Comprehensive Evaluation of Nutritional Quality Diversity in Cottonseeds from 259 Upland Cotton Germplasms
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Field Experiment Design
2.2. Sample Pretreatment
2.3. Determination of Cottonseed Protein and Oil
2.4. Determination of Cottonseed Amino Acids
2.5. Determination of Cottonseed Fatty Acids
2.6. Determination of Yield and Fiber Quality Traits of Upland Cotton
2.7. Comprehensive Evaluation of Upland Cotton Quality
2.8. Data Statistical Analysis
3. Results
3.1. Descriptive Analysis of Nutritional Quality of Upland Cotton Seeds
3.2. Analysis of Differences in Nutritional Quality of Cottonseeds Among Different Geographical Sources and Breeding Periods
3.3. Phenotypic Variation in Fiber Quality
3.4. Correlation Analysis of Cottonseed Nutritional Quality and Fiber Traits
3.5. Comprehensive Evaluation of Cotton Germplasm Resources
4. Discussion
4.1. Cottonseed as an Important Source of Protein and Oil
4.2. Wide Variation in Nutritional Quality of Upland Cotton Seeds
4.3. Influence of Breeding Process on Cottonseed Nutritional Quality
4.4. Simultaneous Improvement of Cottonseed Nutritional Quality and Fiber Quality
4.5. Application and Breeding Prospects of Cottonseed Nutritional Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PCA-FMF | Principal Component Analysis–Fuzzy Membership Function |
CV | Coefficient of Variation |
ANOVA | A One-Way Analysis of Variance |
FAMEs | Fatty Acid Methyl Esters |
YZR | Yangtze River Basin |
YER | Yellow River Basin |
NER | Northern Extra-Early-Maturing Cotton Region |
NIR | Northwest Inland Region |
LAN | Landraces |
FOR | Foreign |
Asp | Aspartic Acid |
Thr | Threonine |
Ser | Serine |
Glu | Glutamic Acid |
Gly | Glycine |
Ala | Alanine |
Val | Valine |
Met | Methionine |
Ile | Isoleucine |
Leu | Leucine |
Tyr | Tyrosine |
Phe | Phenylalanine |
Lys | Lysine |
His | Histidine |
Arg | Arginine |
Pro | Proline |
PRO | Protein |
C14:0 | Myristic Acid |
C16:0 | Palmitic Acid |
C16:1 | Palmitoleic Acid |
C18:0 | Stearic Acid |
C18:1 | Oleic Acid |
C18:2 | Linoleic Acid |
C18:3 | α-Linolenic Acid |
C20:0 | Arachidic Acid |
UFA | Unsaturated Fatty Acid |
SFA | Saturated Fatty Acid |
EAA | Essential Amino Acid |
NAA | Non-essential Amino Acid |
BW | Boll Weight |
LP | Lint Percentage |
SI | Seed Index |
FL | Fiber Length |
FU | Fiber Uniformity |
FS | Fiber Strength |
FM | Fiber Micronaire |
FE | Fiber Elongation |
References
- Huang, G.; Huang, J.Q.; Chen, X.Y.; Zhu, Y.X. Recent Advances and Future Perspectives in Cotton Research. Annu. Rev. Plant Biol. 2021, 72, 437–462. [Google Scholar] [CrossRef]
- Cai, Y.; Xie, Y.; Liu, J. Glandless seed and glanded plant research in cotton. A review. Agron. Sustain. Dev. 2010, 30, 181–190. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Li, Y.; Wang, B.; Chee, P.W. Recent advances in cotton genomics. Int. J. Plant Genom. 2008, 2008, 742304. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Z.; Shen, W.; Jia, Y.; He, L.; Si, Z.; Wang, Q.; Fang, L.; Du, X.; Zhang, T. Identification of candidate genes in cotton associated with specific seed traits and their initial functional characterization in Arabidopsis. Plant J. 2022, 112, 800–811. [Google Scholar] [CrossRef]
- Gao, D.; Cao, Y.; Li, H. Antioxidant activity of peptide fractions derived from cottonseed protein hydrolysate. J. Sci. Food Agr. 2010, 90, 1855–1860. [Google Scholar] [CrossRef]
