Optimization of Enzymatic Protein Hydrolysate from Mung Bean (Vigna radiata L.), and Its Functional Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Sample Source and Preparation
2.1.2. Mung Bean Protein Isolate (MBPI) Preparation
2.2. Mung Bean Protein Hydrolysate (MBPH) Preparation
2.2.1. Experimental Design
2.2.2. Analysis of Mung Bean Protein Hydrolysate
- Yield
- 2.
- Protein content
- 3.
- DPPH radical scavenging activity
- 4.
- ABTS radical scavenging activity
- 5.
- Water absorption capacity
- 6.
- Oil absorption capacity
- 7.
- Foam capacity and foam stability
- 8.
- Emulsion activity index (EAI) and Emulsion stability index (ESI)
- 9.
- Protein solubility
- 10.
- Degree of hydrolysis (DH)
2.3. Comparison the Characterization of MBPI and MBPH
2.3.1. Molecular Weight (MW) Analysis by Size Exclusion Chromatography
2.3.2. Fourier-Transform Infrared Spectroscopy (FTIR)
2.3.3. Amino Acid Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of Enzyme Concentration and Hydrolysis Time on the MBPH
3.1.1. Product Yield
3.1.2. Protein Content Analysis
3.1.3. DPPH Radical Scavenging Activity
3.1.4. ABTS Radical Scavenging Activity
3.1.5. Water Absorption Capacity (WAC)
3.1.6. Oil Absorption Capacity (OAC)
3.1.7. Foam Capacity
3.1.8. Foam Stability
3.1.9. Emulsifying Activity Index (EAI)
3.1.10. Emulsion Stability Index (ESI)
3.1.11. Solubility
3.1.12. Degree of Hydrolysis (DH)
3.1.13. Regression Analysis
3.1.14. Optimization and Verification of MBPH
3.2. Comparisons of Molecular Weight Distribution, Secondary Structure, and Amino Acid Profiles Between MBPI and MBPH
3.2.1. Molecular Weight
3.2.2. Protein Secondary Structure
3.2.3. Amino Acid Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, Q.; Niu, Z.; Zhang, S.; Wang, L.; Qun, S.; Yan, Z.; Hou, D.; Zhou, S. Mung bean protein as an emerging source of plant protein: A review on production methods, functional properties, modifications and its potential applications. J. Sci. Food Agric. 2024, 104, 2561–2573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ding, X.; Li, M. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chem. 2021, 349, 129101. [Google Scholar] [CrossRef]
- Hou, D.; Feng, Q.; Niu, Z.; Wang, L.; Yan, Z.; Zhou, S. Promising mung bean proteins and peptides: A comprehensive review of preparation technologies, biological activities, and their potential applications. Food Biosci. 2023, 55, 102972. [Google Scholar] [CrossRef]
- Sonklin, C.; Alashi, A.M.; Laohakunjit, N.; Aluko, R.E. Functional characterization of mung bean meal protein-derived antioxidant peptides. Molecules 2021, 26, 1515. [Google Scholar] [CrossRef]
- Ng, W.-J.; Wong, F.-C.; Manan, F.A.; Chow, Y.-L.; Ooi, A.-L.; Ong, M.-K.; Zhang, X.; Chai, T.-T. Antioxidant peptides and protein hydrolysates from Tilapia: Cellular and in vivo evidences for human health benefits. Foods 2024, 13, 2945. [Google Scholar] [CrossRef] [PubMed]
- Gasparre, N.; Rosell, C.M.; Boukid, F. Enzymatic Hydrolysis of Plant Proteins: Tailoring Characteristics, Enhancing Functionality, and Expanding Applications in the Food Industry. Food Bioprocess Technol. 2025, 18, 3272–3287. [Google Scholar] [CrossRef]
