Advances in Hyperspectral Imaging Technology for Grain Quality and Safety Detection: A Review
Abstract
1. Introduction
2. Hyperspectral Imaging Technology
2.1. Components of the Hyperspectral Imaging System
2.2. Principles of Hyperspectral Imaging Technology
2.3. Hyperspectral Imaging Acquisition Mode
2.4. Hyperspectral Image Acquisition Approaches
2.5. Basic Hyperspectral Imaging Processing Steps
3. Application of Hyperspectral Imaging in Grain Detection
3.1. Disease Detection
3.1.1. Hyperspectral Imaging in Wheat Disease Detection and Algorithmic Challenges
3.1.2. Hyperspectral Imaging in Maize Disease Detection and Specific Challenges
3.1.3. Emerging Applications in Other Grains: Oats, Barley, and Millet
3.1.4. Hyperspectral Imaging for Contaminant Detection and Disease Severity Quantification
3.1.5. Challenges and Limitations
3.2. Quality Assessment
3.2.1. Variety Identification
3.2.2. Mechanical Damage and Adulteration Detection
3.2.3. Intrinsic Biochemical Changes Monitoring
3.2.4. Challenges and Limitations
3.3. Physicochemical Property Detection
3.3.1. Oil Content Detection
3.3.2. Moisture Content Detection
3.3.3. Comprehensive Monitoring of Grain Quality Indicators
3.3.4. Challenges and Limitations
3.4. Pesticide Residue Detection
3.5. Geographical Origin Assessment
3.5.1. Deep Learning Decodes Geographical Signatures in Grain Hyperspectral Fingerprints
3.5.2. Exploration of Hyperspectral Imaging for Origin Traceability in Special Grains
3.5.3. Machine Learning Integration for Enhanced Geographic Origin Classification of Grains
3.5.4. Challenges and Limitations
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- An, D.; Zhang, L.; Liu, Z.; Liu, J.; Wei, Y. Advances in Infrared Spectroscopy and Hyperspectral Imaging Combined with Artificial Intelligence for the Detection of Cereals Quality. Crit. Rev. Food Sci. Nutr. 2023, 63, 9766–9796. [Google Scholar] [CrossRef]
- Priya, T.S.R.; Manickavasagan, A. Characterising Corn Grain Using Infrared Imaging and Spectroscopic Techniques: A Review. J. Food Meas. Charact. 2021, 15, 3234–3249. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, D.; Hu, X.-J.; Tong, W.-H.; Han, B.-L.; Tian, J.-P.; Luo, H.-B. Application of Hyperspectral Technology in Detection of Agricultural Products and Food: A Review. Food Sci. Nutr. 2020, 8, 5206–5214. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.; Panda, B.K.; Ramirez, W.A.; Jung, H.; Singh, C.B.; Lee, S.-H.; Lee, I. Research Advancements in Optical Imaging and Spectroscopic Techniques for Nondestructive Detection of Mold Infection and Mycotoxins in Cereal Grains and Nuts. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4612–4651. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, C.; Sun, J.; Cao, Y.; Yao, K.; Xu, M. A Deep Learning Method for Predicting Lead Content in Oilseed Rape Leaves Using Fluorescence Hyperspectral Imaging. Food Chem. 2023, 409, 135251. [Google Scholar] [CrossRef]
- Sun, J.; Nirere, A.; Dusabe, K.D.; Zhong, Y.; Adrien, G. Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near-infrared hyperspectral imaging technology and machine learning algorithms. J. Food Sci. 2024, 89, 4403–4418. [Google Scholar] [CrossRef]
- Yao, K.; Sun, J.; Chen, C.; Xu, M.; Zhou, X.; Cao, Y.; Tian, Y. Non-destructive detection of egg qualities based on hyperspectral imaging. J. Food Eng. 2022, 325, 111024. [Google Scholar] [CrossRef]
- Yao, K.; Sun, J.; Cheng, J.; Xu, M.; Chen, C.; Zhou, X.; Dai, C. Development of simplified models for non-destructive hyperspectral imaging monitoring of S-ovalbumin content in eggs during storage. Foods 2022, 11, 2024. [Google Scholar] [CrossRef]
- Tian, X.; Fang, Q.; Zhang, X.; Yu, S.; Dai, C.; Huang, X. Visualization of moisture content, reducing sugars, and chewiness in bread during oral processing based on hyperspectral imaging technology. Foods 2024, 13, 3589. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, Y.; An, T.; Liu, Z.; Jiang, Y.; Li, Y.; Dong, C. Quantitative prediction and visualization of key physical and chemical components in black tea fermentation using hyperspectral imaging. LWT 2021, 141, 110975. [Google Scholar] [CrossRef]
- Sun, J.; Cao, Y.; Zhou, X.; Wu, M.; Sun, Y.; Hu, Y. Detection for lead pollution level of lettuce leaves based on deep belief network combined with hyperspectral image technology. J. Food Saf. 2021, 41, e12866. [Google Scholar] [CrossRef]
- Tang, N.; Sun, J.; Yao, K.; Zhou, X.; Tian, Y.; Cao, Y.; Nirere, A. Identification of Lycium barbarum varieties based on hyperspectral imaging technique and competitive adaptive reweighted sampling-whale optimization algorithm-support vector machine. J. Food Process. Eng. 2021, 44, e13603. [Google Scholar] [CrossRef]
- Yang, F.; Sun, J.; Cheng, J.; Fu, L.; Wang, S.; Xu, M. Detection of starch in minced chicken meat based on hyperspectral imaging technique and transfer learning. J. Food Process. Eng. 2023, 46, e14304. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Tian, X.; Ren, Y.; Bonah, E.; Alenyorege, E.A.; Lv, R.; Dai, C. Combination of spectra and image information of hyperspectral imaging data for fast prediction of lipid oxidation attributes in pork meat. J. Food Process. Eng. 2019, 42, e13225. [Google Scholar] [CrossRef]
