Bactericidal Effects of Pulsed-Light Treatment Against Burkholderia gladioli pv. cocovenenans in Auricularia: Mechanisms and Influences
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganisms and Equipment
2.2. Inactivation Studies
2.3. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)
2.4. DNA and Protein Leakage
2.5. ATP Content
2.6. ROS Release
2.7. Color and Texture Change
2.8. Statistical Analysis
3. Results and Discussion
3.1. Impact of Initial Microbial Biomass and PL Parameters on Inactivation Efficacy
3.2. Inactivation of BGC on Auricularia
3.3. Inactivation Model Fitting
3.4. Impact of PL on Bacterial Cell Morphology
3.5. DNA and Protein Leakage, ATP Content, and ROS Release
3.6. Color and Texture Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Wang, L.; Zhang, D.; Li, R.; Cheng, T.; Zhang, Y.; Liu, X.; Wong, G.; Tang, Y.; Wang, H.; et al. Comparative transcriptome analysis reveals relationship of three major domesticated varieties of Auricularia auricula-judae. Sci. Rep. 2019, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Nakyam, T.; Wattanathorn, J.; Thukham-Mee, W.; Muchimapura, S. The Polyherbal Functional Ingredient Containing Ginger, Chinese Date, and Wood Ear Mushroom Protects against Dementia following Metabolic Syndrome. BioMed Res. Int. 2023, 2023, 9911397. [Google Scholar] [CrossRef]
- Yu, X.; Wang, R.; Lai, B.; Tan, M. Effect of Auricularia auricula fermentation broth on the liver and stomach of mice with acute alcoholism. Food Funct. 2021, 12, 191–202. [Google Scholar] [CrossRef]
- Islam, T.; Ganesan, K.; Xu, B. Insights into health-promoting effects of Jew’s ear (Auricularia auricula-judae). Trends Food Sci. Technol. 2021, 114, 552–569. [Google Scholar] [CrossRef]
- Xiang, H.; Sun-Waterhouse, D.; Cui, C. Hypoglycemic polysaccharides from Auricularia auricula and Auricularia polytricha inhibit oxidative stress, NF-κB signaling and proinflammatory cytokine production in streptozotocin-induced diabetic mice. Food Sci. Hum. Wellness 2021, 10, 87–93. [Google Scholar] [CrossRef]
- Yao, Y.; Zhong, X.; Zhou, Y.; Zhang, H.; Zhao, D.; Zhang, W.; Liu, Y.; Xu, J.; Xie, C.; Yu, C.; et al. Exploring the characteristics of Burkholderia gladioli pathovar cocovenenans: Growth, bongkrekic acid production, and potential risks of food contamination in wet rice noodles and vermicelli. Food Microbiol. 2024, 120, 104449. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chang, Y.; Wu, Y.; Liu, M. A DNAzymes-in-droplets assay for Burkholderia gladioli pathovar cocovenenans with single-bacterium sensitivity. Chem. Sci. 2024, 15, 2996–3002. [Google Scholar] [CrossRef]
- Anwar, M.; Kasper, A.; Steck, A.R.; Schier, J.G. Bongkrekic Acid-A Review of a Lesser-Known Mitochondrial Toxin. J. Med. Toxicol. 2017, 13, 173–179. [Google Scholar] [CrossRef]
- Shi, R.J.; Long, C.Y.; Dai, Y.D.; Huang, Q.; Gao, Y.Z.; Zhang, N.P.; Chen, Y.; Liu, S.; Ma, Q.; Quan, L.; et al. Bongkrekic acid poisoning: Severe liver function damage combined with multiple organ failure caused by eating spoiled food. Leg. Med. 2019, 41, 101622. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, R.; Liang, Q.; Song, L.; Huang, J.; Lang, N.; Zhou, J. A Foodborne Bongkrekic Acid Poisoning Incident-Heilongjiang Province, 2020. China CDC Wkly. 2020, 2, 975–978. [Google Scholar] [CrossRef]
- Iqbal, A.; Nwokocha, G.; Tiwari, V.; Barphagha, I.K.; Grove, A.; Ham, J.H.; Doerrler, W.T. A membrane protein of the rice pathogen Burkholderia glumae required for oxalic acid secretion and quorum sensing. Mol. Plant Pathol. 2023, 24, 1400–1413. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). Irradiation in the Production, Processing, and Handling of Food. Code Fed. Regul. Title 2003, 21(179), 41. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=179.41 (accessed on 19 February 2025).