- Tawalbeh, D.; Ahmad, W.A.N.W.; Sarbon, N.M. Effect of ultrasound pretreatment on the functional and bioactive properties of legumes protein hydrolysates and peptides: A comprehensive review. Food Rev. Int. 2023, 39, 5423–5445. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, J.; Chen, Y.; Sun, H.; Liu, Y. Preparation and characterization of lipophilic antioxidative peptides derived from mung bean protein. Food Chem. 2022, 395, 133535. [Google Scholar] [CrossRef]
- Karami, Z.; Butkinaree, C.; Yingchutrakul, Y.; Simanon, N.; Duangmal, K. Comparative study on structural, biological and functional activities of hydrolysates from Adzuki bean (Vigna angularis) and mung bean (Vigna radiata) protein concentrates using Alcalase and Flavourzyme. Food Res. Int. 2022, 161, 111797. [Google Scholar] [CrossRef]
- Liu, F.-F.; Li, Y.-Q.; Wang, C.-Y.; Liang, Y.; Zhao, X.-Z.; He, J.-X.; Mo, H.-Z. Physicochemical, functional and antioxidant properties of mung bean protein enzymatic hydrolysates. Food Chem. 2022, 393, 133397. [Google Scholar] [CrossRef]
- Chen, X.; Ye, H.; Wen, P.; Shen, M.; Xie, J. Novel Antioxidant Protein Hydrolysates from Mung Bean (Vigna radiate): Structural Elucidation, Antioxidant Activity, and Molecular Docking Study. ACS Food Sci. Technol. 2023, 3, 2238–2249. [Google Scholar] [CrossRef]
- Aguilar, J.G.d.S.; Cason, V.G.; de Castro, R.J.S. Improving antioxidant activity of black bean protein by hydrolysis with protease combinations. Int. J. Food Sci. Technol. 2019, 54, 34–41. [Google Scholar] [CrossRef]
- Phongthai, S.; D’Amico, S.; Schoenlechner, R.; Homthawornchoo, W.; Rawdkuen, S. Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem. 2018, 240, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Dahiru, U.H.; Saleem, F.; Al-sudani, F.T.; Zhang, K.; Harvey, A.P. Oxidative removal of hexane from the gas stream by dielectric barrier discharge reactor and effect of gas environment. Chem. Eng. Process.-Process Intensif. 2022, 178, 109035. [Google Scholar] [CrossRef]
- Romadhoni, A.R.; Afrianto, E.; Pratama, R.I.; Grandiosa, R. Extraction of snakehead fish [Ophiocephalus striatus (Bloch, 1793)] into fish protein concentrate as albumin source using various solvent. Aquat. Procedia 2016, 7, 4–11. [Google Scholar] [CrossRef]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting nitrogen into protein—Beyond 6.25 and Jones′ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef]
- Utama-Ang, N.; Sida, S.; Wanachantararak, P.; Kawee-Ai, A. Development of edible Thai rice film fortified with ginger extract using microwave-assisted extraction for oral antimicrobial properties. Sci. Rep. 2021, 11, 14870. [Google Scholar] [CrossRef]
- Piornos, J.A.; Burgos-Díaz, C.; Ogura, T.; Morales, E.; Rubilar, M.; Maureira-Butler, I.; Salvo-Garrido, H. Functional and physicochemical properties of a protein isolate from AluProt-CGNA: A novel protein-rich lupin variety (Lupinus luteus). Food Res. Int. 2015, 76, 719–724. [Google Scholar] [CrossRef]
- Kaushik, P.; Dowling, K.; McKnight, S.; Barrow, C.J.; Wang, B.; Adhikari, B. Preparation, characterization and functional properties of flax seed protein isolate. Food Chem. 2016, 197, 212–220. [Google Scholar] [CrossRef]
