Global Comparison and Future Trends of Major Food Proteins: Can Shellfish Contribute to Sustainable Food Security?
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection Method
2.2. Production-Related GHG Emissions, Land Use, and Carbon Capture Capacity
3. Results
3.1. Worldwide Protein Consumption by Source
3.2. Carbon Footprint of Protein Sources and Land Use
3.3. Carbon Capture Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kc, S.; Dhakad, M.; Potančoková, M.; Adhikari, S.; Yildiz, D.; Mamolo, M.; Sobotka, T.; Zeman, K.; Abel, G.; Lutz, W.; et al. Updating the Shared Socioeconomic Pathways (SSPs) Global Population and Human Capital Projections. Available online: https://pure.iiasa.ac.at/id/eprint/19487/ (accessed on 13 June 2025).
- Wei, L.; Li, C.; Wang, J.; Wang, X.; Wang, Z.; Cui, C.; Peng, S.; Liu, Y.; Yu, S.; Wang, L.; et al. Rising Middle and Rich Classes Drove China’s Carbon Emissions. Resour. Conserv. Recycl. 2020, 159, 104839. [Google Scholar] [CrossRef]
- Colgrave, M.L.; Dominik, S.; Tobin, A.B.; Stockmann, R.; Simon, C.; Howitt, C.A.; Belobrajdic, D.P.; Paull, C.; Vanhercke, T. Perspectives on Future Protein Production. J. Agric. Food Chem. 2021, 69, 15076–15083. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Fanzo, J. Population and Food Systems: What Does the Future Hold? Popul. Environ. 2023, 45, 20. [Google Scholar] [CrossRef]
- Steenson, S.; Buttriss, J.L. The Challenges of Defining a Healthy and ‘Sustainable’ Diet. Nutr. Bull. 2020, 45, 206–222. [Google Scholar] [CrossRef]
- Henchion, M.; Moloney, A.P.; Hyland, J.; Zimmermann, J.; McCarthy, S. Review: Trends for Meat, Milk and Egg Consumption for the next Decades and the Role Played by Livestock Systems in the Global Production of Proteins. Animal 2021, 15, 100287. [Google Scholar] [CrossRef]
- Frezal, C.; Nenert, C.; Gay, H. Meat Protein Alternatives: Opportunities and Challenges for Food Systems’ Transformation; OECD Publishing: Paris, France, 2022. [Google Scholar]
- Malila, Y.; Owolabi, I.O.; Chotanaphuti, T.; Sakdibhornssup, N.; Elliott, C.T.; Visessanguan, W.; Karoonuthaisiri, N.; Petchkongkaew, A. Current Challenges of Alternative Proteins as Future Foods. npj Sci. Food 2024, 8, 53. [Google Scholar] [CrossRef]
- Ziska, L.H. Rising Carbon Dioxide and Global Nutrition: Evidence and Action Needed. Plants 2022, 11, 1000. [Google Scholar] [CrossRef]
- Mylan, J.; Andrews, J.; Maye, D. The Big Business of Sustainable Food Production and Consumption: Exploring the Transition to Alternative Proteins. Proc. Natl. Acad. Sci. USA 2023, 120, e2207782120. [Google Scholar] [CrossRef]
- Hemathilake, D.M.K.S.; Gunathilake, D.M.C.C. Chapter 31—Agricultural Productivity and Food Supply to Meet Increased Demands. In Future Foods; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 539–553. ISBN 978-0-323-91001-9. [Google Scholar]
- Su, C.-W.; Khan, K.; Umar, M.; Zhang, W. Does Renewable Energy Redefine Geopolitical Risks? Energy Policy 2021, 158, 112566. [Google Scholar] [CrossRef]
- Iacobuţă, G.I.; Brandi, C.; Dzebo, A.; Elizalde Duron, S.D. Aligning Climate and Sustainable Development Finance through an SDG Lens. The Role of Development Assistance in Implementing the Paris Agreement. Glob. Environ. Change 2022, 74, 102509. [Google Scholar] [CrossRef]
- Jeger, M.; Beresford, R.; Bock, C.; Brown, N.; Fox, A.; Newton, A.; Vicent, A.; Xu, X.; Yuen, J. Global Challenges Facing Plant Pathology: Multidisciplinary Approaches to Meet the Food Security and Environmental Challenges in the Mid-Twenty-First Century. CABI Agric. Biosci. 2021, 2, 20. [Google Scholar] [CrossRef]
- Gil, M.; Rudy, M.; Duma-Kocan, P.; Stanisławczyk, R.; Krajewska, A.; Dziki, D.; Hassoon, W.H. Sustainability of Alternatives to Animal Protein Sources, a Comprehensive Review. Sustainability 2024, 16, 7701. [Google Scholar] [CrossRef]
- Jain, S.; Srivastava, A.; Khadke, L.; Chatterjee, U.; Elbeltagi, A. Global-Scale Water Security and Desertification Management amidst Climate Change. Environ. Sci. Pollut. Res. 2024, 31, 58720–58744. [Google Scholar] [CrossRef]
