In Silico Proteomic Profiling and Bioactive Peptide Potential of Rapeseed Meal
Abstract
1. Introduction
2. Materials and Methods
2.1. The Material
2.2. The Extraction of Protein from Rapeseed Press Cake
2.3. Electrophoresis
2.4. Protein Spot Excision and Preparation for Mass Spectrometry
2.5. The MALDI-TOF/TOF Analysis
2.6. In Silico Digestion and Bioactivity Prediction Using the BIOPEP Database
2.7. Theoretical Prediction of Peptide Bioactivity Using PeptideRanker
3. Results
3.1. Electrophoresis and MALDI-TOF/TOF Protein Identification
3.2. In Silico Analysis Using the BIOPEP Database and PeptideRanker
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.fas.usda.gov/data/production/commodity-group/oilseeds (accessed on 1 March 2025).
- Di Lena, G.; Sánchez del Pulgar, J.; Lucarini, M.; Durazzo, A.; Ondrejíčková, P.; Oancea, F.; Frincu, R.-M.; Aguzzi, A.; Ferrari Nicoli, S.; Casini, I.; et al. Valorization Potentials of Rapeseed Meal in a Biorefinery Perspective: Focus on Nutritional and Bioactive Components. Molecules 2021, 26, 6787. [Google Scholar] [CrossRef] [PubMed]
- Bełdycka-Bórawska, A.; Jankowski, K.J.; Rokicki, T.; Gostkowski, M. Area under Rapeseed Cultivation as a Factor Differentiating the Economic Performance of Biodiesel Producers. Energies 2021, 14, 8568. [Google Scholar] [CrossRef]
- Chew, S.C. Cold-pressed rapeseed (Brassica napus) oil: Chemistry and functionality. Food Res. Int. 2020, 131, 108997. [Google Scholar] [CrossRef]
- Chmielewska, A.; Kozłowska, M.; Rachwał, D.; Wnukowski, P.; Amarowicz, R.; Nebesny, E.; Rosicka-Kaczmarek, J. Canola/Rapeseed Protein—Nutritional Value, Functionality and Food Application: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 3836–3856. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, Y. Polyphenolic compounds from rapeseeds (Brassica napus L.): The major types, biofunctional roles, bioavailability, and the influences of rapeseed oil processing technologies on the content. Food Res. Int. 2023, 163, 112282. [Google Scholar] [CrossRef]
- Cháirez-Jiménez, C.; Castro-López, C.; Serna-Saldívar, S.; Chuck-Hernández, C. Partial characterization of canola (Brassica napus L.) protein isolates as affected by extraction and purification methods. Heliyon 2023, 9, 21938. [Google Scholar] [CrossRef]
- Singh, R.; Langyan, S.; Sangwan, S.; Rohtagi, B.; Khandelwal, A.; Shrivastava, M. Protein for Human Consumption from Oilseed Cakes: A Review. Front. Sustain. Food Syst. 2022, 6, 856401. [Google Scholar] [CrossRef]
- He, R.; Alashi, A.M.; Malomo, S.A.; Girgih, A.T.; Chao, D.; Ju, X.; Aluko, R.E. Antihypertensive and Free Radical Scavenging Properties of Enzymatic Rapeseed Protein Hydrolysates. Food Chem. 2013, 141, 153–159. [Google Scholar] [CrossRef]
- Xu, F.; Yao, Y.; Xu, X.; Wang, M.; Pan, M.; Ji, S.; Wu, J.; Jiang, D.; Ju, X.; Wang, L. Identification and Quantification of DPP-IV-Inhibitory Peptides from Hydrolyzed Rapeseed Protein-Derived Napin: Analysis of Interactions Between Key Residues and the Enzyme. J. Agric. Food Chem. 2019, 67, 3679–3690. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, M.; Chen, F. Prediction and Analysis of Antimicrobial Peptides from Rapeseed Protein Using In Silico Approach. J. Food Biochem. 2021, 45, e13598. [Google Scholar] [CrossRef]