- Du, M.; Xie, J.; Gong, B.; Xu, X.; Tang, W.; Li, X.; Li, C.; Xie, M. Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocoll. 2018, 76, 131–140. [Google Scholar] [CrossRef]
- Thiansilakul, Y.; Benjakul, S.; Shahidi, F. Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem. 2007, 103, 1385–1394. [Google Scholar] [CrossRef]
- Tsumura, K.; Saito, T.; Tsuge, K.; Ashida, H.; Kugimiya, W.; Inouye, K. Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT-Food Sci. Technol. 2005, 38, 255–261. [Google Scholar] [CrossRef]
- Grintzalis, K.; Georgiou, C.D.; Schneider, Y.-J. An accurate and sensitive Coomassie Brilliant Blue G-250-based assay for protein determination. Anal. Biochem. 2015, 480, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Klompong, V.; Benjakul, S.; Kantachote, D.; Shahidi, F. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 2007, 102, 1317–1327. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Zhu, Z.; Li, X.; Sun, S.; Wang, W.; Sadiq, F.A. Identification and characterization of two novel antioxidant peptides from silkworm pupae protein hydrolysates. Eur. Food Res. Technol. 2021, 247, 343–352. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, L.; Chen, Q.; Hu, J.; Zhang, P.; Xiong, H.; Zhao, Q. Combined effects of drying methods and limited enzymatic hydrolysis on the physicochemical and antioxidant properties of rice protein hydrolysates. Food Biosci. 2023, 52, 102427. [Google Scholar] [CrossRef]
- Masuda, T.; Yamamoto, A.; Toyohara, H. The iron content and ferritin contribution in fresh, dried, and toasted nori, Pyropia yezoensis. Biosci. Biotechnol. Biochem. 2015, 79, 74–81. [Google Scholar] [CrossRef]
- Xu, X.; Qiao, Y.; Shi, B.; Dia, V.P. Alcalase and bromelain hydrolysis affected physicochemical and functional properties and biological activities of legume proteins. Food Struct. 2021, 27, 100178. [Google Scholar] [CrossRef]
- Sonklin, C.; Laohakunjit, N.; Kerdchoechuen, O. Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates. PeerJ 2018, 6, e5337. [Google Scholar] [CrossRef]
- Kusumah, J.; Hernandez, L.M.R.; de Mejia, E.G. Antioxidant potential of mung bean (Vigna radiata) albumin peptides produced by enzymatic hydrolysis analyzed by biochemical and in silico methods. Foods 2020, 9, 1241. [Google Scholar] [CrossRef]
- Tan, E.-S.; Ying-Yuan, N.; Gan, C.-Y. A comparative study of physicochemical characteristics and functionalities of pinto bean protein isolate (PBPI) against the soybean protein isolate (SPI) after the extraction optimisation. Food Chem. 2014, 152, 447–455. [Google Scholar] [CrossRef] [PubMed]
- García-Moreno, P.J.; Pérez-Gálvez, R.; Espejo-Carpio, F.J.; Ruiz-Quesada, C.; Pérez-Morilla, A.I.; Martínez-Agustín, O.; Guadix, A.; Guadix, E.M. Functional, bioactive and antigenicity properties of blue whiting protein hydrolysates: Effect of enzymatic treatment and degree of hydrolysis. J. Sci. Food Agric. 2017, 97, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Razavizadeh, R.S.; Farmani, J.; Motamedzadegan, A. Enzyme-assisted extraction of chicken skin protein hydrolysates and fat: Degree of hydrolysis affects the physicochemical and functional properties. J. Am. Oil Chem. Soc. 2022, 99, 621–632. [Google Scholar] [CrossRef]