- Xu, M.; Sun, J.; Zhou, X.; Tang, N.; Shen, J.; Wu, X. Research on nondestructive identification of grape varieties based on EEMD-DWT and hyperspectral image. J. Food Sci. 2021, 86, 2011–2023. [Google Scholar] [CrossRef]
- Antequera, T.; Caballero, D.; Grassi, S.; Uttaro, B.; Perez-Palacios, T. Evaluation of fresh meat quality by hyperspectral imaging (HSI), nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI): A review. Meat Sci. 2021, 172, 108340. [Google Scholar] [CrossRef]
- Ahmad, H.; Sun, J.; Nirere, A.; Shaheen, N.; Zhou, X.; Yao, K. Classification of tea varieties based on fluorescence hyperspectral image technology and ABC-SVM algorithm. J. Food Process. Preserv. 2021, 45, e15241. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Dai, C. Generalized and hetero two-dimensional correlation analysis of hyperspectral imaging combined with three-dimensional convolutional neural network for evaluating lipid oxidation in pork. Food Control 2023, 153, 109940. [Google Scholar] [CrossRef]
- Li, L.; Xie, S.; Ning, J.; Chen, Q.; Zhang, Z. Evaluating green tea quality based on multisensor data fusion combining hyperspectral imaging and olfactory visualization systems. J. Sci. Food Agric. 2019, 99, 1787–1794. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liu, C.; Zain, M.; Cheng, M.; Huo, Z.; Sun, C. Estimation of rice protein content based on unmanned aerial vehicle hyperspectral imaging. Agronomy 2024, 14, 2479. [Google Scholar] [CrossRef]
- Yao, K.; Sun, J.; Zhou, X.; Nirere, A.; Tian, Y.; Wu, X. Nondestructive detection for egg freshness grade based on hyperspectral imaging technology. J. Food Process. Eng. 2020, 43, e13422. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Xu, M.; Zhou, X. Nondestructive detection of lipid oxidation in frozen pork using hyperspectral imaging technology. J. Food Compos. Anal. 2023, 123, 105497. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Tian, X.; Lv, R.; Dai, C.; Bonah, E.; Chang, X. Evaluation of lipid oxidation and volatile compounds of traditional dry-cured pork belly: The hyperspectral imaging and multi-gas-sensory approaches. J. Food Process. Eng. 2020, 43, e13092. [Google Scholar] [CrossRef]
- Xu, M.; Sun, J.; Yao, K.; Wu, X.; Shen, J.; Cao, Y.; Zhou, X. Nondestructive detection of total soluble solids in grapes using VMD-RC and hyperspectral imaging. J. Food Sci. 2022, 87, 326–338. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Hu, X.; Shi, J.; Tomovic, V. Study on the diffusion and optimization of sucrose in Gaido seak based on finite element analysis and hyperspectral imaging technology. Foods 2024, 13, 249. [Google Scholar] [CrossRef]
- Ding, Y.; Zeng, R.; Jiang, H.; Guan, X.; Jiang, Q.; Song, Z. Classification of tea quality grades based on hyperspectral imaging spatial information and optimization models. J. Food Meas. Charact. 2024, 18, 9098–9112. [Google Scholar] [CrossRef]
- Min, D.; Zhao, J.; Bodner, G.; Ali, M.; Li, F.; Zhang, X.; Rewald, B. Early decay detection in fruit by hyperspectral imaging–Principles and application potential. Food Control 2023, 152, 109830. [Google Scholar] [CrossRef]
- Wang, B.; Sun, J.; Xia, L.; Liu, J.; Wang, Z.; Li, P.; Guo, Y.; Sun, X. The applications of hyperspectral imaging technology for agricultural products quality analysis: A review. Food Rev. Int. 2023, 39, 1043–1062. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Shi, L.; Dai, C. An effective method fusing electronic nose and fluorescence hyperspectral imaging for the detection of pork freshness. Food Biosci. 2024, 59, 103880. [Google Scholar] [CrossRef]
- Delwiche, S.R.; Rodriguez, I.T.; Rausch, S.R.; Graybosch, R.A. Estimating percentages of fusarium-damaged kernels in hard wheat by near-infrared hyperspectral imaging. J. Cereal Sci. 2019, 87, 18–24. [Google Scholar] [CrossRef]
- Song, Y.; Cao, S.; Chu, X.; Zhou, Y.; Xu, Y.; Sun, T.; Zhou, G.; Liu, X. Non-destructive detection of moisture and fatty acid content in rice using hyperspectral imaging and chemometrics. J. Food Compos. Anal. 2023, 121, 105397. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.-W.; Pu, H.; Cheng, J.-H.; Wei, Q. Advanced techniques for hyperspectral imaging in the food industry: Principles and recent applications. Annu. Rev. Food Sci. Technol. 2019, 10, 197–220. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, J.; Zhou, X.; Wu, X.; Lu, B.; Dai, C. Research on apple origin classification based on variable iterative space shrinkage approach with stepwise regression-support vector machine algorithm and visible-near infrared hyperspectral imaging. J. Food Process. Eng. 2020, 43, e13432. [Google Scholar] [CrossRef]
- Femenias, A.; Gatius, F.; Ramos, A.J.; Teixido-Orries, I.; Marin, S. Hyperspectral imaging for the classification of individual cereal kernels according to fungal and mycotoxins contamination: A review. Food Res. Int. 2022, 155, 111102. [Google Scholar] [CrossRef]
