Detection of Organophosphorus, Pyrethroid, and Carbamate Pesticides in Tomato Peels: A Spectroscopic Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Materials and Reagents
2.2. Preparation of the Tomato Peel Samples Treated with Pesticides
2.3. Phytotoxicity Test
2.4. Characterization Techniques
3. Results
3.1. Spectroscopic Characterization of Pesticides
3.1.1. Organophosphorus Pesticides
3.1.2. Pyrethroid Pesticides
3.1.3. Carbamate Pesticides
3.2. Characterization of the Tomato Peel Sample
3.3. Analysis of the Pesticides in Tomato Peel Samples
3.3.1. Organophosphorus Pesticides in Tomato Peel Samples
3.3.2. Pyrethroid Pesticides in Tomato Peel Samples
3.3.3. Carbamate Pesticides in Tomato Peel Samples
3.4. Phytotoxicity of Tomato Under Pesticides Presence
4. Discussion
Pesticide | Type of Pesticide | Group | CAS Number | WHO Class a | LD50 (mg/Kg) | MRL b in Tomato (mg/L) |
---|---|---|---|---|---|---|
Dichlorvos | Organophosphorus | Insecticide | 62-73-7 | Ib | 57–108 | 0.1–0.5 |
Methamidophos | Organophosphorus | Acaricide, insecticide | 10265-92-6 | Ib | 30 | 2 |
Lambda cyhalothrin | Pyrethroid | Insecticide | 91465-08-6 | II | 56 | 0.3 |
Cypermethrin | Pyrethroid | Acaricide, insecticide | 52315-07-8 | II | 250 | 0.2 |
Methomyl | Carbamate | Insecticide | 16752-77-5 | Ib | 17 | 1 |
Benomyl | Carbamate | Fungicide | 17804-35-2 | U | >10,000 | 2.5–5 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FT-IR | Fourier Transform Infrared |
SERS | Surface-enhanced Raman spectroscopy |
MRL | Maximum residue limit |
References
- Salamzadeh, J.; Shakoori, A.; Moradi, V. Occurrence of Multiclass Pesticide Residues in Tomato Samples Collected from Different Markets of Iran. J. Environ. Health Sci. Eng. 2018, 16, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Borguini, R.G.; Ferraz Da Silva Torres, E.A. Tomatoes and Tomato Products as Dietary Sources of Antioxidants. Food Rev. Int. 2009, 25, 313–325. [Google Scholar] [CrossRef]
- Dorais, M.; Ehret, D.L.; Papadopoulos, A.P. Tomato (Solanum lycopersicum) Health Components: From the Seed to the Consumer. Phytochem. Rev. 2008, 7, 231–250. [Google Scholar] [CrossRef]
- FAO. Agricultural Production Statistics 2010–2023; FAO: Rome, Italy, 2024. [Google Scholar]
- de Pinho, G.P.; Neves, A.A.; de Queiroz, M.E.L.R.; Silvério, F.O. Pesticide Determination in Tomatoes by Solid–Liquid Extraction with Purification at Low Temperature and Gas Chromatography. Food Chem. 2010, 121, 251–256. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Pogăcean, M.O.; Rosca, M.; Cozma, P.; Gavrilescu, M. Modelling the Behavior of Pesticide Residues in Tomatoes and Their Associated Long-Term Exposure Risks. J. Environ. Manag. 2019, 233, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Lozowicka, B.; Abzeitova, E.; Sagitov, A.; Kaczynski, P.; Toleubayev, K.; Li, A. Studies of Pesticide Residues in Tomatoes and Cucumbers from Kazakhstan and the Associated Health Risks. Environ. Monit. Assess. 2015, 187, 609. [Google Scholar] [CrossRef] [PubMed]
- Moraes, S.L.; Maria Olímpia Oliveira, R.; Lia Emi, N.; Luchini, L.C. Multiresidue Screening Methods for the Determination of Pesticides in Tomatoes. J. Environ. Sci. Health B 2003, 38, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Wondimu, K.T.; Geletu, A.K. Residue Analysis of Selected Organophosphorus and Organochlorine Pesticides in Commercial Tomato Fruits by Gas Chromatography Mass Spectrometry. Heliyon 2023, 9, e14121. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elhaleem, Z.A. Pesticide Residues in Tomato and Tomato Products Marketed in Majmaah Province, KSA, and Their Impact on Human Health. Environ. Sci. Pollut. Res. 2020, 27, 8526–8534. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- López-Benítez, A.; Guevara-Lara, A.; Domínguez-Crespo, M.A.; Andraca-Adame, J.A.; Torres-Huerta, A.M. Concentrations of Organochlorine, Organophosphorus, and Pyrethroid Pesticides in Rivers Worldwide (2014–2024): A Review. Sustainability 2024, 16, 8066. [Google Scholar] [CrossRef]
