H.; Chen, Q. Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Food Chem. 2021, 338, 127796. [Google Scholar] [CrossRef]
- Pu, H.; Xie, Y.; Wei, Q.; Sun, D.-W. Anchoring Au on UiO-66 surface with thioglycolic acid for simultaneous SERS detection of paraquat and diquat residues in cabbage. Microchem. J. 2023, 190, 108563. [Google Scholar] [CrossRef]
- Ma, L.; Han, E.; Yin, L.; Xu, Q.; Zou, C.; Bai, J.; Wu, W.; Cai, J. Simultaneous detection of mixed pesticide residues based on portable Raman spectrometer and Au@Ag nanoparticles SERS substrate. Food Control 2023, 153, 109951. [Google Scholar] [CrossRef]
- Wang, T.; Xie, C.; You, Q.; Tian, X.; Xu, X. Qualitative and quantitative analysis of four benzimidazole residues in food by surface-enhanced Raman spectroscopy combined with chemometrics. Food Chem. 2023, 424, 136479. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Ni, L.; Bai, X.; Jiang, H.; Xu, L. Simultaneous analysis of mildew degree and aflatoxin B1 of wheat by a multi-task deep learning strategy based on microwave detection technology. LWT 2023, 184, 115047. [Google Scholar] [CrossRef]
- Hegde, A.; Hajikhani, M.; Snyder, J.; Cheng, J.; Lin, M. Leveraging SERS and Transformer Models for Simultaneous Detection of Multiple Pesticides in Fresh Produce. ACS Appl. Mater. Interfaces 2025, 17, 2018–2031. [Google Scholar] [CrossRef]
- Ma, L.; Yang, X.; Yin, L.; Han, E.; Wang, C.; Zhou, R.; Bai, J.; Wang, Y.; Guo, Z.; Cai, J. Rapid dual-modal detection of two types of pesticides in fruits using SERS-based immunoassay. J. Food Compos. Anal. 2024, 136, 106781. [Google Scholar] [CrossRef]
- Wang, M.; Feng, J.; Ding, J.; Xiao, J.; Liu, D.; Lu, Y.; Liu, Y.; Gao, X. Color- and background-free Raman-encoded lateral flow immunoassay for simultaneous detection of carbendazim and imidacloprid in a single test line. Chem. Eng. J. 2024, 487, 150666. [Google Scholar] [CrossRef]
- Lu, Y.; Tan, Y.; Xiao, Y.; Li, Z.; Sheng, E.; Dai, Z. A silver@gold nanoparticle tetrahedron biosensor for multiple pesticides detection based on surface-enhanced Raman scattering. Talanta 2021, 234, 122585. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, J.; Zhao, X.; Zhao, X.; Wang, S.; Zhang, Y. Synergistic analysis based on chemometrics and deep learning: An innovative Kolmogorov-Arnold neural network (CKAN) model combined with ternary hybrid SERS substrate (Au@mSiO2(YSN)-Fe3O4@MoS3-rGO) for highly sensitive detection of trace quinolone antibiotics in milk. Food Chem. 2025, 491, 145193. [Google Scholar] [CrossRef]
- Sonwal, S.; Alhammadi, M.; Han, S.; Kumar, G.S.; Han, Y.-K.; Oh, M.-H.; Huh, Y.S. Advancements in pretreatment-free portable sensing approaches for antibiotics detection in non-invasive livestock samples: Assessment and requirement of positive list system regulations. Trends Environ. Anal. Chem. 2025, 47, e00272. [Google Scholar] [CrossRef]
- Riswana Barveen, N.; Wang, T.-J.; Chang, Y.-H. Photochemical synthesis of Au nanostars on PMMA films by ethanol action as flexible SERS substrates for in-situ detection of antibiotics on curved surfaces. Chem. Eng. J. 2022, 431, 134240. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, L.; Zhang, Z.; Li, G. Simultaneous and Accurate Quantification of Multiple Antibiotics in Aquatic Samples by Surface-Enhanced Raman Scattering Using a Ti3C2Tx/DNA/Ag Membrane Substrate. Anal. Chem. 2021, 93, 13072–13079. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Sun, N.; Li, J.-P.; Zheng, J.-W.; Wang, Y.-H.; Zhou, X.-S.; Zheng, B. SERS calibration substrate with a silent region internal standard for reliable simultaneous detection of multiple antibiotics in water. Talanta 2025, 283, 127133. [Google Scholar] [CrossRef]