- Dai, C.; Sun, J.; Huang, X.; Zhang, X.; Tian, X.; Wang, W.; Sun, J.; Luan, Y. Application of hyperspectral imaging as a nondestructive technology for identifying tomato maturity and quantitatively predicting lycopene content. Foods 2023, 12, 2957. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, J.; Zhou, X.; Yao, K.; Tang, N. Detection of soluble solid content in apples based on hyperspectral technology combined with deep learning algorithm. J. Food Process. Preserv. 2022, 46, e16414. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Hu, X.; Li, Z.; Huang, X.; Liang, J.; Zhang, X.; Zhang, D.; Zou, X.; Shi, J. Quantitative characterization of the diffusion behavior of sucrose in marinated beef by HSI and FEA. Meat Sci. 2023, 195, 109002. [Google Scholar] [CrossRef]
- Xu, F.; Huang, X.; Tian, X.; Yu, S.; Zhang, X.; Zareef, M. Application of hyperspectral imaging and colorimetric sensor array coupled with multivariate analysis for quality detection during salted duck eggs processing. J. Food Process. Eng. 2024, 47, e14589. [Google Scholar] [CrossRef]
- Shao, Y.; Gao, C.; Xuan, G.; Gao, X.; Chen, Y.; Hu, Z. Determination of damaged wheat kernels with hyperspectral imaging analysis. Int. J. Agric. Biol. Eng. 2020, 13, 174–182. [Google Scholar] [CrossRef]
- Wu, X.; Liang, X.; Wang, Y.; Wu, B.; Sun, J. Non-destructive techniques for the analysis and evaluation of meat quality and safety: A review. Foods 2022, 11, 3713. [Google Scholar] [CrossRef]
- Tian, X.-Y.; Aheto, J.H.; Dai, C.; Ren, Y.; Bai, J.-W. Monitoring microstructural changes and moisture distribution of dry-cured pork: A combined confocal laser scanning microscopy and hyperspectral imaging study. J. Sci. Food Agric. 2021, 101, 2727–2735. [Google Scholar] [CrossRef]
- Lu, B.; Sun, J.; Yang, N.; Hang, Y. Fluorescence hyperspectral image technique coupled with HSI method to predict solanine content of potatoes. J. Food Process. Preserv. 2019, 43, e14198. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Tian, X.; Bonah, E.; Ren, Y.; Alenyorege, E.A.; Dai, C. Investigation into crystal size effect on sodium chloride uptake and water activity of pork meat using hyperspectral imaging. J. Food Process. Preserv. 2019, 43, e14197. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Hu, X.; Li, Z.; Huang, X.; Liang, J.; Zhang, X.; Zheng, K.; Zou, X.; Shi, J. Nondestructive discrimination of analogous density foreign matter inside soy protein meat semi-finished products based on transmission hyperspectral imaging. Food Chem. 2023, 411, 135431. [Google Scholar] [CrossRef]
- Shi, L.; Sun, J.; Zhang, B.; Wu, Z.; Jia, Y.; Yao, K.; Zhou, X. Simultaneous detection for storage condition and storage time of yellow peach under different storage conditions using hyperspectral imaging with multi-target characteristic selection and multi-task model. J. Food Compos. Anal. 2024, 135, 106647. [Google Scholar] [CrossRef]
- Nirere, A.; Sun, J.; Atindana, V.A.; Hussain, A.; Zhou, X.; Yao, K. A comparative analysis of hybrid SVM and LS-SVM classification algorithms to identify dried wolfberry fruits quality based on hyperspectral imaging technology. J. Food Process. Preserv. 2022, 46, e16320. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef]
- Tang, N.; Jun, S.; Min, X.; Yao, K.; Yan, C.; Liu, D. Identification of fumigated and dyed Lycium barbarum by hyperspectral imaging technology. J. Food Process. Eng. 2022, 45, e13950. [Google Scholar]
- He, P.; Wu, Y.; Wang, J.; Ren, Y.; Ahmad, W.; Liu, R.; Ouyang, Q.; Jiang, H.; Chen, Q. Detection of mites Tyrophagus putrescentiae and Cheyletus eruditus in flour using hyperspectral imaging system coupled with chemometrics. J. Food Process. Eng. 2020, 43, e13386. [Google Scholar] [CrossRef]
- Zhu, L.; Ma, Q.; Chen, J.; Zhao, G. Current progress on innovative pest detection techniques for stored cereal grains and thereof powders. Food Chem. 2022, 396, 133706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Zhou, Z.; Zhang, Y.; Wang, X. Detection method for tomato leaf mildew based on hyperspectral fusion terahertz technology. Foods 2023, 12, 535. [Google Scholar] [CrossRef]
- Xing, F.; Yao, H.; Liu, Y.; Dai, X.; Brown, R.L.; Bhatnagar, D. Recent developments and applications of hyperspectral imaging for rapid detection of mycotoxins and mycotoxigenic fungi in food products. Crit. Rev. Food Sci. Nutr. 2019, 59, 173–180. [Google Scholar] [CrossRef]
- Cao, Y.; Li, H.; Sun, J.; Zhou, X.; Yao, K.; Nirere, A. Nondestructive determination of the total mold colony count in green tea by hyperspectral imaging technology. J. Food Process. Eng. 2020, 43, e13570. [Google Scholar] [CrossRef]
- Li, J.; Luo, W.; Han, L.; Cai, Z.; Guo, Z. Two-wavelength image detection of early decayed oranges by coupling spectral classification with image processing. J. Food Compos. Anal. 2022, 111, 104642. [Google Scholar] [CrossRef]
- Williams, P.J.; Bezuidenhout, C.; Rose, L.J. Differentiation of maize ear rot pathogens, on growth media, with near infrared hyperspectral imaging. Food Anal. Methods 2019, 12, 1556–1570. [Google Scholar] [CrossRef]