- Govindasamy, R.; Ceylan, R.F.; Özkan, B. Global Tomato Production: Price Sensitivity and Policy Impact in Mexico, Türkiye, and the United States. Horticulturae 2025, 11, 84. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Gao, R.; Ye, F.; Zhao, G. Sustainable Valorisation of Tomato Pomace: A Comprehensive Review. Trends Food Sci. Technol. 2019, 86, 172–187. [Google Scholar] [CrossRef]
- Fenik, J.; Tankiewicz, M.; Biziuk, M. Properties and Determination of Pesticides in Fruits and Vegetables. TrAC Trends Anal. Chem. 2011, 30, 814–826. [Google Scholar] [CrossRef]
- Amelin, V.G.; Lavrukhin, D.K.; Tretjakov, A.V.; Efremova, A.A. Determination of Polar Pesticides in Water, Vegetables, and Fruits by High Performance Liquid Chromatography. Mosc. Univ. Chem. Bull. 2012, 67, 275–282. [Google Scholar] [CrossRef]
- Fenoll, J.; Hellín, P.; Martínez, C.M.; Miguel, M.; Flores, P. Multiresidue Method for Analysis of Pesticides in Pepper and Tomato by Gas Chromatography with Nitrogen–Phosphorus Detection. Food Chem. 2007, 105, 711–719. [Google Scholar] [CrossRef]
- Chowdhury, M.A.Z.; Fakhruddin, A.N.M.; Nazrul Islam, M.; Moniruzzaman, M.; Gan, S.H.; Khorshed Alam, M. Detection of the Residues of Nineteen Pesticides in Fresh Vegetable Samples Using Gas Chromatography–Mass Spectrometry. Food Control 2013, 34, 457–465. [Google Scholar] [CrossRef]
- Harshit, D.; Charmy, K.; Nrupesh, P. Organophosphorus Pesticides Determination by Novel HPLC and Spectrophotometric Method. Food Chem. 2017, 230, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Bhardwaj, A. Biosensor Technology for Pesticides—A Review. Appl. Biochem. Biotechnol. 2015, 175, 3093–3119. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Hu, C.; Wang, H.; Zhao, L.; Yang, Z. Development of a MAb-Based Immunoassay for the Simultaneous Determination of O,O-Diethyl and O,O-Dimethyl Organophosphorus Pesticides in Vegetable and Fruit Samples Pretreated with QuEChERS. Anal. Bioanal. Chem. 2015, 407, 8959–8970. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhou, P.; Liu, X.; Sun, X.; Li, H.; Lin, M. Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures. Food Bioprocess Technol. 2013, 6, 710–718. [Google Scholar] [CrossRef]
- Nguyen, T.H.D.; Zhang, Z.; Mustapha, A.; Li, H.; Lin, M. Use of Graphene and Gold Nanorods as Substrates for the Detection of Pesticides by Surface Enhanced Raman Spectroscopy. J. Agric. Food Chem. 2014, 62, 10445–10451. [Google Scholar] [CrossRef] [PubMed]
- Picone, A.L.; Rizzato, M.L.; Lusi, A.R.; Romano, R.M. Stamplike Flexible SERS Substrate for In-Situ Rapid Detection of Thiram Residues in Fruits and Vegetables. Food Chem. 2022, 373, 131570. [Google Scholar] [CrossRef] [PubMed]
- Shende, C.; Gift, A.; Inscore, F.; Maksymiuk, P.; Farquharson, S. Inspection of Pesticide Residues on Food by Surface-Enhanced Raman Spectroscopy. In Monitoring Food Safety, Agriculture, and Plant Health; SPIE: Bellingham, DC, USA, 2004; Volume 5271, pp. 28–34. [Google Scholar]
- Dowgiallo, A.M.; Guenther, D.A. Determination of the Limit of Detection of Multiple Pesticides Utilizing Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy. J. Agric. Food Chem. 2019, 67, 12642–12651. [Google Scholar] [CrossRef] [PubMed]
- Zhai, C.; Peng, Y.; Li, Y.; Chao, K. Extraction and Identification of Mixed Pesticides’ Raman Signal and Establishment of Their Prediction Models. J. Raman Spec. 2017, 48, 494–500. [Google Scholar] [CrossRef]