- Garbacz, K.; Wawrzykowski, J.; Czelej, M.; Czernecki, T.; Waśko, A. Recent Trends in the Application of Oilseed-Derived Protein Hydrolysates as Functional Foods. Foods 2023, 12, 3861. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zheng, J.; Liu, X.; Ni, C. Screening and Identification of Hypolipidemic Peptides from Rapeseed (Brassica napus) Albumin Hydrolysates by LC-MS/MS. J. Food Sci. 2020, 85, 2559–2567. [Google Scholar] [CrossRef]
- Ahmad, A.; Hayat, I.; Arain, M.A.; Khalil, I.A.; Pasha, I. Enhanced Antiproliferative Activities of Peptides Isolated from Enzymatic Hydrolysates of Canola Meal. Plant Foods Hum. Nutr. 2019, 74, 545–551. [Google Scholar] [CrossRef]
- Kim, I.-S.; Yang, W.-S.; Kim, C.-H. Beneficial Effects of Soybean-Derived Bioactive Peptides. Int. J. Mol. Sci. 2021, 22, 8570. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; de Lumen, B.O. Lunasin: A novel cancer preventive seed peptide. Perspect. Medicin Chem. 2008, 2, 75–80. [Google Scholar] [CrossRef]
- Fleddermann, M.; Fechner, A.; Rößler, A.; Bähr, M.; Pastor, A.; Liebert, F.; Jahreis, G. Nutritional evaluation of rapeseed protein compared to soy protein for quality, plasma amino acids, and nitrogen balance—A randomized cross-over intervention study in humans. Clin. Nutr. 2013, 32, 519–526. [Google Scholar] [CrossRef]
- Velliquette, R.A.; Fast, D.J.; Maly, E.R.; Alashi, A.M.; Aluko, R.E. Enzymatically derived sunflower protein hydrolysate and peptides inhibit NF-κB and promote monocyte differentiation to a dendritic cell phenotype. Food Chem. 2020, 319, 126563. [Google Scholar] [CrossRef]
- Matkawala, F.; Nighojkar, S.; Nighojkar, A. Next-Generation Nutraceuticals: Bioactive Peptides from Plant Proteases. BioTechnologia 2022, 103, 397–408. [Google Scholar] [CrossRef]
- Vatić, S.; Mirković, N.; Milošević, J.R.; Jovčić, B.; Polović, N.Đ. Broad range of substrate specificities in papain and fig latex enzymes preparations improve enumeration of Listeria monocytogenes. Int. J. Food Microbiol. 2020, 334, 108851. [Google Scholar] [CrossRef]
- Domokos-Szabolcsy, É.; Alshaal, T.; Elhawat, N.; Kovács, Z.; Kaszás, L.; Béni, Á.; Kiss, A. Enhanced Oligopeptide and Free Tryptophan Release from Chickpea and Lentil Proteins: A Comparative Study of Enzymatic Modification with Bromelain, Ficin, and Papain. Plants 2024, 13, 3100. [Google Scholar] [CrossRef]
- Venetikidou, M.; Lykartsi, E.; Adamantidi, T.; Prokopiou, V.; Ofrydopoulou, A.; Letsiou, S.; Tsoupras, A. Proteolytic Enzyme Activities of Bromelain, Ficin, and Papain from Fruit By-Products and Potential Applications in Sustainable and Functional Cosmetics for Skincare. Appl. Sci. 2025, 15, 2637. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, A.; Wilm, M.; Vorm, O.; Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 1996, 68, 850–858. [Google Scholar] [CrossRef]
- Mooney, C.; Haslam, N.J.; Pollastri, G.; Shields, D.C. Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity. PLoS ONE 2012, 7, 45012. [Google Scholar] [CrossRef]
- Giavalisco, P.; Kapitza, K.; Kolasa, A.; Buhtz, A.; Kehr, J. Towards the proteome of Brassica napus phloem sap. Proteomics 2006, 6, 896–909. [Google Scholar] [CrossRef]