- Lv, Y.; Lv, W.; Han, K.; Tao, W.; Zheng, L.; Weng, S.; Huang, L. Determination of wheat kernels damaged by Fusarium head blight using monochromatic images of effective wavelengths from hyperspectral imaging coupled with an architecture self-search deep network. Food Control 2022, 135, 108819. [Google Scholar] [CrossRef]
- Liang, K.; Ren, Z.; Song, J.; Yuan, R.; Zhang, Q. Wheat FHB resistance assessment using hyperspectral feature band image fusion and deep learning. Int. J. Agric. Biol. Eng. 2024, 17, 240–249. [Google Scholar] [CrossRef]
- Femenias, A.; Llorens-Serentill, E.; Ramos, A.J.; Sanchis, V.; Marin, S. Near-infrared hyperspectral imaging evaluation of Fusarium damage and DON in single wheat kernels. Food Control 2022, 142, 109239. [Google Scholar] [CrossRef]
- Chakraborty, S.K.; Mahanti, N.K.; Mansuri, S.M.; Tripathi, M.K.; Kotwaliwale, N.; Jayas, D.S. Non-destructive classification and prediction of aflatoxin-B1 concentration in maize kernels using Vis-NIR (400–1000 nm) hyperspectral imaging. J. Food Sci. Technol. 2021, 58, 437–450. [Google Scholar] [CrossRef]
- Mansuri, S.M.; Chakraborty, S.K.; Mahanti, N.K.; Pandiselvam, R. Effect of germ orientation during Vis-NIR hyperspectral imaging for the detection of fungal contamination in maize kernel using PLS-DA, ANN and 1D-CNN modelling. Food Control 2022, 139, 109077. [Google Scholar] [CrossRef]
- Teixido-Orries, I.; Molino, F.; Gatius, F.; Sanchis, V.; Marin, S. Near-infrared hyperspectral imaging as a novel approach for T-2 and HT-2 toxins estimation in oat samples. Food Control 2023, 153, 109952. [Google Scholar] [CrossRef]
- Su, W.-H.; Yang, C.; Dong, Y.; Johnson, R.; Page, R.; Szinyei, T.; Hirsch, C.D.; Steffenson, B.J. Hyperspectral imaging and improved feature variable selection for automated determination of deoxynivalenol in various genetic lines of barley kernels for resistance screening. Food Chem. 2021, 343, 128507. [Google Scholar] [CrossRef]
- Nie, S.; Gao, W.; Liu, S.; Li, M.; Li, T.; Ren, J.; Ren, S.; Wang, J. Hyperspectral imaging combined with deep learning models for the prediction of geographical origin and fungal contamination in millet. Front. Sustain. Food Syst. 2024, 8, 1454020. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, Z.; Weng, W.; Yang, D.; Wang, J. An efficient method for the rapid detection of industrial paraffin contamination levels in rice based on hyperspectral imaging. LWT 2022, 171, 114125. [Google Scholar] [CrossRef]
- Femenias, A.; Bainotti, M.B.; Gatius, F.; Ramos, A.J.; Marin, S. Standardization of near infrared hyperspectral imaging for wheat single kernel sorting according to deoxynivalenol level. Food Res. Int. 2021, 139, 109925. [Google Scholar] [CrossRef]
- Kurmi, Y.; Saxena, P.; Kirar, B.S.; Gangwar, S.; Chaurasia, V.; Goel, A. Deep CNN model for crops’ diseases detection using leaf images. Multidimens. Syst. Signal Process. 2022, 33, 981–1000. [Google Scholar] [CrossRef]
- Xue, B.; Tian, L.; Wang, Z.; Wang, X.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. Quantification of rice spikelet rot disease severity at organ scale with proximal imaging spectroscopy. Precis. Agric. 2023, 24, 1049–1071. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, X.; Zhang, C.; Cao, W.; Wang, X.; Fu, S.; Teng, S. Rapid non-destructive identification of selenium-enriched millet based on hyperspectral imaging technology. Czech J. Food Sci. 2022, 40, 445–455. [Google Scholar] [CrossRef]
- Wang, S.; Sun, J.; Fu, L.; Xu, M.; Tang, N.; Cao, Y.; Yao, K.; Jing, J. Identification of red jujube varieties based on hyperspectral imaging technology combined with CARS-IRIV and SSA-SVM. J. Food Process. Eng. 2022, 45, e14137. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Y.; Shi, Y.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; Shi, J. Non-destructive discrimination of homochromatic foreign materials in cut tobacco based on VIS-NIR hyperspectral imaging. J. Sci. Food Agric. 2023, 103, 4545–4552. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, J.; Zhou, X.; Nirere, A.; Wu, X.; Dai, R. Classification detection of saccharin jujube based on hyperspectral imaging technology. J. Food Process. Preserv. 2020, 44, e14591. [Google Scholar] [CrossRef]
- Fu, L.; Sun, J.; Wang, S.; Xu, M.; Yao, K.; Cao, Y.; Tang, N. Identification of maize seed varieties based on stacked sparse autoencoder and near-infrared hyperspectral imaging technology. J. Food Process. Eng. 2022, 45, e14120. [Google Scholar] [CrossRef]
- Bai, Z.; Tian, J.; Hu, X.; Sun, T.; Luo, H.; Huang, D. A back-propagation neural network model using hyperspectral imaging applied to variety nondestructive detection of cereal. J. Food Process. Eng. 2022, 45, e13973. [Google Scholar] [CrossRef]
- Sivakumar, C.; Chaudhry, M.M.A.; Paliwal, J. Classification of pulse flours using near-infrared hyperspectral imaging. LWT 2022, 154, 112799. [Google Scholar] [CrossRef]