- Liang, G.; Chen, W.; Qie, X.; Zeng, M.; Qin, F.; He, Z.; Chen, J. Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties. Food Hydrocoll. 2020, 105, 105764. [Google Scholar] [CrossRef]
- Lyu, S.; Chen, M.; Wang, Y.; Zhang, D.; Zhao, S.; Liu, J.; Pan, F.; Zhang, T. Foaming properties of egg white proteins improved by enzymatic hydrolysis: The changes in structure and physicochemical properties. Food Hydrocoll. 2023, 141, 108681. [Google Scholar] [CrossRef]
- Lu, Z.X.; He, J.F.; Zhang, Y.C.; Bing, D.J. Composition, physicochemical properties of pea protein and its application in functional foods. Crit. Rev. Food Sci. Nutr. 2020, 60, 2593–2605. [Google Scholar] [CrossRef]
- Nisov, A.; Ercili-Cura, D.; Nordlund, E. Limited hydrolysis of rice endosperm protein for improved techno-functional properties. Food Chem. 2020, 302, 125274. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Rasco, B.A. Fish protein hydrolysates: Production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr. 2000, 40, 43–81. [Google Scholar] [CrossRef]
- Shahi, Z.; Sayyed-Alangi, S.Z.; Najafian, L. Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake. Heliyon 2020, 6, e03365. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, J.; Li, J.; Sun, H.; Liu, Y. Physicochemical and antioxidative characteristics of black bean protein hydrolysates obtained from different enzymes. Food Hydrocoll. 2019, 97, 105222. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, M.; Li, J.; Li, J.; Liu, Y. Comparative assessment of physicochemical and antioxidative properties of mung bean protein hydrolysates. RSC Adv. 2020, 10, 2634–2645. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Huang, J.; Woo, M.W.; Hu, J.; Xiong, H.; Zhao, Q. Effect of cold and hot enzyme deactivation on the structural and functional properties of rice dreg protein hydrolysates. Food Chem. 2021, 345, 128784. [Google Scholar] [CrossRef] [PubMed]
- Ai, M.; Tang, T.; Zhou, L.; Ling, Z.; Guo, S.; Jiang, A. Effects of different proteases on the emulsifying capacity, rheological and structure characteristics of preserved egg white hydrolysates. Food Hydrocoll. 2019, 87, 933–942. [Google Scholar] [CrossRef]
- Habinshuti, I.; Mu, T.-H.; Zhang, M. Structural, antioxidant, aroma, and sensory characteristics of Maillard reaction products from sweet potato protein hydrolysates as influenced by different ultrasound-assisted enzymatic treatments. Food Chem. 2021, 361, 130090. [Google Scholar] [CrossRef] [PubMed]
Experimental Number | Factors | |
---|---|---|
Enzyme Concentration (%) | Hydrolysate Time (h) | |
1 | 1 | 3 |
2 | 1 | 6 |
3 | 1 | 9 |
4 | 5 | 3 |
5 | 5 | 6 |
6 | 5 | 9 |
7 | 10 | 3 |
8 | 10 | 6 |
9 | 10 | 9 |
Experiments | Yield (%) ns | Protein Content (%dw) | DPPH (mmol Trolox/g) | ABTS (µmol Trolox/100 g) | WAC (g Water/g Protein) | OAC (g Oil/g Protein) | Foam Capacity (%) | Foam Stability (%) | EAI (m2/g) | Solubility (%) at | DH (%) ns | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH 3 | pH 5 | pH 7 | pH 9 ns | |||||||||||