- Li, W.; Lu, J.; Yang, C.; Xia, S. Identification of receptor-like proteins induced by Sclerotinia sclerotiorum in Brassica napus. Front. Plant Sci. 2022, 13, 944763. [Google Scholar] [CrossRef]
- Perera, S.P.; McIntosh, T.C.; Wanasundara, J.P.D. Structural Properties of Cruciferin and Napin of Brassica napus (Canola) Show Distinct Responses to Changes in pH and Temperature. Plants 2016, 5, 36. [Google Scholar] [CrossRef]
- Crouch, M.L.; Sussex, I.M. Development and storage-protein synthesis in Brassica napus L. embryos in vivo and in vitro. Planta 1981, 153, 64–74. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.; Vasanthan, T.; Chen, L. Impacts of pH and heating temperature on formation mechanisms and properties of thermally induced canola protein gels. Food Hydrocoll. 2014, 40, 225–236. [Google Scholar] [CrossRef]
- Aquilia, S.; Rosi, L.; Pinna, M.; Bianchi, S.; Giurlani, W.; Bonechi, M.; Ciardelli, F.; Papini, A.M.; Bello, C. Study of the Preparation and Properties of Chemically Modified Materials Based on Rapeseed Meal. Biomolecules 2024, 14, 982. [Google Scholar] [CrossRef] [PubMed]
- Nietzel, T.; Dudkina, N.V.; Haase, C.; Denolf, P.; Semchonok, D.A.; Boekema, E.J.; Braun, H.-P.; Sunderhaus, S. The native structure and composition of the cruciferin complex in Brassica napus. J. Biol. Chem. 2013, 288, 2238–2245. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Chao, H.; Gan, L.; Guo, L.; Zhang, K.; Li, Y.; Wang, H.; Raboanatahiry, N.; Li, M. Proteomic Dissection of Seed Germination and Seedling Establishment in Brassica napus. Front. Plant Sci. 2016, 7, 1482. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, R.; Kalaydzhiev, H.; Ivanova, P.; Silva, C.L.M.; Chalova, V.I. Multifunctionality of Rapeseed Meal Protein Isolates Prepared by Sequential Isoelectric Precipitation. Foods 2022, 11, 541. [Google Scholar] [CrossRef]
- Ateeq, M.; Adeel, M.M.; Kanwal, A.; Tahir ul Qamar, M.; Saeed, A.; Khaliq, B.; Saeed, Q.; Atiq, M.N.; Bilal, M.; Alharbi, M.; et al. In Silico Analysis and Functional Characterization of Antimicrobial and Insecticidal Vicilin from Moth Bean (Vigna aconitifolia (Jacq.) Marechal) Seeds. Molecules 2022, 27, 3251. [Google Scholar] [CrossRef]
- Rahman, M.; Guo, Q.; Baten, A.; Mauleon, R.; Khatun, A.; Liu, L.; Barkla, B.J. Shotgun proteomics of Brassica rapa seed proteins identifies vicilin as a major seed storage protein in the mature seed. PLoS ONE 2021, 16, 0253384. [Google Scholar] [CrossRef]
- Jhingan, S.; Harloff, H.J.; Abbadi, A. Reduced glucosinolate content in oilseed rape (Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes. Sci. Rep. 2023, 13, 2344. [Google Scholar] [CrossRef]
- Thangstad, O.P.; Gilde, B.; Chadchawan, S.; Seem, M.; Husebye, H.; Bradley, D.; Bones, A.M. Cell Specific, Cross-Species Expression of Myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum. Plant Mol. Biol. 2004, 54, 597–611. [Google Scholar] [CrossRef]
- Geshi, N.; Brandt, A. Two jasmonate-inducible myrosinase-binding proteins from Brassica napus L. seedlings with homology to jacalin. Planta 1998, 204, 295–304. [Google Scholar] [CrossRef]
- Esch, L.; Schaffrath, U. An Update on Jacalin-Like Lectins and Their Role in Plant Defense. Int. J. Mol. Sci. 2017, 18, 1592. [Google Scholar] [CrossRef]