- Lei, Y.; Hu, X.; Tian, J.; Zhang, J.; Yan, S.; Xue, Q.; Ma, X.; Chen, M.; Huang, D. Rapid resolution of types and proportions of broken grains using hyperspectral imaging and optimization algorithm. J. Cereal Sci. 2022, 108, 103565. [Google Scholar] [CrossRef]
- Ekramirad, N.; Doyle, L.; Loeb, J.; Santra, D.; Adedeji, A.A. Hyperspectral imaging and machine learning as a nondestructive method for proso millet seed detection and classification. Foods 2024, 13, 1330. [Google Scholar] [CrossRef]
- Zhu, D.; Han, J.; Liu, C.; Zhang, J.; Qi, Y. Vis-NIR and NIR hyperspectral imaging combined with convolutional neural network with attention module for flaxseed varieties identification. J. Food Compos. Anal. 2025, 137, 106880. [Google Scholar] [CrossRef]
- Bu, Y.; Jiang, X.; Tian, J.; Hu, X.; Han, L.; Huang, D.; Luo, H. Rapid nondestructive detecting of sorghum varieties based on hyperspectral imaging and convolutional neural network. J. Sci. Food Agric. 2023, 103, 3970–3983. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Tian, J.; Huang, Y.; He, K.; Liang, Y.; Hu, X.; Xie, L.; Yang, H.; Huang, D. Hyperspectral imaging combined with dual-channel deep learning feature fusion model for fast and non-destructive recognition of brew wheat varieties. J. Food Compos. Anal. 2024, 125, 105785. [Google Scholar] [CrossRef]
- Ozdogan, G.; Gowen, A. Wheat grain classification using hyperspectral imaging: Concatenating Vis-NIR and SWIR data for single and bulk grains. Food Control 2025, 168, 110953. [Google Scholar] [CrossRef]
- Zhu, J.; Li, H.; Rao, Z.; Ji, H. Identification of slightly sprouted wheat kernels using hyperspectral imaging technology and different deep convolutional neural networks. Food Control 2023, 143, 109291. [Google Scholar] [CrossRef]
- Jiang, X.; Bu, Y.; Han, L.; Tian, J.; Hu, X.; Zhang, X.; Huang, D.; Luo, H. Rapid nondestructive detecting of wheat varieties and mixing ratio by combining hyperspectral imaging and ensemble learning. Food Control 2023, 150, 109740. [Google Scholar] [CrossRef]
- Shao, Y.; Xuan, G.; Hu, Z.; Wang, Y. Detection of adulterants and authenticity discrimination for coarse grain flours using NIR hyperspectral imaging. J. Food Process. Eng. 2019, 42, e13265. [Google Scholar] [CrossRef]
- Bai, Z.; Hu, X.; Tian, J.; Chen, P.; Luo, H.; Huang, D. Rapid and nondestructive detection of sorghum adulteration using optimization algorithms and hyperspectral imaging. Food Chem. 2020, 331, 127290. [Google Scholar] [CrossRef]
- Huang, H.; Hu, X.; Tian, J.; Peng, X.; Luo, H.; Huang, D.; Zheng, J.; Wang, H. Rapid and nondestructive determination of sorghum purity combined with deep forest and near-infrared hyperspectral imaging. Food Chem. 2022, 377, 131981. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, H.; Rao, Z.; Ji, H. Non-destructive identification of slightly sprouted wheat kernels using hyperspectral data on both sides of wheat kernels. Biosyst. Eng. 2020, 200, 188–199. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Y.; Zhu, S.; Feng, C.; Zhang, S.; Shi, L.; Sun, T.; Liu, C. Detection of mechanical damage in corn seeds using hyperspectral imaging and the ResNeSt_E deep learning network. Agriculture 2024, 14, 1780. [Google Scholar] [CrossRef]
- Kadam, S.; Pabrekar, S.; Sawardekar, S.; Barage, S. High-throughput and molecular interventions for identification and characterization of rice germplasm. Cereal Res. Commun. 2023, 51, 325–335. [Google Scholar] [CrossRef]
- Nirere, A.; Sun, J.; Kama, R.; Atindana, V.A.; Nikubwimana, F.D.; Dusabe, K.D.; Zhong, Y. Nondestructive detection of adulterated wolfberry (Lycium Chinense) fruits based on hyperspectral imaging technology. J. Food Process. Eng. 2023, 46, e14293. [Google Scholar] [CrossRef]
- Sun, J.; Yang, F.; Cheng, J.; Wang, S.; Fu, L. Nondestructive identification of soybean protein in minced chicken meat based on hyperspectral imaging and VGG16-SVM. J. Food Compos. Anal. 2024, 125, 105713. [Google Scholar] [CrossRef]
- Alvarez, J.; Martinez, E.; Diezma, B. Application of hyperspectral imaging in the assessment of drought and salt stress in magneto-primed triticale seeds. Plants 2021, 10, 835. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.-Y.; Aheto, J.H.; Bai, J.-W.; Dai, C.; Ren, Y.; Chang, X. Quantitative analysis and visualization of moisture and anthocyanins content in purple sweet potato by Vis-NIR hyperspectral imaging. J. Food Process. Preserv. 2021, 45, e15128. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Tian, Y.; Dai, C. A decision fusion method based on hyperspectral imaging and electronic nose techniques for moisture content prediction in frozen-thawed pork. LWT 2022, 165, 113778. [Google Scholar] [CrossRef]
- Zhang, L.; An, D.; Wei, Y.; Liu, J.; Wu, J. Prediction of oil content in single maize kernel based on hyperspectral imaging and attention convolution neural network. Food Chem. 2022, 395, 133563. [Google Scholar] [CrossRef]
