Comparative Profiling of Volatile Compounds and Fatty Acids in Pomegranate Seed Oil: Soxhlet vs. CO2/IPA Extraction for Quality and Circular Bioeconomy Goals
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Soxhlet Extraction with N-Hexane
2.3. CO2/Isopropanol (IPA) Supercritical Extraction
2.4. Transesterification Procedure
2.5. 1H and 13C-NMR Analysis
2.6. GC-MS and HS-SPME/GC-MS Analyses
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extraction Procedure
3.2. NMR Analysis
3.3. GC-MS Analysis of FAMEs Fraction
3.4. HS-SPME-GC-MS Analysis of VOC Fraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esposito, B.; Sessa, M.R.; Sica, D.; Malandrino, O. Towards circular economy in the agri-food sector. A systematic literature review. Sustainability 2020, 12, 7401. [Google Scholar] [CrossRef]
- He, W.; Guo, X.; Han, J. Management of urban manufacturing byproducts: Food circular economy and safety aspects. CyTA-J. Food 2025, 23, 2477659. [Google Scholar] [CrossRef]
- Nesterov, D.; Barrera-Martínez, I.; Martínez-Sánchez, C.; Sandoval-González, A.; Bustos, E. Approaching the circular economy: Biological, physicochemical, and electrochemical methods to valorize agro-industrial residues, wastewater, and industrial wastes. J. Environ. Chem. Eng. 2024, 12, 113335. [Google Scholar] [CrossRef]
- Altieri, F.; Cairone, F.; Giamogante, F.; Carradori, S.; Locatelli, M.; Chichiarelli, S.; Cesa, S. Influence of ellagitannins extracted by pomegranate fruit on disulfide isomerase PDIA3 activity. Nutrients 2019, 11, 186. [Google Scholar] [CrossRef]
- Fraschetti, C.; Goci, E.; Nicolescu, A.; Cairone, F.; Carradori, S.; Filippi, A.; Cesa, S. Pomegranate fruit cracking during maturation: From waste to valuable fruits. Foods 2023, 12, 1908. [Google Scholar] [CrossRef]
- Cairone, F.; Salvitti, C.; Iazzetti, A.; Fabrizi, G.; Troiani, A.; Pepi, F.; Cesa, S. In-depth chemical characterization of Punica granatum L. seed oil. Foods 2023, 12, 1592. [Google Scholar] [CrossRef]
- Gumus, Z.P.; Argon, Z.U.; Celenk, V.U. Cold pressed pomegranate (Punica granatum) seed oil. In Cold Pressed Oils; Academic Press: Cambridge, MA, USA, 2020; pp. 597–609. [Google Scholar]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Antimicrobial potential of pomegranate peel: A review. Int. J. Food Sci. Technol. 2019, 54, 959–965. [Google Scholar] [CrossRef]
- Melgarejo, P.; Núñez-Gómez, D.; Martínez-Nicolás, J.J.; Giordani, E.; Tozzi, F.; Legua, P. Fatty acids compositional variations between the edible and non-edible fruit part of seven pomegranate varieties. Food Chem. Mol. Sci. 2021, 3, 100046. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.; Barbosa, A.; Advinha, B.; Sales, H.; Pontes, R.; Nunes, J. Green extraction techniques of bioactive compounds: A state-of-the-art review. Processes 2023, 11, 2255. [Google Scholar] [CrossRef]