- Arshad, N.; Samat, N.; Lee, L.K. Insight Into the Relation Between Nutritional Benefits of Aquaculture Products and Its Consumption Hazards: A Global Viewpoint. Front. Mar. Sci. 2022, 9, 925463. [Google Scholar] [CrossRef]
- Mesquita, A.F.; Gonçalves, F.J.M.; Gonçalves, A.M.M.; Mesquita, A.F.; Gonçalves, F.J.M.; Gonçalves, A.M.M. Marine Bivalves’ Ecological Roles and Humans-Environmental Interactions to Achieve Sustainable Aquatic Ecosystems. In Marine Ecosystems—Biodiversity, Ecosystem Services and Human Impacts; IntechOpen: London, UK, 2023; ISBN 978-1-83968-460-9. [Google Scholar]
- Zhang, H.; Cheong, K.-L.; Tan, K. Bivalves as Climate-Friendly High Quality Animal Protein: A Comprehensive Review. Food Secur. 2025, 17, 739–748. [Google Scholar] [CrossRef]
- Cellura, M.; Cusenza, M.A.; Longo, S.; Luu, L.Q.; Skurk, T. Life Cycle Environmental Impacts and Health Effects of Protein-Rich Food as Meat Alternatives: A Review. Sustainability 2022, 14, 979. [Google Scholar] [CrossRef]
- Detzel, A.; Krüger, M.; Busch, M.; Blanco-Gutiérrez, I.; Varela, C.; Manners, R.; Bez, J.; Zannini, E. Life Cycle Assessment of Animal-Based Foods and Plant-Based Protein-Rich Alternatives: An Environmental Perspective. J. Sci. Food Agric. 2022, 102, 5098–5110. [Google Scholar] [CrossRef]
- Guetterman, T.C.; Fetters, M.D. Two Methodological Approaches to the Integration of Mixed Methods and Case Study Designs: A Systematic Review. Am. Behav. Sci. 2018, 62, 900–918. [Google Scholar] [CrossRef]
- Food Balance Sheets 2010–2022. Global, Regional and Country Trends. Available online: https://www.fao.org/statistics/highlights-archive/highlights-detail/food-balance-sheets-2010-2022-global-regional-and-country-trends/en (accessed on 13 June 2025).
- Drewnowski, A. The Nutrient Rich Foods Index Helps to Identify Healthy, Affordable Foods. Am. J. Clin. Nutr. 2010, 91, 1095S–1101S. [Google Scholar] [CrossRef]
- Drewnowski, A.; Burton-Freeman, B. A New Category-Specific Nutrient Rich Food (NRF9f.3) Score Adds Flavonoids to Assess Nutrient Density of Fruit. Food Funct. 2020, 11, 123–130. [Google Scholar] [CrossRef]
- Fry, J.P.; Mailloux, N.A.; Love, D.C.; Milli, M.C.; Cao, L. Feed Conversion Efficiency in Aquaculture: Do We Measure It Correctly? Environ. Res. Lett. 2018, 13, 024017. [Google Scholar] [CrossRef]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of Byproducts and Waste Materials from Meat, Poultry and Fish Processing Industries: A Review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Lange, K.W.; Nakamura, Y. Edible Insects as Future Food: Chances and Challenges. J. Future Foods 2021, 1, 38–46. [Google Scholar] [CrossRef]
- Wold, J.P.; Måge, I.; Løvland, A.; Sanden, K.W.; Ofstad, R. Near-Infrared Spectroscopy Detects Woody Breast Syndrome in Chicken Fillets by the Markers Protein Content and Degree of Water Binding. Poult. Sci. 2019, 98, 480–490. [Google Scholar] [CrossRef]
- Bianchi, M.; Hallström, E.; Parker, R.W.R.; Mifflin, K.; Tyedmers, P.; Ziegler, F. Assessing Seafood Nutritional Diversity Together with Climate Impacts Informs More Comprehensive Dietary Advice. Commun. Earth Environ. 2022, 3, 188. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of Broiler Chicken Meat Quality and Factors Affecting Them: A Review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Bohrer, B.M. Review: Nutrient Density and Nutritional Value of Meat Products and Non-Meat Foods High in Protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Cesevičienė, J.; Gorash, A.; Liatukas, Ž.; Armonienė, R.; Ruzgas, V.; Statkevičiūtė, G.; Jaškūnė, K.; Brazauskas, G. Grain Yield Performance and Quality Characteristics of Waxy and Non-Waxy Winter Wheat Cultivars under High and Low-Input Farming Systems. Plants 2022, 11, 882. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.-J. Global Trends in Wheat Production, Consumption and Trade. In Wheat Improvement: Food Security in a Changing Climate; Reynolds, M.P., Braun, H.-J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 47–66. ISBN 978-3-030-90673-3. [Google Scholar]
- Ritchie, H.; Roser, M.; Rosado, P. CO2 and Greenhouse Gas Emissions. Our World Data 2020. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 12 December 2024).