- Su, W.; Raza, A.; Gao, A.; Jia, Z.; Zhang, Y.; Hussain, M.A.; Mehmood, S.S.; Cheng, Y.; Lv, Y.; Zou, X. Genome-Wide Analysis and Expression Profile of Superoxide Dismutase (SOD) Gene Family in Rapeseed (Brassica napus L.) under Different Hormones and Abiotic Stress Conditions. Antioxidants 2021, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Wang, L.; Li, X.; Shi, J.; Scanlon, M.; Xue, S.; Nosworthy, M.; Vafaei, N. Canola Seed Protein: Pretreatment, Extraction, Structure, Physicochemical and Functional Characteristics. Foods 2024, 13, 1357. [Google Scholar] [CrossRef] [PubMed]
- Pavan, R.; Jain, S.; Shraddha Kumar, A. Properties and therapeutic application of bromelain: A review. Biotechnol. Res. Int. 2012, 2012, 976203. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Maycock, J.; Murray, B.S.; Boesch, C. Identification of angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory peptides derived from oilseed proteins using two integrated bioinformatic approaches. Food Res. Int. 2019, 115, 283–291. [Google Scholar] [CrossRef]
- Duan, X.; Dong, Y.; Zhang, M.; Li, Z.; Bu, G.; Chen, F. Identification and molecular interactions of novel ACE inhibitory peptides from rapeseed protein. Food Chem. 2023, 422, 136085. [Google Scholar] [CrossRef]
- You, H.; Zhang, Y.; Wu, T.; Li, J.; Wang, L.; Yu, Z.; Liu, J.; Liu, X.; Ding, L. Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. LWT 2022, 160, 113255. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Ruan, S.; Lu, F.; Tian, W.; Ma, H. Antihypertensive effect of rapeseed peptides and their potential in improving the effectiveness of captopril. J. Sci. Food Agric. 2021, 101, 3049–3055. [Google Scholar] [CrossRef]
- Ji, T.; Xu, G.; Wu, Y.; Wang, Y.; Xiao, C.; Zhang, B.; Xu, B.; Xu, F. Amelioration of Type 2 Diabetes Mellitus Using Rapeseed (Brassica napus)-Derived Peptides through Stimulating Calcium-Sensing Receptor: Effects on Glucagon-Like Peptide-1 Secretion and Hepatic Lipid Metabolism. J. Agric. Food Chem. 2024, 2024, 72. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, X.; Castañeda-Reyes, E.D.; Wu, Y.; Zhang, S.; Wu, Z.; Wang, Z.; Dai, L.; Xu, B.; Xu, F. Chitosan and sodium alginate nanocarrier system: Controlling the release of rapeseed-derived peptides and improving their therapeutic efficiency of anti-diabetes. Int. J. Biol. Macromol. 2024, 265, 130713. [Google Scholar] [CrossRef]
- Ma, K.; Wang, Z.; Ju, X.; Huang, J.; He, R. Rapeseed peptide inhibits HepG2 cell proliferation by regulating the mitochondrial and P53 signaling pathways. J. Sci. Food Agric. 2023, 103, 1474–1483. [Google Scholar] [CrossRef]
- Ferrero, R.L.; Weinstein-Oppenheimer, C.R.; Cabrera-Muñoz, Z.; Zúñiga-Hansen, M.E. The Antiproliferative Activity of a Mixture of Peptide and Oligosaccharide Extracts Obtained from Defatted Rapeseed Meal on Breast Cancer Cells and Human Fibroblasts. Foods 2023, 12, 253. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, R.X.; Zhang, T.; He, C.; He, R.; Ju, X.; Wu, X.Y. In Situ Proapoptotic Peptide-Generating Rapeseed Protein-Based Nanocomplexes Synergize Chemotherapy for Cathepsin-B Overexpressing Breast Cancer. ACS Appl. Mater. Interfaces 2018, 10, 41056–41069. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Browne, J.J.; Van Crugten, J.; Hasan, M.F.; Liu, L.; Barkla, B.J. In Silico, Molecular Docking and In Vitro Antimicrobial Activity of the Major Rapeseed Seed Storage Proteins. Front. Pharmacol. 2020, 11, 1340. [Google Scholar] [CrossRef]