- Mendoza, P.T.D.; Armstrong, P.R.; Peiris, K.H.S.; Siliveru, K.; Bean, S.R.; Pordesimo, L.O. Prediction of sorghum oil content using near-infrared hyperspectral imaging. Cereal Chem. 2023, 100, 775–783. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, W. Moisture content detection of maize seed based on visible/near-infrared and near-infrared hyperspectral imaging technology. Int. J. Food Sci. Technol. 2020, 55, 631–640. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, T.; Wang, Z.; Li, S.; Chen, Y. In situ detection of moisture content and gelatinization degree during rice processing using hyperspectral imaging. J. Food Compos. Anal. 2024, 130, 106172. [Google Scholar] [CrossRef]
- Han, L.; Jiang, X.; Zhou, S.; Tian, J.; Hu, X.; Huang, D.; Luo, H. Hyperspectral imaging technology combined with the extreme gradient boosting algorithm (XGBoost) for the rapid analysis of the moisture and acidity contents in fermented grains. J. Am. Soc. Brew. Chem. 2024, 82, 281–293. [Google Scholar] [CrossRef]
- Huang, Y.; Tian, J.; Yang, H.; Hu, X.; Han, L.; Fei, X.; He, K.; Liang, Y.; Xie, L.; Huang, D.; et al. Detection of wheat saccharification power and protein content using stacked models integrated with hyperspectral imaging. J. Sci. Food Agric. 2024, 104, 4145–4156. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Jiang, X.; Lei, Y.; Tian, J.; Hu, X.; Bu, Y.; Huang, D.; Luo, H. The rapid non-destructive detection of the protein and fat contents of sorghum based on hyperspectral imaging. Food Anal. Methods 2023, 16, 1690–1701. [Google Scholar] [CrossRef]
- He, K.; Tian, J.; Hu, X.; Fei, X.; Han, L.; Huang, Y.; Liang, Y.; Xie, L.; Yang, H.; Huang, D. Rapid and non-destructive determination of the protein and fat contents in wheat by hyperspectral imaging combined with AdaBoost-SVR modeling. J. Am. Soc. Brew. Chem. 2024, 82, 335–348. [Google Scholar] [CrossRef]
- Jiang, X.; Tian, J.; Huang, H.; Hu, X.; Han, L.; Huang, D.; Luo, H. Nondestructive visualization and quantification of total acid and reducing sugar contents in fermented grains by combining spectral and color data through hyperspectral imaging. Food Chem. 2022, 386, 132779. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, Y.; He, L.; Hu, X.; Tian, J.; Chen, M.; Huang, D.; Luo, H. The rapid detection of the tannin content of grains based on hyperspectral imaging technology and chemometrics. J. Food Compos. Anal. 2023, 123, 105604. [Google Scholar] [CrossRef]
- Hu, N.; Li, W.; Du, C.; Zhang, Z.; Gao, Y.; Sun, Z.; Yang, L.; Yu, K.; Zhang, Y.; Wang, Z. Predicting micronutrients of wheat using hyperspectral imaging. Food Chem. 2021, 343, 128473. [Google Scholar] [CrossRef]
- Shi, T.; Gao, Y.; Song, J.; Ao, M.; Hu, X.; Yang, W.; Chen, W.; Liu, Y.; Feng, H. Using VIS-NIR hyperspectral imaging and deep learning for non-destructive high-throughput quantification and visualization of nutrients in wheat grains. Food Chem. 2024, 461, 140651. [Google Scholar] [CrossRef]
- Huang, H.; Hu, X.; Tian, J.; Jiang, X.; Sun, T.; Luo, H.; Huang, D. Rapid and nondestructive prediction of amylose and amylopectin contents in sorghum based on hyperspectral imaging. Food Chem. 2021, 359, 129954. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Tian, J.; Hu, X.; Huang, Y.; He, K.; Xie, L.; Yang, H.; Huang, D.; Zhou, Y.; Xia, Y. Rapid determination of starch and alcohol contents in fermented grains by hyperspectral imaging combined with data fusion techniques. J. Food Sci. 2024, 89, 3540–3553. [Google Scholar] [CrossRef] [PubMed]
- Blanch-Perez-del-Notario, C.; Saeys, W.; Lambrechts, A. Fast ingredient quantification in multigrain flour mixes using hyperspectral imaging. Food Control 2020, 118, 107366. [Google Scholar] [CrossRef]
- Zhong, Y.; Sun, J.; Yao, K.; Cheng, J.; Du, X. Detection of rice (with husk) moisture content based on hyperspectral imaging technology combined with MSLPP-ESMA-SVR model. J. Food Saf. 2024, 44, e13112. [Google Scholar] [CrossRef]
- Qiao, M.; Xu, Y.; Xia, G.; Su, Y.; Lu, B.; Gao, X.; Fan, H. Determination of hardness for maize kernels based on hyperspectral imaging. Food Chem. 2022, 366, 130559. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Zhou, X. Nondestructive detection and visualization of protein oxidation degree of frozen-thawed pork using fluorescence hyperspectral imaging. Meat Sci. 2022, 194, 108975. [Google Scholar] [CrossRef]
- Medina-Garcia, M.; Roca-Nasser, E.A.; Martinez-Domingo, M.A.; Valero, E.M.; Arroyo-Cerezo, A.; Cuadros-Rodriguez, L.; Jimenez-Carvelo, A.M. Towards the establishment of a green and sustainable analytical methodology for hyperspectral imaging-based authentication of wholemeal bread. Food Control 2024, 166, 110715. [Google Scholar] [CrossRef]
- Kang, Z.; Zhao, Y.; Chen, L.; Guo, Y.; Mu, Q.; Wang, S. Advances in machine learning and hyperspectral imaging in the food supply chain. Food Eng. Rev. 2022, 14, 596–616. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.; Ma, B.; Yu, G.; Dong, F.; Li, Y.; Xu, Y.; Tan, H. Fusion features of microfluorescence hyperspectral imaging for qualitative detection of pesticide residues in Hami melon. Food Res. Int. 2024, 196, 115010. [Google Scholar] [CrossRef]