- Nile, S.H.; Venkidasamy, B.; Samynathan, R.; Nile, A.; Shao, K.; Chen, T.; Sun, M.; Khan, M.U.; Dutta, N.; Thiruvengadam, M.; et al. Soybean Processing Wastes: Novel Insights on Their Production, Extraction of Isoflavones, and Their Therapeutic Properties. J. Agric. Food Chem. 2022, 70, 6849–6863. [Google Scholar] [CrossRef]
- Holliday, M.C.; Parsons, D.R.; Zein, S.H. Agricultural Pea Waste as a Low-Cost Pollutant Biosorbent for Methylene Blue Removal: Adsorption Kinetics, Isotherm And Thermodynamic Studies. Biomass Convers. Biorefinery 2022, 14, 6671–6685. [Google Scholar] [CrossRef]
- Rocker, M.; Mock, T.; Turchini, G.; Francis, D. The Judicious Use of Finite Marine Resources Can Sustain Atlantic Salmon (Salmo salar) Aquaculture to 2100 and Beyond. Nat. Food 2022, 3, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Fouda, T. Using Green Cold Pressing to Produce High Quality Fish Oil From Industrial Salmon Waste. J. Zool. Res. 2020, 2, 14–19. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-Year Retrospective Review of Global Aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- Kristiansen, T.S.; Madaro, A.; Stien, L.H.; Bracke, M.B.M.; Noble, C. Chapter 6—Theoretical Basis and Principles for Welfare Assessment of Farmed Fish. In Fish Physiology; Benfey, T.J., Farrell, A.P., Brauner, C.J., Eds.; Aquaculture; Academic Press: Cambridge, MA, USA, 2020; Volume 38, pp. 193–236. [Google Scholar]
- Skałecki, P.; Florek, M.; Litwińczuk, A.; Staszowska, A.; Kaliniak, A. The Nutritional Value and Chemical Composition of Muscle Tissue of Carp (Cyprinus carpio L.) and Rainbow Trout (Oncorhynchus mykiss Walb.) Obtained from Fish Farms in the Lublin Region. Sci. Ann. Pol. Soc. Anim. Prod. 2013, 9, 57–62. [Google Scholar]
- Arenna; Goddard, E.; Muringai, V. Consumer Purchase Intentions for Pork with Enhanced Carnosine–A Functional Food. Can. J. Agric. Econ./Rev. Can. D’agroeconomie 2019, 67, 151–169. [Google Scholar] [CrossRef]
- Weru, J.; Chege, P.; Wanjoya, A.; Kinyuru, J. Comparison of Healthfulness of Conventional Meats and Edible Insects in Sub-Saharan Africa Using Three Nutrient Profiling Models. Bull. Natl. Res. Cent. 2022, 46, 43. [Google Scholar] [CrossRef]
- Payne, C.L.R.; Scarborough, P.; Rayner, M.; Nonaka, K. A Systematic Review of Nutrient Composition Data Available for Twelve Commercially Available Edible Insects, and Comparison with Reference Values. Trends Food Sci. Technol. 2016, 47, 69–77. [Google Scholar] [CrossRef]
- Chriki, S.; Hocquette, J.-F. The Myth of Cultured Meat: A Review. Front. Nutr. 2020, 7, 7. [Google Scholar] [CrossRef]
- Tamburini, E.; Turolla, E.; Lanzoni, M.; Moore, D.; Castaldelli, G. Manila Clam and Mediterranean Mussel Aquaculture Is Sustainable and a Net Carbon Sink. Sci. Total Environ. 2022, 848, 157508. [Google Scholar] [CrossRef]
- Filgueira, R.; Guyondet, T.; Comeau, L.A.; Tremblay, R. Bivalve Aquaculture-Environment Interactions in the Context of Climate Change. Glob. Change Biol. 2016, 22, 3901–3913. [Google Scholar] [CrossRef]