- Armenta, S.; Quintás, G.; Garrigues, S.; De La Guardia, M. Mid-Infrared and Raman Spectrometry for Quality Control of Pesticide Formulations. TrAC Trends Anal. Chem. 2005, 24, 772–781. [Google Scholar] [CrossRef]
- Yang, T.; Doherty, J.; Guo, H.; Zhao, B.; Clark, J.M.; Xing, B.; Hou, R.; He, L. Real-Time Monitoring of Pesticide Translocation in Tomato Plants by Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2019, 91, 2093–2099. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Sun, Z.; Shi, T.; Pan, D.; Xue, J.; Li, Q.; Hua, R. Influence of Plant Growth Regulating Substances on Transport and Degradation of Acephate and Its Metabolite Methamidophos in Tomato. Int. J. Environ. Anal. Chem. 2017, 97, 345–354. [Google Scholar] [CrossRef]
- Venkatachalapathy, R.; Chandra, A.I.R.; Das, S.; Aafrin, V.B.; Priya, L.U.; Peter, M.J.; Karthikeyan, S.; Sukumar, M. Effective Removal of Organophosphorus Pesticide Residues in Tomatoes Using Natural Extracts. J. Food Process Eng. 2020, 43, e13351. [Google Scholar] [CrossRef]
- Calatayud, A.; Barreno, E. Chlorophyll a Fluorescence, Antioxidant Enzymes and Lipid Peroxidation in Tomato in Response to Ozone and Benomyl. Environ. Pollut. 2001, 115, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Tang, H.; Zou, X.; Meng, G.; Wu, N. Raman Spectroscopy for Food Quality Assurance and Safety Monitoring: A Review. Curr. Opin. Food Sci. 2022, 47, 100910. [Google Scholar] [CrossRef]
- Pilot, R. SERS Detection of Food Contaminants by Means of Portable Raman Instruments. J. Raman Spec. 2018, 49, 954–981. [Google Scholar] [CrossRef]
- Agarwal, U.P. 1064 Nm FT-Raman Spectroscopy for Investigations of Plant Cell Walls and Other Biomass Materials. Front. Plant Sci. 2014, 5, 490. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.W.; Lupoi, J.S.; Smith, E.A. 1064 Nm Dispersive Multichannel Raman Spectroscopy for the Analysis of Plant Lignin. Anal. Chim. Acta 2011, 706, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Wang, L.; Xu, L.; Li, J.; Zhang, X.; Chen, H. Rapid Quantitative Determination of Chlorpyrifos Pesticide Residues in Tomatoes by Surface-Enhanced Raman Spectroscopy. Eur. Food Res. Technol. 2020, 246, 239–251. [Google Scholar] [CrossRef]
- Fedick, P.W.; Bills, B.J.; Manicke, N.E.; Cooks, R.G. Forensic Sampling and Analysis from a Single Substrate: Surface-Enhanced Raman Spectroscopy Followed by Paper Spray Mass Spectrometry. Anal. Chem. 2017, 89, 10973–10979. [Google Scholar] [CrossRef] [PubMed]
- Augustine, S.; Sooraj, K.P.; Pachchigar, V.; Murali Krishna, C.; Ranjan, M. SERS Based Detection of Dichlorvos Pesticide Using Silver Nanoparticles Arrays: Influence of Array Wavelength/Amplitude. Appl. Surf. Sci. 2021, 544, 148878. [Google Scholar] [CrossRef]
- Okafor, C.E.; Onyido, I. Controlled Release Formulations of Organophosphorus Pesticides Based on Ecofriendly Novel and Conventional Matrices for Agro-Environmental Sustainability. Sustain. Chem. Environ. 2024, 7, 100134. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, X.; Mao, H.; Wu, X.; Zhang, X.; Li, Q. Discrimination of Pesticide Residues in Lettuce Based on Chemical Molecular Structure Coupled with Wavelet Transform and near Infrared Hyperspectra. J. Food Process Eng. 2017, 40, e12509. [Google Scholar] [CrossRef]
- Parte, S.; Mohekar, A.; Kharat, A. Aerobic Dichlorvos Degradation by Pseudomonas Stutzeri Smk: Complete Pathway and Implications for Toxicity in Mus Musculus. Iran. J. Microbiol. 2020, 12, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Mukamurezi, G.; Sun, Y.; Wang, H.; Qian, H.; Yao, W. Establishment of Rapid Detection Method of Methamidophos in Vegetables by Surface Enhanced Raman Spectroscopy. Eur. Food Res. Technol. 2012, 234, 1091–1098. [Google Scholar] [CrossRef]