- ElMasry, G.; Gou, P.; Al-Rejaie, S. Effectiveness of specularity removal from hyperspectral images on the quality of spectral signatures of food products. J. Food Eng. 2021, 289, 110148. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, J.; Han, L.; Ma, X.; Hu, X.; Lin, T.; He, L.; Yi, X.; Tian, J.; Chen, M. Determination of malathion content in sorghum grains using hyperspectral imaging technology combined with stacked machine learning models. J. Food Compos. Anal. 2024, 135, 106635. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, J.; Lei, Y.; Tian, J.; Peng, J.; Chen, M. Classification of pesticide residues in sorghum based on hyperspectral and gradient boosting decision trees. J. Food Saf. 2024, 44, e13166. [Google Scholar] [CrossRef]
- Quinn, B.; McCarron, P.; Hong, Y.; Birse, N.; Wu, D.; Elliott, C.T.; Ch, R. Elementomics combined with DD-SIMCA and K-NN to identify the geographical origin of rice samples from China, India, and Vietnam. Food Chem. 2022, 386, 132738. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Kim, H.-C.; Moon, K.-D. Geographical origin discriminant analysis of chia seeds (Salvia hispanica L.) using hyperspectral imaging. J. Food Compos. Anal. 2021, 101, 103916. [Google Scholar] [CrossRef]
- Edris, M.; Ghasemi-Varnamkhasti, M.; Kiani, S.; Yazdanpanah, H.; Izadi, Z. Identifying the authenticity and geographical origin of rice by analyzing hyperspectral images using unsupervised clustering algorithms. J. Food Compos. Anal. 2024, 125, 105737. [Google Scholar] [CrossRef]
- Van De Steene, J.; Ruyssinck, J.; Fernandez-Pierna, J.-A.; Vandermeersch, L.; Maes, A.; Van Langenhove, H.; Walgraeve, C.; Demeestere, K.; De Meulenaer, B.; Jacxsens, L.; et al. Fingerprinting methods for origin and variety assessment of rice: Development, validation and data fusion experiments. Food Control 2023, 151, 109780. [Google Scholar] [CrossRef]
Method | Function | Reference | |
---|---|---|---|
Preprocessing | Savitzky–Golay Filtering (SG) | Smoothing and noise reduction via polynomial fitting. | [3,46] |
Derivative Method | Enhance spectral features by calculating 1st/2nd derivatives. | ||
Multiplicative Scatter Correction (MSC) | Correct scattering effects caused by uneven surfaces. | ||
Mean Centering (MC) | Subtract mean spectrum to emphasize variations. | ||
Orthogonal Signal Correction (OSC) | Remove orthogonal noise unrelated to target variables. | ||
Standard Normal Variate (SNV) | Normalize spectra by row-wise scaling. | ||
Feature Selection | Principal Component Analysis (PCA) | Dimensionality reduction by projecting data onto orthogonal axes. | [28,32,47] |
Competitive Adaptive Reweighted Sampling (CARS) | Select optimal wavelengths via adaptive weighting. | ||
Successive Projections Algorithm (SPA) | Minimize wavelength redundancy via vector projection. | ||
Random Frog (RF) | Stochastic wavelength selection based on probability. | ||
Genetic Algorithm (GA) | Evolutionary optimization of wavelength subsets. | ||
Uninformative Variables Elimination (UVE) | Remove non-informative wavelengths via stability analysis. | ||
Support Vector Machine (SVM) | Classify samples via hyperplane optimization. | ||
K-Nearest Neighbor (KNN) | Assign labels based on proximity in feature space. | ||
Artificial Neural Network (ANN) | Non-linear classification via layered neuron networks. | ||
Linear Discriminant Analysis (LDA) | Maximize inter-class variance for separation. | ||
Partial Least Squares-Discriminant Analysis (PLS-DA) | Supervised classification combining PLS and LDA. | ||
Support Vector Regression (SVR) | Predict continuous variables via kernel-based regression. | ||
Stepwise Linear Regression (SLR) | Iteratively select variables for linear modeling. | ||
Partial Least Squares Regression (PLSR) | Relate spectral data to reference values via latent variables. | ||
Multiple Linear Regression (MLR) | Multi-variable linear regression for rapid prediction. |
Grain | Contaminant | Spectral Range | Preprocessing Method | Model Types | Model Accuracy | Reference |
---|---|---|---|---|---|---|
Maize | Maize ear rot pathogens | NIR | PCA | PLS-DA | 93.75% | [55] |
Wheat | FHB | NIR | SNV | PLS-DA | >92% | [30] |
Wheat | FHB | Vis-NIR | ReliefF, SFLA, UVE, RF | ASSDN | 98.31% | [56] |
Wheat | FHB | NIR | MSC, PCA | Faster R-CNN | 99.00% | [57] |
Wheat | DON | NIR | SG, NG, SNV, MSC | ANN | 85.80% | [58] |
Maize | Aflatoxin B1 | Vis-NIR | MSC, SNV, SG | KNN | 98.20% | [59] |
Maize | Fungal contamination | Vis-NIR | SNV, SG | 1D-CNN | >98% | [60] |
Oat | T-2 and HT-2 toxins | NIR | SNV, First derivative | KNN | 94.10% | [61] |
Barley | DON | NIR | CARS, ISSPA | LWPLSR | RP2 = 0. 728 RMSEP = 3.802 | [62] |
Millet | Ergosterol and deoxynivalenol | Vis-NIR | WT | WT-LSTM | R2 > 0.95 RPD > 3.50 | [63] |
Rice | Industrial paraffin contamination | NIR | MSC, SNV, SG | PLSR | R2 = 0. 9338 RMSE = 0.090% | [64] |
Wheat | DON | NIR | SNV | LDA | 100% | [65] |
Grain | Quality Parameter | Spectral Range | Preprocessing Method | Model Types | Model Accuracy | Reference |
---|---|---|---|---|---|---|
Maize seed | Variety identification | NIR | SG, SNV, SSAE | SSAE-CS-SVM | 95.81% | [72] |