- Jansen, H.; van den Bogaart, L. Blue Carbon by Marine Bivalves: Perspective of Carbon Sequestration by Cultured and Wild Bivalve Stocks in the Dutch Coastal Areas; Wageningen Marine Research: Yerseke, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S.; Glaser, M. Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.; Heilweck, M.; Petros, P. Aquaculture: Ocean Blue Carbon Meets UN-SDGS; Sustainable Development Goals Series; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-030-94845-0. [Google Scholar]
- Nijdam, D.; Rood, T.; Westhoek, H. The Price of Protein: Review of Land Use and Carbon Footprints from Life Cycle Assessments of Animal Food Products and Their Substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Tetteh, H.; Bala, A.; Fullana-i-Palmer, P.; Balcells, M.; Margallo, M.; Aldaco, R.; Puig, R. Carbon Footprint: The Case of Four Chicken Meat Products Sold on the Spanish Market. Foods 2022, 11, 3712. [Google Scholar] [CrossRef] [PubMed]
- Vitali, A.; Grossi, G.; Martino, G.; Bernabucci, U.; Nardone, A.; Lacetera, N. Carbon Footprint of Organic Beef Meat from Farm to Fork: A Case Study of Short Supply Chain. J. Sci. Food Agric. 2018, 98, 5518–5524. [Google Scholar] [CrossRef]
- Buratti, C.; Fantozzi, F.; Barbanera, M.; Lascaro, E.; Chiorri, M.; Cecchini, L. Carbon Footprint of Conventional and Organic Beef Production Systems: An Italian Case Study. Sci. Total Environ. 2017, 576, 129–137. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Hermansen, J.E.; Mogensen, L. Environmental Consequences of Different Beef Production Systems in the EU. J. Clean. Prod. 2010, 18, 756–766. [Google Scholar] [CrossRef]
- Chiriacò, M.V.; Grossi, G.; Castaldi, S.; Valentini, R. The Contribution to Climate Change of the Organic versus Conventional Wheat Farming: A Case Study on the Carbon Footprint of Wholemeal Bread Production in Italy. J. Clean. Prod. 2017, 153, 309–319. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Lammel, J.; Barraclough, P.; Kuhlmann, H. Environmental Impact Assessment of Agricultural Production Systems Using the Life Cycle Assessment (LCA) Methodology II. The Application to N Fertilizer Use in Winter Wheat Production Systems. Eur. J. Agron. 2004, 20, 265–279. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Chai, Q.; Lemke, R.L.; Campbell, C.A.; Zentner, R.P. Improving Farming Practices Reduces the Carbon Footprint of Spring Wheat Production. Nat. Commun. 2014, 5, 5012. [Google Scholar] [CrossRef]
- Tidåker, P.; Karlsson Potter, H.; Carlsson, G.; Röös, E. Towards Sustainable Consumption of Legumes: How Origin, Processing and Transport Affect the Environmental Impact of Pulses. Sustain. Prod. Consum. 2021, 27, 496–508. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Hollinger, S.E.; Meyers, T. The Conversion of the Corn/Soybean Ecosystem to No-till Agriculture May Result in a Carbon Sink. Glob. Change Biol. 2005, 11, 1867–1872. [Google Scholar] [CrossRef]
- Wang, J.-K. Conceptual Design of a Microalgae-Based Recirculating Oyster and Shrimp System. Aquac. Eng. 2003, 28, 37–46. [Google Scholar] [CrossRef]
- Liu, Y.; Rosten, T.W.; Henriksen, K.; Hognes, E.S.; Summerfelt, S.; Vinci, B. Comparative Economic Performance and Carbon Footprint of Two Farming Models for Producing Atlantic Salmon (Salmo salar): Land-Based Closed Containment System in Freshwater and Open Net Pen in Seawater. Aquac. Eng. 2016, 71, 1–12. [Google Scholar] [CrossRef]