- Abdallh, M.E.; Musigwa, S.; Ahiwe, E.U.; Chang’A, E.P.; Al-Qahtani, M.; Bhuiyan, M.; Iji, P.A. Replacement value of cottonseed meal for soybean meal in broiler chicken diets with or without microbial enzymes. J. Anim. Sci. Technol. 2020, 62, 159–173. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, H.; Xu, P.; Xu, G.; Zhang, L.; Wang, Y.; Ren, M.; Chen, X. Effects of Enzymatic Cottonseed Protein Concentrate as a Feed Protein Source on the Growth, Plasma Parameters, Liver Antioxidant Capacity and Immune Status of Largemouth Bass (Micropterus salmoides). Metabolites 2022, 12, 1233. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Hu, Y.; Li, Z.; Jiao, B.; Ma, X.; Guo, Q.; Wang, Q. Dephenolization Methods, Quality Characteristics, Applications, and Advancements of Dephenolized Cottonseed Protein: Review. Foods 2025, 14, 628. [Google Scholar] [CrossRef] [PubMed]
- Frempong, K.E.B.; He, G.; Kuang, M.; Xue, M.; Wang, J.; Wei, Y.; Zhou, J. Sulfonated cottonseed hydrolysates with adjustable amphiphilicity as environmental -Stress stable emulsifiers. Food Chem. 2024, 454, 139787. [Google Scholar] [CrossRef]
- Riaz, T.; Iqbal, M.W.; Mahmood, S.; Yasmin, I.; Leghari, A.A.; Rehman, A.; Mushtaq, A.; Ali, K.; Azam, M.; Bilal, M. Cottonseed oil: A review of extraction techniques, physicochemical, functional, and nutritional properties. Crit. Rev. Food Sci. 2023, 63, 1219–1237. [Google Scholar] [CrossRef] [PubMed]
- Vonsul, M.-I.; Dhandapani, R.; Webster, D.C. Unlocking the potential of functionalized cottonseed oil for the production of biobased epoxy foams. Ind. Crop Prod. 2024, 222, 119735. [Google Scholar] [CrossRef]
- Wu, M.; Pei, W.; Wedegaertner, T.; Zhang, J.; Yu, J. Genetics, Breeding and Genetic Engineering to Improve Cottonseed Oil and Protein: A Review. Front. Plant Sci. 2023, 13, 864850. [Google Scholar] [CrossRef]
- Hinze, L.L.; Horn, P.J.; Kothari, N.; Dever, J.K.; Frelichowski, J.; Chapman, K.D.; Percy, R.G. Nondestructive Measurements of Cottonseed Nutritional Trait Diversity in the U.S. National Cotton Germplasm Collection. Crop Sci. 2015, 55, 770–782. [Google Scholar] [CrossRef]
- Applequist, W.L.; Cronn, R.; Wendel, J.F. Comparative development of fiber in wild and cultivated cotton. Evol. Dev. 2001, 3, 3–17. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, X.; Wang, L.; Xing, H.; Wang, Q.; Saeed, M.; Tao, J.; Feng, W.; Zhang, G.; Song, X.L.; et al. Genome-Wide Association Study Identifies Candidate Genes Related to Seed Oil Composition and Protein Content in Gossypium hirsutum L. Front. Plant Sci. 2018, 9, 1359. [Google Scholar]
- Hu, W.; Dai, Z.; Yang, J.; Snider, J.L.; Wang, S.; Chen, B.; Zhou, Z. The variability of cottonseed yield under different potassium levels is associated with the changed oil metabolism in embryo. Field Crop Res. 2018, 224, 80–90. [Google Scholar] [CrossRef]
- Han, L.B.; Li, Y.B.; Wang, H.Y.; Wu, X.M.; Li, C.L.; Luo, M.; Wu, S.J.; Kong, Z.S.; Pei, Y.; Jiao, G.L.; et al. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell 2013, 25, 4421–4438. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.T.; Chapman, K.D.; Sturtevant, D.; Kennedy, C.; Horn, P.; Chee, P.W.; Lubbers, E.; Meredith, W.R.; Johnson, J.; Fraser, D.; et al. Genetic Analysis of Cottonseed Protein and Oil in a Diverse Cotton Germplasm. Crop Sci. 2016, 56, 2457–2464. [Google Scholar] [CrossRef]
- Zeng, L.; Campbell, B.T.; Bechere, E.; Dever, J.K.; Zhang, J.; Jones, A.S.; Raper, T.B.; Hague, S.; Smith, W.; Myers, G.O.; et al. Genotypic and environmental effects on cottonseed oil, nitrogen, and gossypol contents in 18 years of regional high quality tests. Euphytica 2015, 206, 815–824. [Google Scholar] [CrossRef]