- Yuan, Q.; Wen, X.-R.; Liu, W.; Ma, Z.-W.; Tang, J.-W.; Liu, Q.-H.; Usman, M.; Tang, Y.-R.; Wu, X.; Wang, L. Simultaneous detection and quantification of ciprofloxacin, doxycycline, and levofloxacin in municipal lake water via deep learning analysis of complex Raman spectra. Environ. Technol. Innov. 2025, 37, 103987. [Google Scholar] [CrossRef]
- Shi, S.; Yu, H.; Yang, F.; Yao, W.; Xie, Y. Simultaneous determination of 14 nitroimidazoles using thin-layer chromatography combined with surface-enhanced Raman spectroscopy (TLC-SERS). Food Biosci. 2022, 48, 101755. [Google Scholar] [CrossRef]
- Tang, S.; Li, R.; Huang, S.; Liu, Q.; Chen, X. Sensitive and selective simultaneous detection of ampicillin and chloramphenicol in foods with a SERS-activated molecularly imprinted capillary sensor. Food Chem. 2025, 486, 144618. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Wu, T.; Yu, Q.; Li, J.; Zheng, S.; Qi, K.; Sun, G.; Xiao, R.; Wang, C. Introduction of multilayered magnetic core–dual shell SERS tags into lateral flow immunoassay: A highly stable and sensitive method for the simultaneous detection of multiple veterinary drugs in complex samples. J. Hazard. Mater. 2023, 448, 130912. [Google Scholar] [CrossRef]
- Wu, T.; Li, J.; Zheng, S.; Yu, Q.; Qi, K.; Shao, Y.; Wang, C.; Tu, J.; Xiao, R. Magnetic Nanotag-Based Colorimetric/SERS Dual-Readout Immunochromatography for Ultrasensitive Detection of Clenbuterol Hydrochloride and Ractopamine in Food Samples. Biosensors 2022, 12, 709. [Google Scholar] [CrossRef]
- Ge, K.; Li, Y.; Wu, Q.; Gu, Y. Simultaneous and rapid detection of polychlorinated phenols in water samples by surface-enhanced Raman spectroscopy combined with principal component analysis. Anal. Bioanal. Chem. 2022, 414, 2385–2395. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Lin, H.; Lin, J.; Yao-Say Solomon Adade, S.; Chen, Q.; Xue, Z.; Chan, C. Non-destructive detection of multi-component heavy metals in corn oil using nano-modified colorimetric sensor combined with near-infrared spectroscopy. Food Control 2022, 133, 108640. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, P.; Yosri, N.; Chen, Q.; Elseedi, H.R.; Zou, X.; Yang, H. Detection of Heavy Metals in Food and Agricultural Products by Surface-enhanced Raman Spectroscopy. Food Rev. Int. 2023, 39, 1440–1461. [Google Scholar] [CrossRef]
- Zhang, K.; Kwadzokpui, B.A.; Adade, S.Y.-S.S.; Lin, H.; Chen, Q. Quantitative and qualitative detection of target heavy metals using anti-interference colorimetric sensor Array combined with near-infrared spectroscopy. Food Chem. 2024, 459, 140305. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Bai, W.; Zheng, S.; Wang, Q.; Zhang, L.; Hu, Q.; Liu, Y.; Wang, C.; Wang, S. Fabrication of Raman reporter molecule–embedded magnetic SERS tag for ultrasensitive immunochromatographic monitoring of Cd ions and clenbuterol in complex samples. Colloids Surf. A 2024, 702, 135159. [Google Scholar] [CrossRef]
- Jin, Y.; Li, C.; Huang, Z.; Jiang, L. Simultaneous Quantitative Determination of Low-Concentration Preservatives and Heavy Metals in Tricholoma Matsutakes Based on SERS and FLU Spectral Data Fusion. Foods 2023, 12, 4267. [Google Scholar] [CrossRef]