1 | 6.54 ± 1.10 | 79.32 ± 0.15 b | 3.63 ± 0.36 d,e | 138.92 ± 2.10 d,e | 1.66 ± 0.35 d | 2.42 ± 0.35 b,c | 97.50 ± 3.54 a | 43.67 ± 0.47 a | 8.03 ± 0.05 a | 51.30 ± 2.86 c | 63.57 ± 3.72 d | 87.05 ± 1.89 c | 100.00 ± 0.00 | 28.48 ± 0.64 |
2 | 13.29 ± 2.03 | 80.77 ± 0.88 a | 2.28 ± 0.13 e | 141.85 ± 1.62 d,e | 1.58 ± 0.35 d | 2.86 ± 0.34 a,b | 88.50 ± 2.12 b | 37.22 ± 1.01 b | 6.89 ± 0.04 b | 68.42 ± 1.37 b | 75.05 ± 2.47 b,c | 91.89 ± 3.60 a,b,c | 100.00 ± 0.00 | 32.34 ± 4.37 |
3 | 8.86 ± 0.35 | 81.32 ± 0.01 a | 2.10 ± 0.83 e | 150.41 ± 2.27 c | 3.03 ± 0.35 b,c | 3.61 ± 0.35 a | 69.50 ± 0.71 d | 34.50 ± 0.71 c | 5.91 ± 0.17 c,d | 73.38 ± 2.96 b | 83.74 ± 3.76 a | 93.53 ± 2.64 a,b | 100.00 ± 0.00 | 32.87 ± 2.71 |
4 | 9.95 ± 0.21 | 78.15 ± 0.32 c | 2.55 ± 0.86 e | 154.52 ± 1.26 b,c | 2.68 ± 0.34 c | 2.05 ± 0.35 b,c,d | 79.00 ± 1.41 c | 30.63 ± 0.88 d | 5.10 ± 0.11 d | 54.94 ± 1.89 c | 67.41 ± 0.72 c,d | 88.23 ± 0.64 b,c | 100.00 ± 0.00 | 29.44 ± 5.42 |
5 | 9.40 ± 0.43 | 79.10 ± 0.13 b,c | 4.75 ± 0.33 c,d | 135.85 ± 6.54 e | 3.68 ± 0.35 b | 2.40 ± 0.35 b,c | 43.50 ± 2.12 f | 19.50 ± 0.71 e | 5.15 ± 0.57 d | 66.80 ± 2.58 b | 71.09 ± 0.10 c,d | 92.46 ± 2.97 a,b,c | 100.00 ± 0.00 | 34.73 ± 3.98 |
6 | 11.07 ± 1.92 | 78.79 ± 0.81 b,c | 2.80 ± 0.72 e | 134.99 ± 6.45 e | 2.82 ± 0.35 c | 2.42 ± 0.35 b,c | 40.50 ± 0.71 f | 11.56 ± 0.63 g | 6.75 ± 0.24 b,c | 73.27 ± 6.61 b | 75.02 ± 2.75 b,c | 94.96 ± 3.22 a | 100.00 ± 0.00 | 30.33 ± 1.66 |
7 | 10.72 ± 1.85 | 71.91 ± 0.27 d,e | 5.38 ± 0.97 b,c | 163.70 ± 2.51 a | 3.79 ± 0.30 b | 1.69 ± 0.35 c,d | 63.00 ± 2.83 e | 20.71 ± 1.01 e | 5.02 ± 0.62 d,e | 57.90 ± 2.24 c | 69.85 ± 2.87 c,d | 92.61 ± 0.66 a,b,c | 100.00 ± 0.00 | 32.05 ± 7.06 |
8 | 9.07 ± 1.27 | 72.65 ± 0.19 d | 6.71 ± 0.74 a,b | 146.58 ± 1.81 c,d | 4.80 ± 0.34 a | 1.37 ± 0.31 d | 25.50 ± 0.71 g | 15.83 ± 1.18 f | 4.10 ± 0.81 e | 72.86 ± 1.79 b | 79.82 ± 2.85 a,b | 94.00 ± 0.39 a | 100.00 ± 0.00 | 38.31 ± 3.54 |
9 | 9.64 ± 2.53 | 71.42 ± 0.50 e | 7.29 ± 0.78 a | 161.20 ± 1.37 a,b | 3.47 ± 0.34 b,c | 1.68 ± 0.33 c,d | 24.00 ± 1.41 g | 8.67 ± 0.47 h | 4.98 ± 0.13 d,e | 81.76 ± 1.14 a | 84.13 ± 7.24 a | 97.27 ± 2.06 a | 100.00 ± 0.00 | 41.51 ± 0.75 |
Responses | Regression Equation | R2 | p-Value | |
---|---|---|---|---|
Protein content (%dw) | 75.95 + 0.42 × Enzyme + 1.28 × Time − 0.10 × Enzyme2 − 0.08 × Time2 − 0.046 × Enzyme × Time | 0.9990 | 0.0001 | |
DPPH (mmol Trolox/g) | 1.67 + 0.43 × Enzyme + 0.04 × Time | 0.7358 | 0.0185 | |
WAC (g water/g protein) | 1.52 + 0.21 × Enzyme + 0.07 × Time | 0.6849 | 0.0313 | |
OAC (g oil/g protein) | 1.88 − 0.02 × Enzyme + 0.20 × Time − 0.02 × Enzyme × Time | 0.9641 | 0.0005 | |
Foam capacity (%) | 121.99 − 5.23 × Enzyme − 5.86 × Time | 0.8911 | 0.0013 | |
Foam stability (%) | 51.66 − 2.54 × Enzyme − 2.24 × Time | 0.8808 | 0.0017 | |
ESI (%) | 103.26 + 0.67 × Enzyme − 3.47 × Time − 0.29 × Enzyme2 + 0.08 × Time2 + 0.16 × Enzyme × Time | 0.9863 | 0.0054 | |
Solubility (%) at | pH 3 | 41.38 + 0.74 × Enzyme + 3.57 × Time | 0.9337 | 0.0003 |
pH 5 | 57.93 + 0.46 × Enzyme + 2.34 × Time | 0.7828 | 0.0103 | |
pH 7 | 84.21 + 0.43 × Enzyme + 0.99 × Time | 0.93956 | 0.0002 | |
DH (%) | 24.58 + 0.69 × Enzyme + 0.84 × Time | 0.6583 | 0.0399 |