- Lavenburg, V.M.; Rosentrater, K.A.; Jung, S. Extraction methods of oils and phytochemicals from seeds and their environmental and economic impacts. Processes 2021, 9, 1839. [Google Scholar] [CrossRef]
- Wejnerowska, G.; Ciaciuch, A. Optimisation of oil extraction from quinoa seeds with supercritical carbon dioxide with co-solvents. Czech J. Food Sci. 2018, 36, 81–87. [Google Scholar] [CrossRef]
- Avato, P.; Tava, A. Rare fatty acids and lipids in plant oilseeds: Occurrence and bioactivity. Phytochem. Rev. 2022, 21, 401–428. [Google Scholar] [CrossRef]
- Greco, M.; Spadafora, N.; Shine, M.; Smith, A.; Muto, A.; Muzzalupo, I.; Bitonti, M.B. Identifying volatile and non-volatile organic compounds to discriminate cultivar, growth location, and stage of ripening in olive fruits and oils. J. Sci. Food Agric. 2022, 102, 4500–4513. [Google Scholar] [CrossRef]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R., Jr.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Eid, A.M.; Issa, L.; Arar, K.; Abu‑Zant, A.; Makhloof, M.; Masarweh, Y. Phytochemical screening, antioxidant, anti‑diabetic, and anti‑obesity activities, formulation, and characterization of a self‑nanoemulsion system loaded with pomegranate (Punica granatum) seed oil. Scientific Reports 2024, 14, 18841. [Google Scholar] [CrossRef] [PubMed]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Barreiro, J.; Zaragoza, S.; Diaz-Casas, V. Review of ship energy efficiency. Ocean Eng. 2022, 257, 111594. [Google Scholar] [CrossRef]
- Worrell, E.; Van Berkel, R.; Fengqi, Z.; Menke, C.; Schaeffer, R.; Williams, R.O. Technology transfer of energy efficient technologies in industry: A review of trends and policy issues. Energy Policy 2001, 29, 29–43. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, H.; Fan, L.; Jia, Q.; Zhang, T.; Zhang, X.; Liu, J. A literature review of using supercritical CO2 for geothermal energy extraction: Potential, methods, challenges, and perspectives. Renew. Energy Focus 2024, 51, 100637. [Google Scholar] [CrossRef]
- Natolino, A.; Da Porto, C. Supercritical carbon dioxide extraction of pomegranate (Punica granatum L.) seed oil: Kinet. Model. Solubility evaluation. J. Supercrit. Fluids 2019, 151, 30–39. [Google Scholar] [CrossRef]
- Cao, Y.; Gao, H.L.; Chen, J.N.; Chen, Z.Y.; Yang, L. Identification and characterization of conjugated linolenic acid isomers by Ag+-HPLC and NMR. J. Agric. Food Chem. 2006, 54, 9004–9009. [Google Scholar] [CrossRef] [PubMed]
- Verardo, V.; Garcia-Salas, P.; Baldi, E.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Caboni, M.F. Pomegranate seeds as a source of nutraceutical oil naturally rich in bioactive lipids. Food Res. Int. 2014, 65, 445–452. [Google Scholar] [CrossRef]