- He, R.; Ju, X.; Yuan, J.; Wang, L.; Girgih, A.T.; Aluko, R.E. Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Res. Int. 2012, 49, 432–438. [Google Scholar] [CrossRef]
- Yang, F.; Huang, J.; He, H.; Ju, X.; Ji, Y.; Deng, F.; Wang, Z.; He, R. Study on the hypolipidemic activity of rapeseed protein-derived peptides. Food Chem. 2023, 423, 136315. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Millán-Linares, M.C.; Montserrat-de la Paz, S. Strengths and limitations of in silico tools to assess physicochemical properties, bioactivity, and bioavailability of food-derived peptides. Trends Food Sci. Technol. 2023, 133, 433–440. [Google Scholar] [CrossRef]
- Du, Z.; Comer, J.; Li, Y. Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives. Trends Anal. Chem. 2023, 158, 116891. [Google Scholar] [CrossRef]
- Amigo, L.; Hernández-Ledesma, B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020, 25, 4479. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, W.; He, R.; Xiong, F. Protein Breakdown and Release of Antioxidant Peptides during Simulated Gastrointestinal Digestion and Absorption of Rapeseed Proteins. LWT 2017, 86, 175–183. [Google Scholar] [CrossRef]
- Patil, P.J.; Usman, M.; Zhang, C.; Mehmood, A.; Zhou, M.; Teng, C.; Li, X. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1732–1776. [Google Scholar] [CrossRef]
Spot ID | Protein Name | UniProt Entry Name | Species | Mass | pI |
---|---|---|---|---|---|
1 | Beta-glucosidase 19 | BGL19_ARATH | Arabidopsis thaliana | 45.3 | 6.90 |
2 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 37.3 | 6.94 |
3 | Leucine aminopeptidase 1 | AMPL1_ARATH | Arabidopsis thaliana | 36.7 | 5.84 |
4 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 37.0 | 6.67 |
5 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 37.0 | 6.70 |
6 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 34.9 | 7.17 |
7 | Bifunctional enolase 2/transcriptional activator | ENO2_ARATH | Arabidopsis thaliana | 31.3 | 5.95 |
8 | Cytosolic isocitrate dehydrogenase [NADP] | ICDHC_ARATH | Arabidopsis thaliana | 30.9 | 6.71 |
9 | Myrosinase | MYRO_BRANA | Brassica napus | 29.2 | 6.12 |
10 | 3-isopropylmalate dehydrogenase, chloroplastic | LEU3_BRANA | Brassica napus | 28.6 | 5.64 |
11 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 24.9 | 6.33 |
12 | Vicilin-like seed storage protein At2g28490 | VCL22_ARATH | Arabidopsis thaliana | 24.7 | 6.69 |
13 | Malate dehydrogenase 1, cytoplasmic | MDHC1_ARATH | Arabidopsis thaliana | 24.9 | 6.50 |
14 | Malate dehydrogenase 1, cytoplasmic | MDHC1_ARATH | Arabidopsis thaliana | 24.6 | 6.70 |
15 | Cruciferin CRU1 | CRU3_BRANA | Brassica napus | 21.3 | 7.21 |
16 | NADPH-dependent aldehyde reductase 1, chloroplastic | ADRC1_ARATH | Arabidopsis thaliana | 20.4 | 6.10 |
17 | NADPH-dependent aldehyde reductase 1, chloroplastic | ADRC1_ARATH | Arabidopsis thaliana | 20.3 | 6.32 |
18 | NADPH-dependent aldehyde reductase 1, chloroplastic | ADRC1_ARATH | Arabidopsis thaliana | 20.4 | 6.48 |
19 | Jacalin-related lectin 36 | JAL36_ARATH | Arabidopsis thaliana | 20.2 | 6.38 |