- Dorbani, I.; Berberian, A.; Riedel, C.; Duport, C.; Carlin, F. Comparing resistance of bacterial spores and fungal conidia to pulsed light and UVC radiation at a wavelength of 254 nm. Food Microbiol. 2024, 121, 104518. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, R.; Degala, H.L.; Biswal, A.K.; Bardsley, C.A.; Mahapatra, A.K. Effects of intense pulsed light on inactivation of Salmonella Typhimurium and quality characteristics of pecan halves. Lwt-Food Sci. Technol. 2024, 203, 116344. [Google Scholar] [CrossRef]
- Hierro, E.; Hospital, X.F.; Fernandez-Leon, M.F.; Caballero, N.; Cerdan, B.; Fernandez, M. Impact of voltage and pulse delivery mode on the efficacy of pulsed light for the inactivation of Listeria. Innov. Food Sci. Emerg. Technol. 2022, 77, 102973. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Park, B.W.; Chung, M.-S. Comparison of microbial reduction effect of intense pulsed light according to growth stage and population density of Escherichia coli ATCC 25922 using a double Weibull model. Food Res. Int. 2023, 164, 112353. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Jung, E.-B.; Chung, M.-S. Importance of intense pulsed light device design on the reduction of indigenous microorganisms and enhancement of vitamin D2 2 levels in shiitake mushroom (Lentinula edodes) pills. J. Food Eng. 2024, 383, 112243. [Google Scholar] [CrossRef]
- Pratap-Singh, A.; Mandal, R. Non-thermal processing of watermelon and red grape juices in thin-profile continuous-flow pulsed UV light reactors: Effect on microbiological safety and nutritional value. Lwt-Food Sci. Technol. 2024, 191, 115516. [Google Scholar] [CrossRef]
- Kim, H.-J.; Jubinville, E.; Goulet-Beaulieu, V.; Jean, J. Inactivation of murine norovirus and hepatitis A virus on various frozen fruits using pulsed light. Int. J. Food Microbiol. 2024, 424, 110851. [Google Scholar] [CrossRef]
- Gomez-Lopez, V.M.; Pataro, G.; Tiwari, B.; Gozzi, M.; Meireles, M.A.A.; Wang, S.; Guamis, B.; Pan, Z.; Ramaswamy, H.; Sastry, S.; et al. Guidelines on reporting treatment conditions for emerging technologies in food processing. Crit. Rev. Food Sci. Nutr. 2022, 62, 5925–5949. [Google Scholar] [CrossRef]
- Niu, C.; Song, X.; Hao, J.; Zhao, M.; Yuan, Y.; Liu, J.; Yue, T. Identification of Burkholderia gladioli pv. cocovenenans in Black Fungus and Efficient Recognition of Bongkrekic Acid and Toxoflavin Producing Phenotype by Back Propagation Neural Network. Foods 2024, 13, 351. [Google Scholar] [CrossRef] [PubMed]
- Geeraerd, A.H.; Valdramidis, V.P.; Van Impe, J.F. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 2005, 102, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Dam, M.v.; Breeuwsma, S.; Haaster, A.v. Onderzoek Naar de Werking van de F533 UV Lamp op de Doding van Fusariums; Praktijkonderzoek Plant & Omgeving (Wageningen UR): Wageningen, The Netherlands, 2011. [Google Scholar]
- Gao, F.; Lyu, C.; Ning, Z.; Zhao, S.; Shao, L.; Xu, X.; Wang, H. Inactivation of Salmonella biofilms formed on stainless steel surfaces by pulsed light. Food Control 2023, 153, 109955. [Google Scholar] [CrossRef]