- Clews, A.C.; Ulch, B.A.; Jesionowska, M.; Hong, J.; Mullen, R.T.; Xu, Y. Variety of plant oils: Species-specific lipid biosynthesis. Plant Cell Physiol. 2024, 65, 845–862. [Google Scholar] [CrossRef]
- Azadmard-Damirchi, S.; Habibi-Nodeh, F.; Hesari, J.; Nemati, M.; Achachlouei, B.F. Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chem. 2010, 121, 1211–1215. [Google Scholar] [CrossRef]
- Krajciova, D.; Holic, R. The plasma membrane H⁺-ATPase promoter driving the expression of FADX enables highly efficient production of punicic acid in Rhodotorula toruloides cultivated on glucose and crude glycerol. J. Fungi 2024, 10, 649. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, L.; Gao, H.L.; Chen, J.N.; Chen, Z.Y.; Ren, Q.S. Re-characterization of three conjugated linolenic acid isomers by GC–MS and NMR. Chem. Phys. Lipids 2007, 145, 128–133. [Google Scholar] [CrossRef]
- Mietkiewska, E.; Miles, R.; Wickramarathna, A.; Sahibollah, A.F.; Greer, M.S.; Chen, G.; Weselake, R.J. Combined transgenic expression of Punica granatum conjugase (FADX) and FAD 2 desaturase in high linoleic acid Arabidopsis thaliana mutant leads to increased accumulation of punicic acid. Planta 2014, 240, 575–583. [Google Scholar] [CrossRef]
- Hornung, E.; Pernstich, C.; Feussner, I. Formation of conjugated Δ11Δ13-double bonds by Δ12-linoleic acid (1, 4)-acyl-lipid-desaturase in pomegranate seeds. Eur. J. Biochem. 2002, 269, 4852–4859. [Google Scholar] [CrossRef]
- Lv, M.; Zhang, L.; Wang, Y.; Ma, L.; Yang, Y.; Zhou, X.; Li, S. Floral volatile benzenoids/phenylpropanoids: Biosynthetic pathway, regulation and ecological value. Hortic. Res. 2024, 11, uhae220. [Google Scholar] [CrossRef]
- Cao, J.; Zou, X.G.; Deng, L.; Fan, Y.W.; Li, H.; Li, J.; Deng, Z.Y. Analysis of nonpolar lipophilic aldehydes/ketones in oxidized edible oils using HPLC-QqQ-MS for the evaluation of their parent fatty acids. Food Res. Int. 2014, 64, 901–907. [Google Scholar] [CrossRef]
- Kunene, P.N. Method Development and Application: Solid Phase Extraction (SPE), Ultrasonic Extraction (UE) and Soxhlet Extraction (SE) for the Analysis of Pesticides in Water, Soil, Sediment and Sludge; University of KwaZulu-Natal-Pietermaritzburg Campus: Pietermaritzburg, South Africa, 2019. [Google Scholar]
- Francesco, S.; Francesco, A.; Grazia, V.M.; Marina, P.; Gianluca, P. Oxidative Stability of Pomegranate (Punica granatum L.) Seed Oil to Simulated Gastric Conditions and Thermal Stress. J. Agric. Food Chem. 2016, 64, 8369–8378. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Sacks, G.L.; Brenna, J.T. Quantitative analysis of volatiles in edible oils following accelerated oxidation using broad spectrum isotope standards. Food Chem. 2015, 174, 310–318. [Google Scholar] [CrossRef]