- Sun, Y.; Li, W.; Zhao, L.; Li, F.; Xie, Y.; Yao, W.; Liu, W.; Lin, Z. Simultaneous SERS detection of illegal food additives rhodamine B and basic orange II based on Au nanorod-incorporated melamine foam. Food Chem. 2021, 357, 129741. [Google Scholar] [CrossRef]
- Li, L.; Cui, Q.; Li, M.; Li, T.; Cao, S.; Dong, S.; Wang, Y.; Dai, Q.; Ning, J. Rapid detection of multiple colorant adulteration in Keemun black tea based on hemp spherical AgNPs-SERS. Food Chem. 2023, 398, 133841. [Google Scholar] [CrossRef]
- Jia, X.; Wang, K.; Li, X.; Liu, Z.; Liu, Y.; Xiao, R.; Wang, S. Highly sensitive detection of three protein toxins via SERS-lateral flow immunoassay based on SiO2@Au nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2022, 41, 102522. [Google Scholar] [CrossRef]
- Duan, N.; Chang, Y.; Lv, W.; Li, C.; Lu, C.; Wang, Z.; Wu, S. Ratiometric SERS aptasensing for simultaneous quantitative detection of histamine and tyramine in fishes. Talanta 2023, 265, 124891. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, S.Q.Y.; Hum, M.; Perumal, J.; Tan, E.Y.; Lee, A.S.G.; Teng, J.; Dinish, U.S.; Olivo, M. Complete characterization of RNA biomarker fingerprints using a multi-modal ATR-FTIR and SERS approach for label-free early breast cancer diagnosis††Electronic supplementary information (ESI) available. RSC Adv. 2024, 14, 3599–3610. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, L.; Miao, X.; Zhang, D.; Xie, Y.; Hu, Y.; Zhang, Z.; Wang, X.; Wu, X.; Liu, Z.; et al. Machine learning assisted dual-modal SERS detection for circulating tumor cells. Biosens. Bioelectron. 2025, 268, 116897. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Zhang, H.; Mu, C.; Sun, K.; Chen, H.; Zhang, Z.; Chen, L. Paper-based SERS chip with adaptive attention neural network for pathogen identification. J. Hazard. Mater. 2025, 494, 138694. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Guan, M.; Yang, Z.; Mi, F.; Wang, Y.; Rao, X. High adsorption separation capacity magnetic MOF-based substrate Fe3O4@ZIF-67@Ag for sensitive and recyclable SERS detection of malachite green in aquaculture. Microchem. J. 2024, 207, 112098. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, X.; Zhou, S.; Zhu, Y.; Chen, J.; Liu, Y.; Ren, X.; Lu, Y.-q.; Xiao, R.; Wang, G. Microsphere lens array embedded microfluidic chip for SERS detection with simultaneous enhancement of sensitivity and stability. Biosens. Bioelectron. 2024, 261, 116505. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Zhou, R.; Yin, L.; Sun, L.; Han, E.; Bai, J.; Cai, J. Simultaneous Detection of Food Contaminants Using Surface-Enhanced Raman Scattering (SERS): A Review. Foods 2025, 14, 2982. https://doi.org/10.3390/foods14172982
Ma L, Zhou R, Yin L, Sun L, Han E, Bai J, Cai J. Simultaneous Detection of Food Contaminants Using Surface-Enhanced Raman Scattering (SERS): A Review. Foods. 2025; 14(17):2982. https://doi.org/10.3390/foods14172982
Chicago/Turabian StyleMa, Lixin, Ruiyun Zhou, Limei Yin, Li Sun, En Han, Junwen Bai, and Jianrong Cai. 2025. "Simultaneous Detection of Food Contaminants Using Surface-Enhanced Raman Scattering (SERS): A Review" Foods 14, no. 17: 2982. https://doi.org/10.3390/foods14172982
APA StyleMa, L., Zhou, R., Yin, L., Sun, L., Han, E., Bai, J., & Cai, J. (2025). Simultaneous Detection of Food Contaminants Using Surface-Enhanced Raman Scattering (SERS): A Review. Foods, 14(17), 2982. https://doi.org/10.3390/foods14172982