- Kothari, N.; Campbell, B.T.; Dever, J.K.; Hinze, L.L. Combining Ability and Performance of Cotton Germplasm with Diverse Seed Oil Content. Crop Sci. 2016, 56, 19–29. [Google Scholar] [CrossRef]
- Day, L. Proteins from land plants—Potential resources for human nutrition and food security. Trends Food Sci. Tech. 2013, 32, 25–42. [Google Scholar] [CrossRef]
- Zhuang, T.; Xin, M.; Wang, Q.; Wang, Y.; Saeed, M.; Xing, H.; Zhang, H.; Zhang, Y.; Deng, Y.; Zhang, G.; et al. Determination of protein and fatty acid composition of shell-intact upland cottonseed using near-infrared reflectance spectroscopy. Ind. Crop Prod. 2023, 191, 115909. [Google Scholar] [CrossRef]
- Yuan, W.; Huang, J.; Li, H.; Ma, Y.; Gui, C.; Huang, F.; Feng, X.; Yu, D.; Wang, H.; Kan, G. Genetic dissection reveals the complex architecture of amino acid composition in soybean seeds. Theor. Appl. Genet. 2023, 136, 17. [Google Scholar] [CrossRef]
- ISO 17034:2016; General Requirements for the Competence of Reference Material Producers. International Organization for Standardization: Geneva, Switzerland, 2016.
- Xin, Y.; Ma, J.; Song, J.; Jia, B.; Yang, S.; Wu, L.; Huang, L.; Pei, W.; Wang, L.; Yu, J.; et al. Genome wide association study identifies candidate genes related to fatty acid components in upland cotton (Gossypium hirsutum L.). Ind. Crop Prod. 2022, 183, 114999. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, G.; Wu, Y.; Tang, N.; Huang, L.; Dai, D.; Yuan, X.; Xue, C.; Chen, X. Diversity Analysis and Comprehensive Evaluation of 101 Soybean (Glycine max L.) Germplasms Based on Sprout Quality Characteristics. Foods 2024, 13, 3524. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, J.; Liu, J.; Ren, M.; Li, F. Utilising cottonseed in animal feeding: A dialectical perspective. Mod. Agric. 2023, 1, 112–121. [Google Scholar] [CrossRef]
- Song, W.; Yang, R.; Wu, T.; Wu, C.; Sun, S.; Zhang, S.; Jiang, B.; Tian, S.; Liu, X.; Han, T. Analyzing the Effects of Climate Factors on Soybean Protein, Oil Contents, and Composition by Extensive and High-Density Sampling in China. J. Agr. Food Chem. 2016, 64, 4121–4130. [Google Scholar] [CrossRef]
- Yan, X.; Li, S.; Tu, T.; Li, Y.; Niu, M.; Tong, Y.; Yang, Y.; Xu, T.; Zhao, J.; Shen, C.; et al. Free amino acids identification and process optimization in greengage wine fermentation and flavor formation. J. Food Sci. 2023, 88, 988–1003. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhang, H.; Olk, D.C. Chemical Composition of Defatted Cottonseed and Soy Meal Products. PLoS ONE 2015, 10, e0129933. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qin, D.; Piersanti, A.; Zhang, Q.; Miceli, C.; Wang, P. Genome-wide association study identifies candidate genes related to oleic acid content in soybean seeds. BMC Plant Biol. 2020, 20, 399. [Google Scholar] [CrossRef]
- Fu, Y.; Yao, M.; Qiu, P.; Song, M.; Ni, X.; Niu, E.; Shi, J.; Wang, T.; Zhang, Y.; Yu, H.; et al. Identification of transcription factor BnHDG4-A08 as a novel candidate associated with the accumulation of oleic, linoleic, linolenic, and erucic acid in Brassica napus. Theor. Appl. Genet. 2024, 137, 243. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, X.; Zheng, Y.; Chen, J.; Tan, B.; Shi, L.; Zhang, S. Effects of replacing fish meal with cottonseed protein concentrate on the growth, immune responses, digestive ability and intestinal microbial flora in Litopenaeus vannamei. Fish Shellfish Immun. 2022, 128, 91–100. [Google Scholar] [CrossRef]