- Caliskan, G.; Dirim, S.N. Drying characteristics of pumpkin (Cucurbita moschata) slices in convective and freeze dryer. Heat Mass Transf. 2017, 53, 2129–2141. [Google Scholar] [CrossRef]
- Mat, S.C.; Idroas, M.Y.; Teoh, Y.H.; Hamid, M.F.; Sharudin, H.; Pahmi, M.A.A.H. Optimization of ternary blends among refined palm oil-hexanol-melaleuca cajuputi oil and engine emissions analysis of the blends. Renew. Energy 2022, 196, 451–461. [Google Scholar] [CrossRef]
- Guo, J.; Yan, S.; Jiang, X.; Su, Z.; Zhang, F.; Xie, J.; Yao, C. Advances in pharmacological effects and mechanism of action of cinnamaldehyde. Front. Pharmacol. 2024, 15, 1365949. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo Jimenez, B.A.; Awwad, F.; Desgagné-Penix, I. Cinnamaldehyde in focus: Antimicrobial properties, biosynthetic pathway, and industrial applications. Antibiotics 2024, 13, 1095. [Google Scholar] [CrossRef]
Punicic ac. | α-Eleostearic ac. | Oleic ac. | Linoleic ac. | Catalpic ac. | |
---|---|---|---|---|---|
G1FAME | 85.5 ± 0.1 a | 2.8 ± 0.1 a | 4.5 ± 0.1 a | 5.8 ± 0.1 a | 1.4 ± 0.1 a |
G2FAME | 85.0 ± 0.5 a | 3.0 ± 0.2 a | 6.0 ± 0.5 b | 6.0 ± 0.4 a | nd * |
R1FAME | 82.2 ± 2.2 b | 3.3 ± 0.3 a | 7.6 ± 0.5 c | 6.9 ± 0.2 b | nd * |
R2FAME | 77.5 ± 3.9 c | 4.7 ± 0.7 b | 8.6 ± 1.7 c | 9.2 ± 0.5 c | nd * |
FA Precursor | Area % | |||||
---|---|---|---|---|---|---|
IUPAC | Common | Composition | R1FAME | G1FAME | R2FAME | G2FAME |
Hexadecanoic | palmitic | C16:0 | 1.5 ± 0.1 a | 1.8 ± 0.1 a | 1.6 ± 0.1 a | 2.0 ± 0.1 c |
9-Cis,12-cis-octadecadienoic | linoleic | C18:2 | 2.6 ± 0.2 a | 2.5 ± 0.2 a | 3.2 ± 0.3 b | 2.6 ± 0.2 a |
Cis-9-octadecenoic | oleic | C18:1 | 7.2 ± 0.4 a | 5.0 ± 0.3 b | 8.3 ± 0.5 c | 4.7 ± 0.2 b |
Trans-9-octadecenoic | elaidic | C18:1 | - | 0.3 ± 0.1 a | - | - |
Octadecanoic | stearic | C18:0 | 1.4 ± 0.1 a | 1.3 ± 0.1 a | 1.7 ± 0.1 b | 1.3 ± 0.1 a |
(9Z,11E,13Z)-Octadeca-9,11,13-trienoic | punicic | C18:3 | 81.1 ± 1.5 a | 84.8 ± 0.1 b | 80.3 ± 1.6 a | 84.7 ± 1.1 b |
(9Z,11E,13E)-Octadeca-9,11,13-trienoic | α-eleostearic | C18:3 | 6.2 ± 0.3 b | 4.3 ± 0.2 a | 4.9 ± 0.3 a | 4.7 ± 0.2 a |
Compound | % Area | RI a | RIL b | Class of Compounds | |
---|---|---|---|---|---|
R1 | G1 | ||||
Ethyl cyclohexane | 0.67 | - | 835 | 835 | Cycloalkane |
Ethyl benzene | 1.45 | - | 866 | 864 | Alkylbenzene |
Dimethyl benzene | 10.11 | 0.94 | 874–875 | 872 | Alkylbenzene |
o-Xylene | 2.38 | - | 898 | 891 | Alkylbenzene |
Nonane | 1.89 | 3.69 | 904 | 900 | Alkane |
Propyl cyclohexane | 0.93 | - | 932 | 931 | Cycloalkane |
Trans-octahydro-1H-Indene | 0.65 | - | 957 | 950 | Cycloalkane |
4-Ethyl octane | 5.96 | 0.36 | 960 | 966 | Alkane |
Cis-1-methyl-4-(1-methylethyl)-cyclohexane | 0.94 | - | 977 | 984 | Cycloalkane |