- Fleming, G.D.; Villagrán, J.; Koch, R. IR, Raman and SERS Spectral Analysis and DFT Calculations on the Herbicide O,S-Dimethyl Phosphoramidothioate, Metamidophos. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 114, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, P.A.; Nikolay Nedyalkov, N.; Naoki, F.; Jevasuwan, W. Advanced Silver and Gold Substrates for Surface-Enhanced Raman Spectroscopy of Pesticides. Spectrosc. Lett. 2021, 54, 528–538. [Google Scholar] [CrossRef]
- Pham, T.B.; Hoang, T.H.C.; Pham, V.H.; Nguyen, V.C.; Nguyen, T.V.; Vu, D.C.; Pham, V.H.; Bui, H. Detection of Permethrin Pesticide Using Silver Nano-Dendrites SERS on Optical Fibre Fabricated by Laser-Assisted Photochemical Method. Sci. Rep. 2019, 9, 12590. [Google Scholar] [CrossRef] [PubMed]
- Abouelkassem, S.; el Borady, O.; Mohamed, M. Remarkable Enhancement of Cyhalothrin Upon Loading into Silver Nanoparticles as Larvicidal. Int. J. Comput. Appl. Sci. 2016, 3, 252–263. [Google Scholar]
- Qin, H.; Zhou, X.; Gu, D.; Li, L.; Kan, C. Preparation and Characterization of a Novel Waterborne Lambda-Cyhalothrin/Alkyd Nanoemulsion. J. Agric. Food Chem. 2019, 67, 10587–10594. [Google Scholar] [CrossRef] [PubMed]
- Graily Moradi, F.; Hejazi, M.J.; Hamishehkar, H.; Enayati, A.A. Co-Encapsulation of Imidacloprid and Lambda-Cyhalothrin Using Biocompatible Nanocarriers: Characterization and Application. Ecotoxicol. Environ. Saf. 2019, 175, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Lu, B.; Chen, F.; Yang, F.; Wang, Z. Host–Guest Complex of Cypermethrin with β-Cyclodextrin: A Spectroscopy and Theoretical Investigation. J. Mol. Struct. 2011, 990, 244–252. [Google Scholar] [CrossRef]
- Yao, Q.; You, B.; Zhou, S.; Chen, M.; Wang, Y.; Li, W. Inclusion Complexes of Cypermethrin and Permethrin with Monochlorotriazinyl-Beta-Cyclodextrin: A Combined Spectroscopy, TG/DSC and DFT Study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 117, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Keresztury, G.; Holly, S.; Besenyei, G.; Varga, J.; Wang, A.; Durig, J.R. Vibrational Spectra of Monothiocarbamates-II. IR and Raman Spectra, Vibrational Assignment, Conformational Analysis and Ab Initio Calculations of S-Methyl-N,N-Dimethylthiocarbamate. Spectrochim. Acta A 1993, 49, 2007–2026. [Google Scholar] [CrossRef]
- Parnsubsakul, A.; Ngoensawat, U.; Wutikhun, T.; Sukmanee, T.; Sapcharoenkun, C.; Pienpinijtham, P.; Ekgasit, S. Silver Nanoparticle/Bacterial Nanocellulose Paper Composites for Paste-and-Read SERS Detection of Pesticides on Fruit Surfaces. Carbohydr. Polym. 2020, 235, 115956. [Google Scholar] [CrossRef] [PubMed]
- Larkin, P.J.; Makowski, M.P.; Colthup, N.B.; Flood, L.A. Vibrational Analysis of Some Important Group Frequencies of Melamine Derivatives Containing Methoxymethyl, and Carbamate Substituents: Mechanical Coupling of Substituent Vibrations with Triazine Ring Modes. Vib. Spectrosc. 1998, 17, 53–72. [Google Scholar] [CrossRef]
- Nurhalisa, N.; Arfiati, D.; Andayani, S.; Osa, A.; Nadiro, V.N. Insecticide with the Active Ingredient Methomyl Interferes with the Growth and Survival of the Jatiumbulan Tilapia Strain (Oreochromis niloticus). J. Penelit. Pendidik. IPA 2023, 9, 485–490. [Google Scholar] [CrossRef]
- Mol, G.P.S.; Aruldhas, D.; Hubert Joe, I.; Balachandran, S.; Anuf, A.R.; George, J. Spectroscopic Investigation, Fungicidal Activity and Molecular Dynamics Simulation on Benzimidazol-2-Yl Carbamate Derivatives. J. Mol. Struct. 2019, 1176, 226–237. [Google Scholar] [CrossRef]