- Kumar, M.; Potkule, J.; Patil, S.; Saxena, S.; Patil, P.G.; Mageshwaran, V.; Punia, S.; Varghese, E.; Maha-patra, A.; Ashtaputre, N.; et al. Extraction of ultra-low gossypol protein from cottonseed: Characterization based on antioxidant activity, structural morphology and functional group analysis. LWT 2021, 140, 110692. [Google Scholar] [CrossRef]
- Wang, W.; Li, W.; Wen, Z.; Wang, C.; Liu, W.; Zhang, Y.; Liu, J.; Ding, T.; Shuai, L.; Zhong, G.; et al. Gossypol Broadly Inhibits Coronaviruses by Targeting RNA-Dependent RNA Polymerases. Adv. Sci. 2022, 9, e2203499. [Google Scholar] [CrossRef]
- Liu, Y.; Nazir, M.F.; He, S.; Li, H.; Pan, Z.; Sun, G.; Dai, P.; Wang, L.; Du, X. Deltapine 15 contributes to the genomic architecture of modern upland cotton cultivars. Theor. Appl. Genet. 2022, 135, 1401–1411. [Google Scholar] [CrossRef] [PubMed]
- Quampah, A.; Huang, Z.; Wu, J.G.; Liu, H.; Li, J.R.; Zhu, S.-J.; Shi, C.H. Estimation of Oil Content and Fatty Acid Composition in Cottonseed Kernel Powder Using Near Infrared Reflectance Spectroscopy. J. Am. Chem. Soc. 2012, 89, 567–575. [Google Scholar] [CrossRef]
- Huang, Z.; Daud, M.K.; Jinhong, C.; Qiuling, H.; Sha, S.; Shuijin, Z.; Zhengqin, R. Feasibility study of near infrared spectroscopy with variable selection for non-destructive determination of quality parameters in shell-intact cottonseed. Ind. Crop Prod. 2013, 43, 654–660. [Google Scholar] [CrossRef]
- Gong, J.; Peng, Y.; Yu, J.; Pei, W.; Zhang, Z.; Fan, D.; Liu, L.; Xiao, X.; Liu, R.; Lu, Q.; et al. Linkage and association analyses reveal that hub genes in energy-flow and lipid biosynthesis pathways form a cluster in upland cotton. Comput. Struct. Biotec. 2022, 20, 1841–1859. [Google Scholar] [CrossRef]
- Horn, P.J.; Neogi, P.; Tombokan, X.; Ghosh, S.; Campbell, B.T.; Chapman, K.D. Simultaneous Quantification of Oil and Protein in Cottonseed by Low-Field Time-Domain Nuclear Magnetic Resonance. J. Am. Chem. Soc. 2011, 88, 1521–1529. [Google Scholar] [CrossRef]
- Lee, S.; Van, K.; Sung, M.; Nelson, R.; LaMantia, J.; McHale, L.K.; Mian, M.A.R. Genome-wide association study of seed protein, oil and amino acid contents in soybean from maturity groups I to IV. Theor. Appl. Genet. 2019, 132, 1639–1659. [Google Scholar] [CrossRef]
- Umer, M.J.; Lu, Q.; Huang, L.; Batool, R.; Liu, H.; Li, H.; Wang, R.; Qianxia, Y.; Varshney, R.K.; Pandey, M.K.; et al. Genome-wide association study reveals the genetic basis of amino acids contents variations in Peanut (Arachis hypogaea L.). Physiol. Plant. 2024, 176, e14542. [Google Scholar] [CrossRef]
- Yang, H.; Wang, F.; Li, Y.; Guo, Y.; Tang, X.; Gu, S.; Chen, H.; Pang, C.; Li, Y.; Zhang, J.; et al. Metabolomics analyses provide insights into the nutritional quality profiling in 95 avocado germplasms grown in China. Food Chem. X 2024, 24, 101971. [Google Scholar] [CrossRef]
- Warsame, A.O.; Michael, N.; O’Sullivan, D.M.; Tosi, P. Seed Development and Protein Accumulation Patterns in Faba Bean (Vicia faba L.). J. Agr. Food Chem. 2022, 70, 9295–9304. [Google Scholar] [CrossRef]
- Forde, B.G.; Lea, P.J. Glutamate in plants: Metabolism, regulation, and signalling. J. Exp. Bot. 2007, 58, 2339–2358. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Chen, L.; Wang, Y.; Liu, J.; Xu, G.; Li, T. High Temperature at Grain-filling Stage Affects Nitrogen Metabolism Enzyme Activities in Grains and Grain Nutritional Quality in Rice. Rice Sci. 2011, 18, 210–216. [Google Scholar] [CrossRef]