- Izmirlioglu, G.; Ouyang, B.; Demirci, A. Utilization of pulsed UV light for inactivation of Salmonella Enteritidis on shelled walnuts. LWT 2020, 134, 110023. [Google Scholar] [CrossRef]
- Pollock, A.M.; Singh, A.P.; Ramaswamy, H.S.; Ngadi, M.O. Pulsed light destruction kinetics of L. monocytogenes. Lwt-Food Sci. Technol. 2017, 84, 114–121. [Google Scholar] [CrossRef]
- Balaev, A.E.; Dvoretski, K.N.; Doubrovski, V.A. Angular dependence of light scattering intensity from randomly oriented rod-shaped bacterial cells. In Proceedings of the 2002 Saratov Fall Meeting, Saratov, Russia, 1–4 October 2002. [Google Scholar]
- Bialka, K.L.; Demirci, A. Efficacy of Pulsed UV-Light for the Decontamination of Escherichia coli O157:H7 and Salmonella spp. on Raspberries and Strawberries. J. Food Sci. 2008, 73, M201–M207. [Google Scholar] [CrossRef]
- Jubinville, E.; Trudel-Ferland, M.; Amyot, J.; Jean, J. Inactivation of hepatitis A virus and norovirus on berries by broad-spectrum pulsed light. Int. J. Food Microbiol. 2022, 364, 109529. [Google Scholar] [CrossRef]
- Ding, H.; Wang, Z.; Yuan, Y.; Yue, T. Inactivation of Alicyclobacillus acidoterrestris in apple juice using pulsed light. Food Control 2024, 163, 110439. [Google Scholar] [CrossRef]
- Peleg, M. On calculating sterility in thermal and non-thermal preservation methods. Food Res. Int. 1999, 32, 271–278. [Google Scholar] [CrossRef]
- Bisquert, R.; Muñiz-Calvo, S.; Guillamón, J.M. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae. Front. Microbiol. 2018, 9, 318. [Google Scholar] [CrossRef] [PubMed]
- Clair, G.; Esbelin, J.; Malléa, S.; Bornard, I.; Carlin, F. The spore coat is essential for Bacillus subtilis spore resistance to pulsed light, and pulsed light treatment eliminates some spore coat proteins. Int. J. Food Microbiol. 2020, 323, 108592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, L.; Zhong, D. Photolyase: Dynamics and Mechanisms of Repair of Sun-Induced DNA Damage. Photochem. Photobiol. 2017, 93, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, S.; Lacroix, M. Resistance of the genome of Escherichia coli and Listeria monocytogenes to irradiation evaluated by the induction of cyclobutane pyrimidine dimers and 6-4 photoproducts using gamma and UV-C radiations. Radiat. Phys. Chem. 2012, 81, 1193–1197. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Li, H.; Ren, Y.; Wang, Y.; Huang, J.; Wang, Z.; Yue, T.; Gao, Z. Non-thermal treatments for the control of endogenous formaldehyde from Auricularia auricula and their effects on its nutritional characteristics. Food Control 2022, 142, 109235. [Google Scholar] [CrossRef]
- Chang, P.K.; Cary, J.W.; Lebar, M.D. Biosynthesis of conidial and sclerotial pigments in Aspergillus species. Appl. Microbiol. Biotechnol. 2020, 104, 2277–2286. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Lee, J.-Y.; Min, S.C.; Chung, M.-S. Application of intense pulsed light-plasma-ultraviolet combined system on granular and powdered foods for microbial inactivation. Lwt-Food Sci. Technol. 2023, 174, 114447. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Ukuku, D.O.; Olanya, O.M.; Sokorai, K.; Fan, X. Effects of pulsed light and aerosolized formic acid treatments on inactivation of Salmonella enterica on cherry tomato, reduction of microbial loads, and preservation of fruit quality. Food Control 2022, 136, 108667. [Google Scholar] [CrossRef]