Responses | Predict Value | Actual Value | Error (%) | |
---|---|---|---|---|
Protein content (%dw) | 77.59 | 79.33 ± 0.62 | 2.24 | |
DPPH (mmol Trolox/g) | 4.31 | 4.98 ± 0.37 | 15.55 | |
WAC (g water/g protein) | 3.01 | 3.04 ± 1.54 | 1.00 | |
OAC (g oil/g protein) | 2.01 | 2.13 ± 0.83 | 5.97 | |
Foam capacity (%) | 70.47 | 71.43 ± 1.77 | 1.36 | |
Foam stability (%) | 28.78 | 27.80 ± 0.88 | 3.41 | |
ESI (%) | 89.03 | 85.72 ± 2.31 | 3.72 | |
Solubility (%) at | pH 3 | 58.42 | 57.17 ± 1.51 | 2.14 |
pH 5 | 68.96 | 67.25 ± 1.71 | 2.48 | |
pH 7 | 90.25 | 93.56 ± 1.16 | 3.67 | |
DH (%) | 31.66 | 33.09 ± 1.19 | 4.52 |
MBPI | MBPH | ||
---|---|---|---|
Molecular weight (kDa) | >100 | 20.32 ± 2.87 a | 3.11 ± 0.01 b |
11–100 | 59.68 ± 0.08 a | 4.03 ± 0.01 b | |
1.1–10 | 15.03 ± 2.74 b | 45.57 ± 0.04 a | |
<1 | 4.27 ± 0.02 b | 47.29 ± 0.06 a | |
Secondary structure (%) | α-helix | 18.87 ± 0.14 a | 15.48 ± 0.17 b |
β-sheet | 29.62 ± 0.44 a | 12.31 ± 0.07 b | |
β-turn | 32.17 ± 0.32 b | 52.68 ± 1.25 a | |
Random coil ns | 19.35 ± 0.62 | 19.52 ± 0.42 | |
Hydrophilic amino acid | Arginine | 10.90 ± 1.27 a | 3.00 ± 0.0 4 b |
Glutamic acid | 13.55 ± 0.19 b | 73.70 ± 0.13 a | |
Serine | 0.86 ± 0.12 b | 2.97 ± 0.01 a | |
Threonine | 1.65 ± 0.02 ns | 1.67 ± 0.10 ns | |
Histidine | 1.92 ± 0.27 b | 31.53 ± 0.03 a | |
Lysine ns | 3.53 ± 0.26 | 3.72 ± 0.01 | |
Aspartic acid | 3.40 ± 0.03 b | 17.65 ± 0.01 a | |
Hydrophobic amino acid | Alanine and cysteine | 11.60 ± 1.14 a | 9.01 ± 0.02 b |
Glycine | 1.09 ± 0.03 a | 0.23 ± 0.01 b | |
Leucine | 2.28 ± 0.16 b | 18.91 ± 0.07 a | |
Valine | 2.08 ± 0.07 b | 3.62 ± 0.01 a | |
Isoleucine | 0.73 ± 0.26 b | 1.65 ± 0.01 a | |
Phenylalanine | 9.80 ± 0.16 b | 34.58 ± 0.26 a | |
Proline | 1.41 ± 0.02 a | 0.05 ± 0.01 b | |
Methionine | 0.16 ± 0.03 b | 3.31 ± 0.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Promjeen, K.; Phongthai, S.; Singh, K.; Chaisan, W.; Pakakaew, P.; Srichairatanakool, S.; Samakradhamrongthai, R.S.; Utama-ang, N. Optimization of Enzymatic Protein Hydrolysate from Mung Bean (Vigna radiata L.), and Its Functional Properties. Foods 2025, 14, 2459. https://doi.org/10.3390/foods14142459
Promjeen K, Phongthai S, Singh K, Chaisan W, Pakakaew P, Srichairatanakool S, Samakradhamrongthai RS, Utama-ang N. Optimization of Enzymatic Protein Hydrolysate from Mung Bean (Vigna radiata L.), and Its Functional Properties. Foods. 2025; 14(14):2459. https://doi.org/10.3390/foods14142459
Chicago/Turabian StylePromjeen, Kanokwan, Suphat Phongthai, Kanjana Singh, Worrapob Chaisan, Peeraporn Pakakaew, Somdet Srichairatanakool, Rajnibhas Sukeaw Samakradhamrongthai, and Niramon Utama-ang. 2025. "Optimization of Enzymatic Protein Hydrolysate from Mung Bean (Vigna radiata L.), and Its Functional Properties" Foods 14, no. 14: 2459. https://doi.org/10.3390/foods14142459
APA StylePromjeen, K., Phongthai, S., Singh, K., Chaisan, W., Pakakaew, P., Srichairatanakool, S., Samakradhamrongthai, R. S., & Utama-ang, N. (2025). Optimization of Enzymatic Protein Hydrolysate from Mung Bean (Vigna radiata L.), and Its Functional Properties. Foods, 14(14), 2459. https://doi.org/10.3390/foods14142459