- Panthee, D.R.; Pantalone, V.R.; Sams, C.E.; Saxton, A.M.; West, D.R.; Orf, J.H.; Killam, A.S. Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds. Theor. Appl. Genet. 2006, 112, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Singh, S.P.; Green, A.G. High-Stearic and High-Oleic Cottonseed Oils Produced by Hairpin RNA-Mediated Post-Transcriptional Gene Silencing. Plant Physiol. 2002, 129, 1732–1743. [Google Scholar] [CrossRef]
- Shockey, J.; Dowd, M.; Mack, B.; Gilbert, M.; Scheffler, B.; Ballard, L.; Frelichowski, J.; Mason, C. Naturally occurring high oleic acid cottonseed oil: Identification and functional analysis of a mutant allele of Gossypium barbadense fatty acid desaturase-2. Planta 2017, 245, 611–622. [Google Scholar] [CrossRef]
- He, S.; Sun, G.; Geng, X.; Gong, W.; Dai, P.; Jia, Y.; Shi, W.; Pan, Z.; Wang, J.; Wang, L.; et al. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat. Genet. 2021, 53, 916–924. [Google Scholar] [CrossRef]
- Li, Y.; Hu, W.; Setter, T.L.; He, J.; Zou, J.; Zhu, H.; Zheng, G.; Zhao, W.; Wang, Y.; Chen, B.; et al. Soil drought decreases oil synthesis and increases protein synthesis in cottonseed kernel during the flowering and boll formation of cotton. Environ. Exp. Bot. 2022, 201, 104964. [Google Scholar] [CrossRef]
- Chapman, K.D.; Neogi, P.B.; Hake, K.D.; Stawska, A.A.; Speed, T.R.; Cotter, M.Q.; Garrett, D.; Kerby, T.A.; Richardson, C.D.; Ayre, B.G.; et al. Reduced Oil Accumulation in Cottonseeds Transformed with a Brassica Nonfunctional Allele of a Delta-12 Fatty Acid Desaturase (FAD2). Crop Sci. 2008, 48, 1470–1481. [Google Scholar] [CrossRef]
- Liu, G.J.; Xiao, G.H.; Liu, N.J.; Liu, D.; Chen, P.S.; Qin, Y.M.; Zhu, Y.X. Targeted Lipidomics Studies Reveal that Linolenic Acid Promotes Cotton Fiber Elongation by Activating Phosphatidylinositol and Phosphatidylinositol Monophosphate Biosynthesis. Mol. Plant. 2015, 8, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, L.; Fan, M.; Weng, S.; Zhou, X.; Zhao, H.; Shen, Y.; Chai, J.; Hou, L.; Hao, M.; et al. Strigolactone promotes cotton fiber cell elongation by de-repressing DWARF53 on linolenic acid biosynthesis. Dev. Cell 2025, 60, 1101–1117. [Google Scholar] [CrossRef]
- Fu, J.; Ren, Y.; Jiang, F.; Wang, L.; Yu, X.; Du, S. Effects of pulsed ultrasonic treatment on the structural and functional properties of cottonseed protein isolate. LWT 2022, 172, 114143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Li, C.; Fu, S.; Wu, Y.; Zhou, D.; Huang, L.; Peng, J.; Kuang, M. Comprehensive Evaluation of Nutritional Quality Diversity in Cottonseeds from 259 Upland Cotton Germplasms. Foods 2025, 14, 2895. https://doi.org/10.3390/foods14162895
Huang Y, Li C, Fu S, Wu Y, Zhou D, Huang L, Peng J, Kuang M. Comprehensive Evaluation of Nutritional Quality Diversity in Cottonseeds from 259 Upland Cotton Germplasms. Foods. 2025; 14(16):2895. https://doi.org/10.3390/foods14162895
Chicago/Turabian StyleHuang, Yiwen, Chengyu Li, Shouyang Fu, Yuzhen Wu, Dayun Zhou, Longyu Huang, Jun Peng, and Meng Kuang. 2025. "Comprehensive Evaluation of Nutritional Quality Diversity in Cottonseeds from 259 Upland Cotton Germplasms" Foods 14, no. 16: 2895. https://doi.org/10.3390/foods14162895
APA StyleHuang, Y., Li, C., Fu, S., Wu, Y., Zhou, D., Huang, L., Peng, J., & Kuang, M. (2025). Comprehensive Evaluation of Nutritional Quality Diversity in Cottonseeds from 259 Upland Cotton Germplasms. Foods, 14(16), 2895. https://doi.org/10.3390/foods14162895