- Mallampati, R.; Valiyaveettil, S. Application of Tomato Peel as an Efficient Adsorbent for Water Purification—Alternative Biotechnology? RSC Adv. 2012, 2, 9914–9920. [Google Scholar] [CrossRef]
- Trebolazabala, J.; Maguregui, M.; Morillas, H.; de Diego, A.; Madariaga, J.M. Portable Raman Spectroscopy for an In-Situ Monitoring the Ripening of Tomato (Solanum lycopersicum) Fruits. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 180, 138–143. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, V.E.; Castro, H.V.; Edwards, H.G.M.; de Oliveira, L.F.C. Carotenes and Carotenoids in Natural Biological Samples: A Raman Spectroscopic Analysis. J. Raman Spectrosc. 2010, 41, 642–650. [Google Scholar] [CrossRef]
- Saqib, Q.M.; Khan, M.U.; Song, H.; Chougale, M.Y.; Shaukat, R.A.; Kim, J.; Bae, J.; Choi, M.J.; Kim, S.C.; Kwon, O.; et al. Natural Hierarchically Structured Highly Porous Tomato Peel Based Tribo- and Piezo-Electric Nanogenerator for Efficient Energy Harvesting. Adv. Sustain. Syst. 2021, 5, 2100066. [Google Scholar] [CrossRef]
- Parween, T.; Sumira, J.; Sumira, M.; Tasneem, F.; Siddiqui, Z.H. Selective Effect of Pesticides on Plant—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 160–179. [Google Scholar] [CrossRef] [PubMed]
- Fatma, F.; Verma, S.; Kamal, A.; Srivastava, A. Phytotoxicity of Pesticides Mancozeb and Chlorpyrifos: Correlation with the Antioxidative Defence System in Allium Cepa. Physiol. Mol. Biol. Plants 2018, 24, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Loera-Serna, S.; Beltrán, H.I.; Mendoza-Sánchez, M.; Álvarez-Zeferino, J.C.; Almanza, F.; Fernández-Luqueño, F. Effect of HKUST-1 Metal–Organic Framework in Root and Shoot Systems, as Well as Seed Germination. Environ. Sci. Pollut. Res. 2024, 31, 13270–13283. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Montes, L.F.; Melaj, M.A.; Lorenzo, M.C.; Ribba, L.; García, M.A. Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber. Sustain. Polym. Energy 2024, 2, 1004. [Google Scholar] [CrossRef]
- Obidola, S.M.; Ibrahim, I.I.; Yaroson, A.Y.; Henry, U.I. Phytotoxicity of Cypermethrin Pesticide on Seed Germination, Growth and Yield Parameters of Cowpea (Vigna unguiculata). Asian J. Agric. Hortic. Res. 2019, 3, 1–10. [Google Scholar] [CrossRef]
- Alabi, O.Y.; Adewole, M.M. Essential Oil Extract from Moringa Oleifera Roots as Cowpea Seed Protectant against Cowpea Beetle. Afr. Crop Sci. J. 2017, 25, 71–81. [Google Scholar] [CrossRef]
- Shakir, S.K.; Kanwal, M.; Murad, W.; ur Rehman, Z.; ur Rehman, S.; Daud, M.K.; Azizullah, A. Effect of Some Commonly Used Pesticides on Seed Germination, Biomass Production and Photosynthetic Pigments in Tomato (Lycopersicon esculentum). Ecotoxicology 2016, 25, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, M.J.; Mohamad, S.A.; Ahmed, M.S. The Phytotoxic Effects of Methomyl and Imidacloprid Insecticides on Tomato Local Variety in Al-Hassa, Saudi Arabia. Annu. Res. Rev. Biol. 2014, 4, 4181–4189. [Google Scholar] [CrossRef]
- Stoytcheva, M.; Gochev, V.; Velkova, Z. Electrochemical Biosensors for Direct Determination of Organophosphorus Pesticides: A Review. Curr. Anal. Chem. 2016, 11, 37–42. [Google Scholar] [CrossRef]
- Sharma, D.; Nagpal, A.; Pakade, Y.B.; Katnoria, J.K. Analytical Methods for Estimation of Organophosphorus Pesticide Residues in Fruits and Vegetables: A Review. Talanta 2010, 82, 1077–1089. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Malik, A.; Preety. Bio-Sensing of Organophosphorus Pesticides: A Review. Biosens. Bioelectron. 2019, 140, 111348. [Google Scholar] [CrossRef] [PubMed]
- Sarlak, Z.; Khosravi-Darani, K.; Rouhi, M.; Garavand, F.; Mohammadi, R.; Sobhiyeh, M.R. Bioremediation of Organophosphorus Pesticides in Contaminated Foodstuffs Using Probiotics. Food Control 2021, 126, 108006. [Google Scholar] [CrossRef]