- Kramer, B.; Wunderlich, J.; Muranyi, P. Recent findings in pulsed light disinfection. J. Appl. Microbiol. 2017, 122, 830–856. [Google Scholar] [CrossRef]
- Martinez, S.; Humery, A.; Groleau, M.-C.; Déziel, E. Quorum Sensing Controls Both Rhamnolipid and Polyhydroxyalkanoate Production in Burkholderia thailandensis Through ScmR Regulation. Front. Bioeng. Biotechnol. 2020, 8, 1033. [Google Scholar] [CrossRef]
- Cassar, J.R.; Mills, E.W.; Demirci, A. Characterization of pulsed light for microbial inactivation. J. Food Eng. 2022, 334, 111152. [Google Scholar] [CrossRef]
- Baltazar Lde, M.; Soares, B.M.; Carneiro, H.C.; Avila, T.V.; Gouveia, L.F.; Souza, D.G.; Ferreira, M.V.; Pinotti, M.; Santos Dde, A.; Cisalpino, P.S. Photodynamic inhibition of Trichophyton rubrum: In vitro activity and the role of oxidative and nitrosative bursts in fungal death. J. Antimicrob. Chemother. 2013, 68, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Baptista, E.; Aymerich, T.; Alves, S.P.; Gama, L.T.; Fraqueza, M.J. Inactivation of Listeria monocytogenes by pulsed light in packaged and sliced salpicao, a ready-to-eat traditional cured smoked meat sausage. Lwt-Food Sci. Technol. 2023, 179, 114641. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Tewari, J.C.; Irudayaraj, J.; Demirci, A. Microscopic and Spectroscopic Evaluation of Inactivation of Staphylococcus aureus by Pulsed UV Light and Infrared Heating. Food Bioprocess Technol. 2010, 3, 93–104. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Antimicrobial mechanism of pulsed light for the control of Escherichia coli O157:H7 and its application in carrot juice. Food Control 2019, 106, 106751. [Google Scholar] [CrossRef]
- Hatsugai, N.; Perez Koldenkova, V.; Imamura, H.; Noji, H.; Nagai, T. Changes in Cytosolic ATP Levels and Intracellular Morphology during Bacteria-Induced Hypersensitive Cell Death as Revealed by Real-Time Fluorescence Microscopy Imaging. Plant Cell Physiol. 2012, 53, 1768–1775. [Google Scholar] [CrossRef]
- Eguchi, Y.; Shimizu, S.; Tsujimoto, Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 1997, 57, 1835–1840. [Google Scholar]
- Fine, F.; Gervais, P. Efficiency of Pulsed UV Light for Microbial Decontamination of Food Powders. J. Food Prot. 2004, 67, 787–792. [Google Scholar] [CrossRef]
- Rosenthal, A.J.; Thompson, P. What is cohesiveness?-A linguistic exploration of the food texture testing literature. J. Texture Stud. 2021, 52, 294–302. [Google Scholar] [CrossRef]