Cereal | Variety identification | Vis-NIR | PCA | BPNN | 90% | [73] |
Pulse flours | Variety identification | Vis-NIR | PCA | PLS-DA | 100% | [74] |
Grain | Variety identification | 397–1004.5 nm | DBSCAN, MD, PCA, IVSO, CARS | BPNN | 99.00% | [75] |
Millet | Variety identification | NIR | SG, SVN, PCA | Gradient tree boosting | 99.4% | [76] |
Flaxseed | Variety identification | NIR | SG, PCA, LDA, SPA, CARS | CNN | 95.26% | [77] |
Sorghum | Variety identification | NIR | IF, MSC, CR, OSC | AlexNet | 95.91% | [78] |
Wheat | Variety identification | Vis-NIR | SG, CARS | DLFM | 92.87% | [79] |
Wheat | Variety identification | Vis-NIR, SWIR | SVN, SG, LDA, SVM, ANN | LDA-SVN | 94.93% | [80] |
Wheat | Variety identification | Vis-NIR | Not mentioned | 3D CNN | 98.40% | [81] |
Wheat | Variety identification | Vis-NIR | SG, MSC, CARS | BP | 92.29% | [82] |
Coarse grain flours | Adulteration level | NIR | PCA, SPA, CARS | PLS-DA | >94.8% | [83] |
Sorghum | Adulteration level | NIR | PCA | PLS-DA | 91.00% | [84] |
Sorghum | Adulteration level | NIR | IF, MSC, CARS, SPA | DF | >91% | [85] |
Wheat | Sprouted kernels | Vis-NIR | SG, CARS | DF | 89% | [86] |
Wheat | Mechanical damage | NIR | PCA, SPA | LS-SVM | 100% | [39] |
Corn seeds | Mechanical damage | Vis-NIR | PCA, KPCA, FA | ResNeSt_E | 99.00% | [87] |
Grain | Property | Spectral Range | Preprocessing Method | Model Types | Model Accuracy | Reference |
---|---|---|---|---|---|---|
Maize | Oil content | NIR | SNV, SG, SG1, SG2, SPA, CARS, PCA, CNN | ACNNR | Rp2 = 0.9198 | [94] |
Sorghum | Oil content | NIR | SNV | PLS | SEC = 0.25% SEP = 0.26% | [95] |
Maize seed | Moisture content | NIR | SG | PLSR-UVE | Rp = 0.970 RMSEP = 0.454% | [96] |
Rice | Moisture content | NIR | SG, Second derivative | PLSR | R2 = 0.9673 RMSE = 0.5300 | [97] |
Rice | Moisture content | NIR | CARS, SPA | PLSR | Rp2 = 0.9650 RMSEP = 0.0031 | [31] |
Fatty acid content | RP2 = 0.8573 RMSEP = 1.6956 | |||||
Fermented grains | Moisture content | NIR | SNV, MSC, CARS, SPA | XGBoost | Rp2 = 0.9757 RMSEP = 0.0442 g/100 g | [98] |
Acidity | Rp2 = 0.9941 RMSEP = 0.0216 mmol/10 g | |||||
Rice | Protein content | Vis-NIR | Denoising and sharpening | BPNN | R2 = 0.9516 RMSE = 0.3492 | [20] |
Wheat | Protein content | NIR | MSC, CARS | SEL | Rp2 = 0.9939 RMSEP = 0.0116 g/kg | [99] |
Sorghum | Protein content | NIR | PCA, SPA | BP-GA | RPD = 5.1716 AB_RMSE = 0.0916 g/100 g | [100] |
Fat content | UVE, SPA | CF | RPD = 12.9724 AB_RMSE = 0.0243 g/100 g | |||
Wheat | Protein content | NIR | CARS, SPA | AdaBoost-SVR | Rp2 = 0.9789 | [101] |
Fat content | Rp2 = 0.9651 | |||||
Fermented grains | Total acid | Vis-NIR | MSC, CARS, SPA | CF | Rp2 = 0.9988 RMSEP = 0.0278 mmol/10 g | [102] |
Reducing sugar | SNV, CARS, SPA | PSO-SVR | Rp2 = 0.9987 RMSEP = 0.0287 g/100 g | |||
Grains | Tannin content | NIR | DT, IVSO-VIP | DF | Rp2 = 0.9922 RMSEP = 0.0222 g/100 g | [103] |
Wheat | Micronutrients | Vis-NIR | First derivative, Second derivative, COE, VN, MMN, MSC | PSLR | r2 > 0.70% | [104] |
Wheat | Nutrient | Vis-NIR | SG | SLR | R2 > 0.6 | [105] |
Sorghum | Amylose contents | NIR | MSC, KS, PCA, SPA | CF | 85.33% | [106] |
Amylopectin contents | 92.00% | |||||
Fermented grains | Starch content | Vis-NIR | SNV, CARS, SPA, PCA | SVM-AdaBoost | Rp2 = 0.9976 RMSEP = 0.0992 | [107] |
Alcohol content | XGBoost | Rp2 = 0.9969 RMSEP = 0.0605 | ||||
Multigrain flour mixes | Ingredient quantification | Vis-NIR | PCA | LDA-QDC | >90% | [108] |
Grain | Spectral Range | Preprocessing Method | Model Types | Model Accuracy | Reference |
---|---|---|---|---|---|
Millet | Vis-NIR | WT | WT-ALSTM | 99.40% | [63] |
Chia seeds | Vis-NIR | MSC | PLS-DA | 91.11% | [119] |
Rice | Vis-NIR | MSC, PCA | K-means | Silhouette coefficient of three rice samples were 0.5169, 0.5433 and 0.4964. | [120] |
Rice | Vis-NIR | PCA | GP-LVM | >90% (except Thailand and Vietnam samples) | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Li, Z.; Shi, J.; Zhang, N.; Qin, Z.; Du, L.; Zhai, X.; Shen, T.; Zhang, R.; Zou, X.; et al. Advances in Hyperspectral Imaging Technology for Grain Quality and Safety Detection: A Review. Foods 2025, 14, 2977. https://doi.org/10.3390/foods14172977
Liang Y, Li Z, Shi J, Zhang N, Qin Z, Du L, Zhai X, Shen T, Zhang R, Zou X, et al. Advances in Hyperspectral Imaging Technology for Grain Quality and Safety Detection: A Review. Foods. 2025; 14(17):2977. https://doi.org/10.3390/foods14172977
Chicago/Turabian StyleLiang, Yuting, Zhihua Li, Jiyong Shi, Ning Zhang, Zhou Qin, Liuzi Du, Xiaodong Zhai, Tingting Shen, Roujia Zhang, Xiaobo Zou, and et al. 2025. "Advances in Hyperspectral Imaging Technology for Grain Quality and Safety Detection: A Review" Foods 14, no. 17: 2977. https://doi.org/10.3390/foods14172977
APA StyleLiang, Y., Li, Z., Shi, J., Zhang, N., Qin, Z., Du, L., Zhai, X., Shen, T., Zhang, R., Zou, X., & Huang, X. (2025). Advances in Hyperspectral Imaging Technology for Grain Quality and Safety Detection: A Review. Foods, 14(17), 2977. https://doi.org/10.3390/foods14172977