- Okoroiwu, H.U.; Iwara, I.A. Dichlorvos Toxicity: A Public Health Perspective. Interdiscip. Toxicol. 2018, 11, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Kumar, J.; Melo, J.S.; Sandaka, B.P. Progressive Development in Biosensors for Detection of Dichlorvos Pesticide: A Review. J. Environ. Chem. Eng. 2021, 9, 105067. [Google Scholar] [CrossRef]
- World Health Organization. Environmental Health Criteria 79- Dichlorvos; WHO: Geneva, Switzerland, 1989. [Google Scholar]
- Koutros, S.; Mahajan, R.; Zheng, T.; Hoppin, J.A.; Ma, X.; Lynch, C.F.; Blair, A.; Alavanja, M.C.R. Dichlorvos Exposure and Human Cancer Risk: Results from the Agricultural Health Study. Cancer Causes Control 2008, 19, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Pang, S.; Zhang, W.; Mishra, S.; Bhatt, P.; Chen, S. Degradation of Acephate and Its Intermediate Methamidophos: Mechanisms and Biochemical Pathways. Front. Microbiol. 2020, 11, 2045. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Zhou, S.; Xu, C.; Liu, W. Enantiomeric Resolution and Biotoxicity of Methamidophos. J. Agric. Food Chem. 2006, 54, 8134–8138. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-L.; Jou-Fang, D.; Wei-Jen, T.; Jiin, G.; Sue-Sun, W.; and Li, H.-P. Food Poisoning Due to Methamidophos-Contaminated Vegetables. J. Toxicol. Clin. Toxicol. 2001, 39, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Wongsa, N.; Burakham, R. A Simple Solid-Phase Extraction Coupled to High-Performance Liquid Chromatography–UV Detection for Quantification of Pyrethroid Residues in Fruits and Vegetables. Food Anal. Methods 2012, 5, 849–855. [Google Scholar] [CrossRef]
- Gajendiran, A.; Abraham, J. An Overview of Pyrethroid Insecticides. Front. Biol. 2018, 13, 79–90. [Google Scholar] [CrossRef]
- Anadón, A.; Martínez, M.; Martínez, M.A.; Díaz, M.J.; Martínez-Larrañaga, M.R. Toxicokinetics of Lambda-Cyhalothrin in Rats. Toxicol. Lett. 2006, 165, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yu, Y.; Ling, M.; Ares, I.; Martínez, M.; Lopez-Torres, B.; Maximiliano, J.E.; Martínez-Larrañaga, M.R.; Wang, X.; Anadón, A.; et al. Oxidative Stress and Mitochondrial Damage in Lambda-Cyhalothrin Toxicity: A Comprehensive Review of Antioxidant Mechanisms. Environ. Pollut. 2023, 338, 122694. [Google Scholar] [CrossRef] [PubMed]
- Jurisic, A.D.; Petrovic, A.P.; Rajkovic, D.V.; Nicin, S.D. The Application of Lambda-Cyhalothrin in Tick Control. Exp. Appl. Acarol. 2010, 52, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Zuberi, A.; Alagawany, M.; Farag, M.R.; Dadar, M.; Karthik, K.; Tiwari, R.; Dhama, K.; Iqbal, H.M.N. Cypermethrin Induced Toxicities in Fish and Adverse Health Outcomes: Its Prevention and Control Measure Adaptation. J. Environ. Manag. 2018, 206, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, M.A.; El Zorba, H.Y.; Ziada, R.M. Reproductive Toxicity of Methomyl Insecticide in Male Rats and Protective Effect of Folic Acid. Food Chem. Toxicol. 2010, 48, 3221–3226. [Google Scholar] [CrossRef] [PubMed]
- Mdeni, N.L.; Adeniji, A.O.; Okoh, A.I.; Okoh, O.O. Analytical Evaluation of Carbamate and Organophosphate Pesticides in Human and Environmental Matrices: A Review. Molecules 2022, 27, 618. [Google Scholar] [CrossRef] [PubMed]
- Rao, T.N.; Sarada, B.V.; Terashima, C.; Fujishima, A. Electrochemical Detection of Carbamate Pesticides at Conductive Diamond Electrodes. Anal. Chem. 2002, 74, 1578–1583. [Google Scholar] [CrossRef] [PubMed]
- Dhouib, I.; Jallouli, M.; Annabi, A.; Marzouki, S.; Gharbi, N.; Elfazaa, S.; Lasram, M.M. From Immunotoxicity to Carcinogenicity: The Effects of Carbamate Pesticides on the Immune System. Environ. Sci. Pollut. Res. 2016, 23, 9448–9458. [Google Scholar] [CrossRef] [PubMed]