20 | Oil-body-associated protein 1A | OBP1A_ARATH | Arabidopsis thaliana | 20.4 | 5.97 |
21 | Oil-body-associated protein 1A | OBP1A_ARATH | Arabidopsis thaliana | 20.1 | 6.18 |
22 | Oil-body-associated protein 1A | OBP1A_ARATH | Arabidopsis thaliana | 19.8 | 6.42 |
23 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 20.2 | 7.56 |
24 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 20.1 | 8.15 |
25 | Oil-body-associated protein 1A | OBP1A_ARATH | Arabidopsis thaliana | 17.6 | 5.97 |
26 | Oil-body-associated protein 1A | OBP1A_ARATH | Arabidopsis thaliana | 17.5 | 6.06 |
27 | Oil-body-associated protein 1A | OBP1A_ARATH | Arabidopsis thalian | 17.8 | 6.43 |
28 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 17.8 | 6.64 |
29 | Superoxide dismutase [Mn] 2, mitochondrial | SODM2_ARATH | Arabidopsis thaliana | 17.7 | 6.68 |
30 | Superoxide dismutase [Mn] 2, mitochondrial | SODM2_ARATH | Arabidopsis thaliana | 17.4 | 6.67 |
31 | Cruciferin | CRUA_BRANA | Brassica napus | 17.7 | 6.92 |
32 | Cruciferin | CRUA_BRANA | Brassica napus | 17.7 | 7.09 |
33 | Cruciferin | CRUA_BRANA | Brassica napus | 17.9 | 7.27 |
34 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 17.0 | 6.92 |
35 | Superoxide dismutase [Mn] 2, mitochondrial | SODM2_ARATH | Arabidopsis thaliana | 17.0 | 7.09 |
36 | Superoxide dismutase [Mn] 2, mitochondrial | SODM2_ARATH | Arabidopsis thaliana | 17.0 | 7.14 |
37 | Cruciferin BnC1 | CRU1_BRANA | Brassica napus | 16.0 | 5.30 |
38 | Cruciferin | CRUA_BRANA | Brassica napus | 15.9 | 6.00 |
39 | Cruciferin | CRUA_BRANA | Brassica napus | 15.1 | 6.25 |
40 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 15.1 | 7.81 |
41 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 13.5 | 5.70 |
42 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 13.6 | 8.74 |
43 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 13.6 | 8.95 |
44 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 13.6 | 9.98 |
45 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 13.6 | 9.44 |
46 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 13.6 | 9.70 |
47 | Jacalin-related lectin 36 | JAL36_ARATH | Arabidopsis thaliana | 13.3 | 7.07 |
48 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 13.0 | 6.69 |
49 | Cruciferin CRU4 | CRU4_BRANA | Brassica napus | 12.4 | 5.29 |
50 | Cruciferin BnC1 | CRU1_BRANA | Brassica napus | 10.1 | 5.97 |
Protein Name | Papain Digestion | Ficin Digestion | Bromelain Digestion | |||
---|---|---|---|---|---|---|
Total Peptides | Bioactive Peptides | Total Peptides | Bioactive Peptides | Total Peptides | Bioactive Peptides | |
ADRC1_ARATH | 139 | 49 | 143 | 55 | 149 | 57 |
AMPL1_ARATH | 164 | 75 | 174 | 107 | 188 | 119 |
BGL19_ARATH | 176 | 80 | 198 | 95 | 199 | 116 |
CRU1_BRANA | 211 | 150 | 213 | 115 | 216 | 149 |
CRU3_BRANA | 215 | 125 | 218 | 76 | 222 | 77 |
CRU4_BRANA | 197 | 142 | 204 | 98 | 207 | 133 |
CRUA_BRANA | 211 | 151 | 213 | 123 | 216 | 141 |
ENO2_ARATH | 164 | 53 | 168 | 60 | 174 | 76 |
ICDHC_ARATH | 147 | 102 | 152 | 73 | 170 | 121 |
JAL36_ARATH | 176 | 70 | 193 | 117 | 199 | 110 |
LEU3_BRANA | 173 | 92 | 171 | 86 | 183 | 110 |
MDHC1_ARATH | 131 | 52 | 136 | 80 | 149 | 66 |
MYRO_BRANA | 166 | 93 | 182 | 94 | 183 | 98 |