1-Decene | - | 0.44 | 996 | 990 | Alkene |
Mesitylene | 1.43 | 0.51 | 998–999 | 998 | Alkylbenzene |
Decane | 3.59 | 1.25 | 1003–1004 | 1000 | Alkane |
Limonene | - | 1.27 | 1034 | 1030 | Terpene |
Indane | - | 0.59 | 1042 | 1051 | Alkylbenzene |
5-(1-Methylpropyl)-nonane | - | 0.39 | 1055 | - | Alkane |
Trans-decahydro-naphthalene | 2.88 | 1.06 | 1057 | 1062 | Cycloalkane |
Alkane (G1: RI 1062) | 0.95 | 5.29 | 1062 | - | Alkane |
Alkane (R1: RI 1068) | - | 1.19 | 1068 | - | Alkane |
3.3-Dimethyl-hexane | - | 0.55 | 1099 | - | Alkane |
Undecane | 1.34 | 1.14 | 1103–1104 | 1100 | Alkane |
3.7-Dimethyl-decane | 0.96 | 3.10 | 1106 | 1127 | Alkane |
Alkane (G1: RI 1115) | 6.11 | 1.32 | 1115 | - | Alkane |
5-Ethyldecane | 0.62 | 0.39 | 1149 | 1150 | Alkane |
1.2-Dichloro-4-methyl-benzene | 6.15 | 4.76 | 1156 | 1139 | Halobenzene |
1-Dodecene | - | 3.14 | 1196 | 1191 | Alkene |
Dodecane | 0.49 | - | 1203 | 1200 | Alkane |
(2E.4Z)-2.4-Nonadienal | - | 6.51 | 1205 | 1208 | Aldehyde |
(2E.4E)-2.4-Nonadienal | - | 2.92 | 1227 | 1218 | Aldehyde |
Alkane (RI 1284) | 0.43 | 1.78 | 1284 | - | Alkane |
1.1′-Bicyclohexyl | 49.73 | 54.25 | 1309–1310 | 1298 | Cycloalkane |
Alkane (R1: RI 1331) | - | 0.64 | 1331 | - | Alkane |
Unknown | 0.34 | 2.50 | - | - | - |
Compound | % Area | RI a | RIL b | Class of Compounds | |
---|---|---|---|---|---|
R2 | G2 | ||||
Octane | 0.41 | 0.74 | 805 | 800 | Alkane |
2,3-Butandiol | - | 3.49 | 814 | 806 | Alcohol |
Furfural | 1.30 | - | 852 | 845 | Aldehyde |
Ftyrene | 0.31 | 0.18 | 898 | 891 | Alkylbenzene |
2-Butyl-furan | 0.34 | - | 899 | 890 | Heterocycle |
Nonane | 0.35 | 0.28 | 905 | 900 | Alkane |
Ethyl valerate | - | 0.24 | 913 | 888 | Fatty acid ester |
Pentanoic acid | - | 25.83 | 945 | 911 | Fatty acid |
α-Pinene | 1.93 | - | 938 | 933 | Terpene |
Propyl-benzene | 0.65 | 0.86 | 960 | 962 | Alkylbenzene |
1-Ethyl-3-methyl-benzene | 1.74 | 0.89 | 968 | 967 | Alkylbenzene |
1-Ethyl-4-methyl benzene | - | 0.53 | 969 | 968 | Alkylbenzene |
Benzaldehyde | 8.37 | 1.42 | 970/971 | 970 | Aldehyde |
1,2,4-Trimethyl-benzene | - | 1.39 | 975 | 976 | Alkylbenzene |
β-Pinene | 0.67 | - | 981 | 980 | Terpene |
1-Ethyl-2-methyl-benzene | 0.50 | 0.65 | 986 | 985 | Alkylbenzene |
Myrcene | 5.66 | 0.51 | 998 | 991 | Terpene |
Mesitylene | 2.67 | 2.66 | 999 | 994 | Alkylbenzene |
Decane | 0.34 | 0.64 | 1005 | 1000 | Alkane |
1,1-Diethoxy-pentane | - | 1.22 | 1008 | 1016 | Ether |
Caproic acid | - | 3.79 | 1019 | 1026 | Fatty acid |
1,2,3-Trimethyl-benzene | 0.53 | 0.74 | 1029 | 1020 | Alkylbenzene |
p-Cymene | 0.36 | - | 1032 | 1025 | Terpene |
Limonene | 1.66 | - | 1035 | 1030 | Terpene |
2-Formyl-pyrrole | - | 2.81 | 1042 | 1043 | Heterocycle |
Phenylacetaldeide | 2.70 | 1.59 | 1056 | 1045 | Aldehyde |