- Van Scoy, A.R.; Yue, M.; Deng, X.; Tjeerdema, R.S. Environmental Fate and Toxicology of Methomyl. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2013; pp. 93–109. ISBN 978-1-4614-4717-7. [Google Scholar]
- Guanggang, X.; Diqiu, L.; Jianzhong, Y.; Jingmin, G.; Huifeng, Z.; Mingan, S.; Liming, T. Carbamate Insecticide Methomyl Confers Cytotoxicity through DNA Damage Induction. Food Chem. Toxicol. 2013, 53, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, M.; Qourzal, S.; Assabbane, A.; Chovelon, J.-M.; Ferronato, C.; Ait-Ichou, Y. Photocatalytic Degradation of Pesticide Methomyl: Determination of the Reaction Pathway and Identification of Intermediate Products. Photochem. Photobiol. Sci. 2006, 5, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Rasolonjatovo, M.A.; Cemek, M.; Cengiz, M.F.; Ortaç, D.; Konuk, H.B.; Karaman, E. Reduction of Methomyl and Acetamiprid Residues from Tomatoes after Various Household Washing Solutions. Int. J. Food Prop. 2017, 20, 2748–2759. [Google Scholar] [CrossRef]
- Nottingham, L.B.; Kuhar, T.P. Ambient Moisture Causes Methomyl Residues on Corn Plants to Rapidly Lose Toxicity to the Pest Slug, Arion Subfuscus, Müller (Gastropoda, Stylommatophora). Crop Prot. 2021, 147, 105709. [Google Scholar] [CrossRef]
- Kara, M.; Oztas, E.; Ramazanoğulları, R.; Kouretas, D.; Nepka, C.; Tsatsakis, A.M.; Veskoukis, A.S. Benomyl, a Benzimidazole Fungicide, Induces Oxidative Stress and Apoptosis in Neural Cells. Toxicol. Rep. 2020, 7, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.K.; Edwards, C.A.; Subler, S. A Microcosm Approach for Evaluating the Effects of the Fungicides Benomyl and Captan on Soil Ecological Processes and Plant Growth. Appl. Soil Ecol. 2001, 18, 69–82. [Google Scholar] [CrossRef]
- Al-Ebaisat, H. Determination of Some Benzimidazole Fungicides in Tomato Puree by High Performance Liquid Chromatography with SampliQ Polymer SCX Solid Phase Extraction. Arab. J. Chem. 2011, 4, 115–117. [Google Scholar] [CrossRef]
- Suwalsky, M.; Benites, M.; Norris, B.; Sotomayor, P. Toxic Effects of the Fungicide Benomyl on Cell Membranes. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 2000, 125, 111–119. [Google Scholar] [CrossRef] [PubMed]
- WHO (Ed.) The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification, 2019 Edition, 2019th ed.; WHO: Geneva, Switzerland, 2020; Volume 1. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). Acephate/Methamidophos. Separation of Tolerances in Acephate Registration Standard; FAO: Washington, DC, USA, 1989. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). JMPR Report and Evaluations of Pesticide Residues in Food-Benomyl (069); FAO: Rome, Italy, 1993. [Google Scholar]
- Thai Agricultural Standard (TAS 9002-2013)—Pesticide Residues: Maximum Residue Limits. Pesticide Residues: Maximum Residue Limits; National Bureau of Agricultural Commodity and Food Standards: Bangkok, Thailand, 2014; Volume 131.
- Heshmati, A.; Nazemi, F. Dichlorvos (DDVP) Residue Removal from Tomato by Washing with Tap and Ozone Water, a Commercial Detergent Solution and Ultrasonic Cleaner. Food Sci. Technol. 2017, 38, 441–446. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, P.; Wang, Q.; Du, L.; Yang, X.; Guo, X.; Yu, J. Detection and Classification of Lambda-Cyhalothrin and Iprodione Residues in Tobacco Leaves by SERS Combined with Supervised Machine Learning. Microchem. J. 2025, 214, 113959. [Google Scholar] [CrossRef]
- Sitjar, J.; Hou, Y.-C.; Liao, J.-D.; Lee, H.; Xu, H.-Z.; Fu, W.-E.; Chen, G.D. Surface Imprinted Layer of Cypermethrin upon Au Nanoparticle as a Specific and Selective Coating for the Detection of Template Pesticide Molecules. Coatings 2020, 10, 751. [Google Scholar] [CrossRef]