- Capuno, R.B.A. Environmental Performance of Milkfish Fry Production in Dagupan City, Pangasinan, Philippines. Master’s Thesis, University of the Philippines Los Baños, Los Baños, Philippines, 2015. [Google Scholar]
- Susanto, N.; Prastawa, H.; Sembiring, N.V.; Ulkhaq, M.M. Life Cycle Assessment of High Pressure-Cooked Smoked Milkfish Production: A Case Study in Semarang, Indonesia. EnvironmentAsia 2021, 14, 124–135. [Google Scholar]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.; Teletchea, F.; Tomasso, J.R., Jr. Achieving Sustainable Aquaculture: Historical and Current Perspectives and Future Needs and Challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Samuel-Fitwi, B.; Nagel, F.; Meyer, S.; Schroeder, J.P.; Schulz, C. Comparative Life Cycle Assessment (LCA) of Raising Rainbow Trout (Oncorhynchus mykiss) in Different Production Systems. Aquac. Eng. 2013, 54, 85–92. [Google Scholar] [CrossRef]
- Haslawati, B.; Saadiah, I.; Siti-Dina, R.P.; Othman, M.; Latif, M.T. Environmental Assessment of Giant Freshwater Prawn, Macrobrachium Rosenbergii Farming through Life Cycle Assessment. Sustainability 2022, 14, 14776. [Google Scholar] [CrossRef]
- Cao, L.; Diana, J.S.; Keoleian, G.A.; Lai, Q. Life Cycle Assessment of Chinese Shrimp Farming Systems Targeted for Export and Domestic Sales. Environ. Sci. Technol. 2011, 45, 6531–6538. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Boer, I.J.M. de Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef]
- Nikkhah, A.; Van Haute, S.; Jovanovic, V.; Jung, H.; Dewulf, J.; Cirkovic Velickovic, T.; Ghnimi, S. Life Cycle Assessment of Edible Insects (Protaetia brevitarsis seulensis larvae) as a Future Protein and Fat Source. Sci. Rep. 2021, 11, 14030. [Google Scholar] [CrossRef]
- Mattick, C.S.; Landis, A.E.; Allenby, B.R.; Genovese, N.J. Anticipatory Life Cycle Analysis of In Vitro Biomass Cultivation for Cultured Meat Production in the United States. Environ. Sci. Technol. 2015, 49, 11941–11949. [Google Scholar] [CrossRef] [PubMed]
- de Alvarenga, R.A.F.; Galindro, B.M.; de Fátima Helpa, C.; Soares, S.R. The Recycling of Oyster Shells: An Environmental Analysis Using Life Cycle Assessment. J. Environ. Manag. 2012, 106, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.; Aguiari, L.; Capoccioni, F.; Martinoli, M.; Napolitano, R.; Pirlo, G.; Tonachella, N.; Pulcini, D. Is Manila Clam Farming Environmentally Sustainable? A Life Cycle Assessment (LCA) Approach Applied to an Italian Ruditapes philippinarum Hatchery. Sustainability 2023, 15, 3237. [Google Scholar] [CrossRef]
- Vélez-Henao, J.A.; Weinland, F.; Reintjes, N. Life Cycle Assessment of Aquaculture Bivalve Shellfish Production—A Critical Review of Methodological Trends. Int. J. Life Cycle Assess. 2021, 26, 1943–1958. [Google Scholar] [CrossRef]
- New World Bank Country Classifications by Income Level: 2021–2022. Available online: https://blogs.worldbank.org/opendata/new-world-bank-country-classifications-income-level-2021-2022 (accessed on 3 November 2022).