- Ramos-Villarroel, A.Y.; Aron-Maftei, N.; Martín-Belloso, O.; Soliva-Fortuny, R. The role of pulsed light spectral distribution in the inactivation of Escherichia coli and Listeria innocua on fresh-cut mushrooms. Food Control 2012, 24, 206–213. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, G.; Ji, S.; Zou, L.; Liang, J.; Walayat, N.; Chen, J.; Lyu, F.; Ding, Y. Effect of pulse light on the quality of refrigerated (4 °C) large yellow croaker (Pseudosciaena crocea). Lwt-Food Sci. Technol. 2022, 167, 113855. [Google Scholar] [CrossRef]
Substrate | Parameters | Model | |||||
---|---|---|---|---|---|---|---|
Log-Linear | RMSE | R2 | Weibull | RMSE | R2 | ||
PBS | kmax [cm2/J] | 2.592 ± 0.817 | 1.752 | 0.715 | - | 0.430 | 0.987 |
Log10N0 [CFU/mL] | 5.212 ± 1.268 | 7.530 ± 0.430 | |||||
δ [J/cm2] | - | 0.002 ± 0.003 | |||||
p [-] | - | 0.257 ± 0.058 | |||||
Auricularia auricula | kmax [cm2/J] | 0.209 ± 0.023 | 0.314 | 0.942 | - | 0.308 | 0.955 |
Log10N0 [CFU/mL] | 6.724 ± 0.214 | 6.986 ± 0.302 | |||||
δ [J/cm2] | - | 6.853 ± 3.110 | |||||
p [-] | - | 0.730 ± 0.179 | |||||
Auricularia cornea var. Li. | kmax [cm2/J] | 0.216 ± 0.034 | 0.464 | 0.888 | - | 0.372 | 0.943 |
Log10N0 [CFU/mL] | 6.491 ± 0.316 | 7.040 ± 0.369 | |||||
δ [J/cm2] | - | 3.379 ± 2.456 | |||||
p [-] | - | 0.543 ± 0.154 |
Substrates | Indicators | Treatment | |||
---|---|---|---|---|---|
Control | 11.80 J/cm2 | 23.60 J/cm2 | 35.40 J/cm2 | ||
Auricularia auricula (AA) | L* | 17.03 ± 0.55 b | 20.81 ± 0.38 a | 21.37 ± 1.56 a | 20.22 ± 0.87 a |
a* | 3.35 ± 0.26 a | 1.35 ± 0.27 b | 2.43 ± 0.31 a | 2.81 ± 0.28 a | |
b* | 2.87 ± 0.29 a | 1.14 ± 0.38 b | 2.03 ± 0.09 ab | 2.68 ± 0.49 a | |
ΔE | 0.41 ± 0.63 b | 4.50 ± 0.47 a | 4.34 ± 1.34 ab | 3.01 ± 0.93 ab | |
Auricularia cornea var. Li. (AC) | L* | 56.49 ± 0.70 a | 49.67 ± 0.53 b | 58.93 ± 1.06 a | 55.60 ± 0.31 a |
a* | 1.07 ± 0.10 b | 2.86 ± 0.30 a | 1.92 ± 0.10 a | 0.65 ± 0.27 c | |
b* | 12.25 ± 0.62 a | 8.19 ± 0.50 b | 8.24 ± 0.80 b | 8.53 ± 0.13 b | |
ΔE | 0.80 ± 0.74 c | 7.67 ± 0.23 a | 5.21 ± 1.26 ab | 3.89 ± 0.17 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, C.; Hao, J.; Hu, Z.; Song, Y.; Ren, Y.; Wu, Y.; Yang, J.; Song, Z.; Yuan, Y.; Yue, T. Bactericidal Effects of Pulsed-Light Treatment Against Burkholderia gladioli pv. cocovenenans in Auricularia: Mechanisms and Influences. Foods 2025, 14, 2246. https://doi.org/10.3390/foods14132246
Niu C, Hao J, Hu Z, Song Y, Ren Y, Wu Y, Yang J, Song Z, Yuan Y, Yue T. Bactericidal Effects of Pulsed-Light Treatment Against Burkholderia gladioli pv. cocovenenans in Auricularia: Mechanisms and Influences. Foods. 2025; 14(13):2246. https://doi.org/10.3390/foods14132246
Chicago/Turabian StyleNiu, Chen, Jin Hao, Zeyu Hu, Yuchen Song, Yilin Ren, Yuanchun Wu, Jing Yang, Zihan Song, Yahong Yuan, and Tianli Yue. 2025. "Bactericidal Effects of Pulsed-Light Treatment Against Burkholderia gladioli pv. cocovenenans in Auricularia: Mechanisms and Influences" Foods 14, no. 13: 2246. https://doi.org/10.3390/foods14132246
APA StyleNiu, C., Hao, J., Hu, Z., Song, Y., Ren, Y., Wu, Y., Yang, J., Song, Z., Yuan, Y., & Yue, T. (2025). Bactericidal Effects of Pulsed-Light Treatment Against Burkholderia gladioli pv. cocovenenans in Auricularia: Mechanisms and Influences. Foods, 14(13), 2246. https://doi.org/10.3390/foods14132246