- Wang, T.; Xie, C.; You, Q.; Tian, X.; Xu, X. Qualitative and Quantitative Analysis of Four Benzimidazole Residues in Food by Surface-Enhanced Raman Spectroscopy Combined with Chemometrics. Food Chem. 2023, 424, 136479. [Google Scholar] [CrossRef] [PubMed]
Raman | FT-IR | |||
---|---|---|---|---|
Pesticide | Raman Shift (cm−1) | Assignment | Wavenumber (cm−1) | Assignment |
Dichlorvos | 656 | ν(C-Cl) | ||
767 | ν(P-O) | 768 | νs(P-O-C) | |
852 | νIP(P-O-C) | 854 | νIP(P-O-C) | |
995 | νOOP(P-O-C) | 980 | ν(P-O-C) | |
1035 | νas(P-O-C) | |||
1148 | ν(C-O) | |||
1309 | ν(P=O) | 1283 | ν(P=O) | |
1467 | β(CH3) | 1457 | β(CH3) | |
1649 | ν(C=C) | 1651 | ν(C=C) | |
2859–2958 | ν(C-H) of vinyl group | |||
Methamidophos | 398 | τ(N-H) | ||
563 | ω(N-H) | |||
700 | ν(C-S) | |||
776 | ν(P-O), ω(N-H) | 768 | ν(P-O) | |
941 | ν(C-O) + ν(P-O) | 937 | ν(C-O) + ν(P-O) | |
1060 | rip(CH3) | 1024 | rip(CH3) | |
1222 | ν(PO2) | 1208 | ν(PO2) | |
1450 | β(CH3) | 1437 | β(CH3) | |
1568 | δ(NH2) | |||
2951, 3106 | ν(CH3) | |||
3237 | ν(NH2) | |||
Lambda-cyhalothrin | 764 | γip of benzene ring | ||
1004 | Breathing of benzene ring | |||
1294 | ν(C-O) | 1079 | ν(C-O) | |
1459 | δ(C-H) | |||
1462 | ν(C=C) | |||
1596 | ν of benzene ring | 1590 | ν of benzene ring | |
1747 | ν(C=O) | |||
2870–2965 | ν(C-H) | |||
3423 | ν(O-H) | |||
Cypermethrin | 659 | γip of cyclopropyl | ||
759 | βoop(C-H) benzene | 697, 784 | βoop(C-H) benzene | |
1003 | Breathing of benzene ring | |||
1081, 1129 | ν(C-O) | |||
1166 | δ(C-H) benzene | |||
1308 | νskeleton of benzene ring | |||
1456 | δ(C-H) | |||
1618 | ν(C=C) | 1461 | ν(C=C) | |
1737 | ν(C=O) | 1746 | ν(C=O) | |
2858, 2925, 2959 | ν(C-H) | |||
3440 | ν(O-H) | |||
Methomyl | 365 | β(N-C2) | ||
487 | r(C=O) | |||
667, 721 | ν(S-CH3) | 670 | ν(S-CH3) | |
887 | ν(C-N) | |||
941 | ν(C-O-C) | |||
1024 | r(N-CH3) | |||
1098 | ν(C-N) | |||
1247 | ν(N-C2) | |||
1459 | γ(N-CH3) | |||
1596 | ν(C=N) | 1504 | β(C-H) CH3 | |
1707 | ν(C=O) | 1715 | ν(C=O) | |
3304 | ν(N-H) | |||
Benomyl | 402 | r(C-O) | ||
620 | β(N-C-N) | |||
725 | βoop(C-H) | 730 | β(C-H) | |
782 | r(CH2) | |||
844 | r(CH2) | |||
962 | β(C-H) | |||
1020 | r(N-C) | |||
1099 | ν(C-N) | |||
1275 | βip(C-C-H) | 1265 | βip(C-C-H) | |
1362 | ω(CH2) | |||
1477 | r(C-N-H) | 1452 | r(C-N-H) | |
1606 | ν(C=C) | 1640 | ν(C=C) | |
1725 | ν(C=O) | |||
2932 | ν (C-H) CH3 | |||
3323 | ν(N-H) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Benítez, A.; Guevara-Lara, A.; Palma-Ramírez, D.; Neri-Espinoza, K.A.; Silva-Rodrigo, R.; Andraca-Adame, J.A. Detection of Organophosphorus, Pyrethroid, and Carbamate Pesticides in Tomato Peels: A Spectroscopic Study. Foods 2025, 14, 2543. https://doi.org/10.3390/foods14142543
López-Benítez A, Guevara-Lara A, Palma-Ramírez D, Neri-Espinoza KA, Silva-Rodrigo R, Andraca-Adame JA. Detection of Organophosphorus, Pyrethroid, and Carbamate Pesticides in Tomato Peels: A Spectroscopic Study. Foods. 2025; 14(14):2543. https://doi.org/10.3390/foods14142543
Chicago/Turabian StyleLópez-Benítez, Acela, Alfredo Guevara-Lara, Diana Palma-Ramírez, Karen A. Neri-Espinoza, Rebeca Silva-Rodrigo, and José A. Andraca-Adame. 2025. "Detection of Organophosphorus, Pyrethroid, and Carbamate Pesticides in Tomato Peels: A Spectroscopic Study" Foods 14, no. 14: 2543. https://doi.org/10.3390/foods14142543
APA StyleLópez-Benítez, A., Guevara-Lara, A., Palma-Ramírez, D., Neri-Espinoza, K. A., Silva-Rodrigo, R., & Andraca-Adame, J. A. (2025). Detection of Organophosphorus, Pyrethroid, and Carbamate Pesticides in Tomato Peels: A Spectroscopic Study. Foods, 14(14), 2543. https://doi.org/10.3390/foods14142543