Acetophenone | 0.69 | - | 1080 | 1068 | Ketone |
Glycerol | - | 16.29 | 1085 | - | Alcohol |
2-Ethyl-1,3-dimethyl-benzene | 0.42 | - | 1092 | - | Alkylbenzene |
Terpinolene | 0.68 | - | 1095 | 1086 | Terpene |
Methylbutyl-2- isovalerate | - | 1.02 | 1107 | 1110 | Fatty acid ester |
2-Hydroxy-ethyl hexanoate | - | 1.23 | 1109 | 1098 | Fatty acid ester |
Nonanal | 0.62 | 0.99 | 1113 | 1102 | Aldehyde |
Thiazole | 2.89 | 1.02 | 1121/1122 | - | Heterocycle |
5-Methyl-6,7-dihydro-5(H)-cyclopentapyrazine | - | 0.71 | 1123 | 1139 | Heterocycle |
Phenethyl alcohol | 2.11 | 3.86 | 1129 | 1113 | Alcohol |
1-Bromo-octane | 0.64 | - | 1149 | - | Haloalkane |
Dehydromevalonic lactone | - | 2.86 | 1184 | - | lactone |
1-Dodecene | 1.93 | 0.99 | 1197 | 1191 | Alkene |
(2E,4Z)-2,4-Nonadienal | 6.57 | 7.12 | 1204 | 1196 | Aldehyde |
(2E,4E)-2,4-Nonadienal | 4.98 | 2.81 | 1225 | 1218 | Aldehyde |
(E)-Cinnamaldehyde | 32.89 | 1.96 | 1286/1287 | 1273 | Aldehyde |
Tridecane | 0.40 | 0.52 | 1305 | 1300 | Alkane |
Tetradecene | 0.74 | 0.32 | 1397/1398 | 1392 | Alkene |
Tetradecane | 0.19 | 0.30 | 1405 | 1400 | Alkane |
E-Cariophyllene | 0.22 | - | 1432 | 1424 | Sesquiterpene |
Pentadecane | - | 0.18 | 1505 | 1500 | Alkane |
β-Bisabolene | - | 0.11 | 1521 | 1511 | Terpene |
2,6-Bis(1,1-dimethylethyl)-4-methyl-phenol | - | 0.13 | 1526 | 1514 | Alcohol |
Hexadecane | - | 0.09 | 1606 | 1600 | Alkane |
Unknown | 13.53 | 7.02 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraschetti, C.; Filippi, A.; Iazzetti, A.; Fabrizi, G.; Cairone, F.; Cesa, S. Comparative Profiling of Volatile Compounds and Fatty Acids in Pomegranate Seed Oil: Soxhlet vs. CO2/IPA Extraction for Quality and Circular Bioeconomy Goals. Foods 2025, 14, 2951. https://doi.org/10.3390/foods14172951
Fraschetti C, Filippi A, Iazzetti A, Fabrizi G, Cairone F, Cesa S. Comparative Profiling of Volatile Compounds and Fatty Acids in Pomegranate Seed Oil: Soxhlet vs. CO2/IPA Extraction for Quality and Circular Bioeconomy Goals. Foods. 2025; 14(17):2951. https://doi.org/10.3390/foods14172951
Chicago/Turabian StyleFraschetti, Caterina, Antonello Filippi, Antonia Iazzetti, Giancarlo Fabrizi, Francesco Cairone, and Stefania Cesa. 2025. "Comparative Profiling of Volatile Compounds and Fatty Acids in Pomegranate Seed Oil: Soxhlet vs. CO2/IPA Extraction for Quality and Circular Bioeconomy Goals" Foods 14, no. 17: 2951. https://doi.org/10.3390/foods14172951
APA StyleFraschetti, C., Filippi, A., Iazzetti, A., Fabrizi, G., Cairone, F., & Cesa, S. (2025). Comparative Profiling of Volatile Compounds and Fatty Acids in Pomegranate Seed Oil: Soxhlet vs. CO2/IPA Extraction for Quality and Circular Bioeconomy Goals. Foods, 14(17), 2951. https://doi.org/10.3390/foods14172951