OBP1A_ARATH | 83 | 36 | 88 | 59 | 91 | 53 |
SODM2_ARATH | 87 | 44 | 97 | 43 | 103 | 45 |
VCL22_ARATH | 160 | 110 | 174 | 129 | 180 | 121 |
in total | 2600 | 1424 | 2724 | 1410 | 2829 | 1592 |
Protein | Papain Digestion | Ficin Digestion | Bromelain Digestion |
---|---|---|---|
ADRC1_ARATH | 51 | 42 | 53 |
AMPL1_ARATH | 70 | 45 | 102 |
BGL19_ARATH | 52 | 96 | 41 |
CRU1_BRANA | 77 | 79 | 76 |
CRU3_BRANA | 58 | 69 | 96 |
CRU4_BRANA | 85 | 81 | 91 |
CRUA_BRANA | 63 | 78 | 74 |
ENO2_ARATH | 48 | 58 | 49 |
ICDHC_ARATH | 59 | 67 | 55 |
JAL36_ARATH | 58 | 66 | 45 |
LEU3_BRANA | 63 | 66 | 91 |
MDHC1_ARATH | 36 | 35 | 53 |
MYRO_BRANA | 98 | 111 | 112 |
OBP1A_ARATH | 36 | 41 | 39 |
SODM2_ARATH | 30 | 34 | 38 |
VCL22_ARATH | 115 | 118 | 131 |
In total | 999 | 1086 | 1146 |
Bioactivity | Papain Digestion | Ficin Digestion | Bromelain Digestion |
---|---|---|---|
ACE inhibitor | 446 | 428 | 464 |
ACE2 inhibitor | 11 | 9 | 12 |
activating ubiquitin-mediated proteolysis | 0 | 0 | 3 |
alanine carboxypeptidase inhibitor | 0 | 0 | 13 |
alpha-glucosidase inhibitor | 9 | 6 | 22 |
antiamnestic | 10 | 13 | 17 |
antibacterial | 0 | 1 | 0 |
anticancer | 1 | 1 | 1 |
anti-inflammatory | 3 | 3 | 0 |
antioxidative | 40 | 74 | 63 |
antithrombotic | 8 | 11 | 17 |
bacterial permease ligand | 1 | 0 | 0 |
binding | 15 | 25 | 26 |
calpain I inhibitor | 8 | 11 | 0 |
CaMPDE inhibitor | 9 | 19 | 25 |
citrate lyase deacetylase inhibitor | 3 | 0 | 0 |
dipeptidyl peptidase III inhibitor | 38 | 38 | 94 |
dipeptidyl peptidase IV inhibitor | 597 | 528 | 610 |
glutamate carboxypeptidase II inhibitor | 14 | 5 | 23 |
glutamate carboxypeptidase inhibitor | 5 | 0 | 0 |
HMG-CoA reductase inhibitor | 2 | 3 | 0 |
hypolipidemic | 5 | 10 | 8 |
hypotensive | 0 | 9 | 0 |
hypouricemic | 4 | 16 | 6 |
immunostimulating | 3 | 0 | 6 |
inhibitor of tripeptidyl peptidase II | 37 | 29 | 0 |
lactocepin inhibitor | 8 | 8 | 11 |
neprilysin 2 inhibitor | 8 | 11 | 0 |
neuropeptide | 32 | 33 | 50 |
PAM inhibitor | 8 | 11 | 17 |
pancreatic lipase inhibitor | 5 | 8 | 1 |
peptidylprolyl isomerase inhibitor | 4 | 0 | 0 |
phospholipase A2 inhibitor | 1 | 3 | 0 |
regulating | 16 | 18 | 17 |
renin inhibitor | 34 | 36 | 42 |
stimulating | 21 | 21 | 20 |
thymidylate synthase inhibitor | 3 | 0 | 0 |
tubulin-tyrosine ligase inhibitor | 5 | 12 | 12 |
xaa-pro inhibitor | 10 | 10 | 11 |
Total peptides | 1424 | 1410 | 1592 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbacz, K.; Wawrzykowski, J.; Czelej, M.; Waśko, A. In Silico Proteomic Profiling and Bioactive Peptide Potential of Rapeseed Meal. Foods 2025, 14, 2451. https://doi.org/10.3390/foods14142451
Garbacz K, Wawrzykowski J, Czelej M, Waśko A. In Silico Proteomic Profiling and Bioactive Peptide Potential of Rapeseed Meal. Foods. 2025; 14(14):2451. https://doi.org/10.3390/foods14142451
Chicago/Turabian StyleGarbacz, Katarzyna, Jacek Wawrzykowski, Michał Czelej, and Adam Waśko. 2025. "In Silico Proteomic Profiling and Bioactive Peptide Potential of Rapeseed Meal" Foods 14, no. 14: 2451. https://doi.org/10.3390/foods14142451
APA StyleGarbacz, K., Wawrzykowski, J., Czelej, M., & Waśko, A. (2025). In Silico Proteomic Profiling and Bioactive Peptide Potential of Rapeseed Meal. Foods, 14(14), 2451. https://doi.org/10.3390/foods14142451