- Tay, W.; Quek, R.; Lim, J.; Kaur, B.; Ponnalagu, S.; Henry, C.J. Plant-Based Alternative Proteins—Are They Nutritionally More Advantageous? Eur. J. Clin. Nutr. 2023, 77, 1051–1060. [Google Scholar] [CrossRef]
- Sobczak, P.; Grochowicz, J.; Lusiak, P.; Żukiewicz-Sobczak, W. Development of Alternative Protein Sources in Terms of a Sustainable System. Sustainability 2023, 15, 12111. [Google Scholar] [CrossRef]
- Daas, M.C.; van ’t Veer, P.; Temme, E.H.M.; Kuijsten, A.; Gurinović, M.; Biesbroek, S. Diversity of Dietary Protein Patterns across Europe—Impact on Nutritional Quality and Environmental Sustainability. Curr. Res. Food Sci. 2025, 10, 101019. [Google Scholar] [CrossRef]
- Sanchez-Sabate, R.; Sabaté, J. Consumer Attitudes Towards Environmental Concerns of Meat Consumption: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 1220. [Google Scholar] [CrossRef]
- Guillen, J.; Natale, F.; Carvalho, N.; Casey, J.; Hofherr, J.; Druon, J.-N.; Fiore, G.; Gibin, M.; Zanzi, A.; Martinsohn, J.T. Global Seafood Consumption Footprint. AMBIO 2019, 48, 111–122. [Google Scholar] [CrossRef]
- de Carvalho, N.M.; Madureira, A.R.; Pintado, M.E. The Potential of Insects as Food Sources—A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3642–3652. [Google Scholar] [CrossRef]
- van Huis, A. Edible Insects: Challenges and Prospects. Entomol. Res. 2022, 52, 161–177. [Google Scholar] [CrossRef]
- Lee, H.J.; Yong, H.I.; Kim, M.; Choi, Y.-S.; Jo, C. Status of Meat Alternatives and Their Potential Role in the Future Meat Market—A Review. Asian-Australas. J. Anim. Sci. 2020, 33, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.A.; Onopiuk, A.; Pogorzelska-Nowicka, E.; Szpicer, A.; Zalewska, M.; Półtorak, A. Novel Protein Sources for Applications in Meat-Alternative Products—Insight and Challenges. Foods 2022, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Tufail, T.; Bader Ul Ain, H.; Ashraf, J.; Mahmood, S.; Noreen, S.; Ijaz, A.; Ikram, A.; Arshad, M.T.; Abdullahi, M.A. Bioactive Compounds in Seafood: Implications for Health and Nutrition. Food Sci. Nutr. 2025, 13, e70181. [Google Scholar] [CrossRef]
- Karakoltsidis, P.A.; Zotos, A.; Constantinides, S.M. Composition of the Commercially Important Mediterranean Finfish, Crustaceans, and Molluscs. J. Food Compos. Anal. 1995, 8, 258–273. [Google Scholar] [CrossRef]
- Béné, C.; Barange, M.; Subasinghe, R.; Pinstrup-Andersen, P.; Merino, G.; Hemre, G.-I.; Williams, M. Feeding 9 Billion by 2050—Putting Fish Back on the Menu. Food Secur. 2015, 7, 261–274. [Google Scholar] [CrossRef]
- Schön, A.-M.; Böhringer, M. Land Consumption for Current Diets Compared with That for the Planetary Health Diet—How Many People Can Our Land Feed? Sustainability 2023, 15, 8675. [Google Scholar] [CrossRef]
- Rauw, W.M.; Gómez Izquierdo, E.; Torres, O.; García Gil, M.; de Miguel Beascoechea, E.; Rey Benayas, J.M.; Gomez-Raya, L. Future Farming: Protein Production for Livestock Feed in the EU. Sustain. Earth Rev. 2023, 6, 3. [Google Scholar] [CrossRef]
- Cherubini, E.; Zanghelini, G.M.; Tavares, J.M.R.; Belettini, F.; Soares, S.R. The Finishing Stage in Swine Production: Influences of Feed Composition on Carbon Footprint. Environ. Dev. Sustain. 2015, 17, 1313–1328. [Google Scholar] [CrossRef]
- Can, E.; Austin, B.; Steinberg, C.; Carboni, C.; Sağlam, N.; Thompson, K.; Yiğit, M.; Seyhaneyildiz Can, S.; Ergün, S. Best Practices for Fish Biosecurity, Well-Being and Sustainable Aquaculture. Sustain. Aquat. Res. 2023, 2, 221–267. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Y.; Chen, S.; Yu, L.; Zhu, Y. Environmental Effects and Their Causes of Agricultural Production: Evidence from the Farming Regions of China. Ecol. Indic. 2022, 144, 109549. [Google Scholar] [CrossRef]
- Nemecek, T.; Roesch, A.; Bystricky, M.; Jeanneret, P.; Lansche, J.; Stüssi, M.; Gaillard, G. Swiss Agricultural Life Cycle Assessment: A Method to Assess the Emissions and Environmental Impacts of Agricultural Systems and Products. Int. J. Life Cycle Assess. 2023, 29, 433–455. [Google Scholar] [CrossRef]
- Heilweck, M. The High Seas Solution. In Aquaculture: Ocean Blue Carbon Meets UN-SDGS; Moore, D., Heilweck, M., Petros, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 97–130. ISBN 978-3-030-94846-7. [Google Scholar]
- Kossmann, H.; Moess, T.; Breunig, P. The Climate Impact and Land Use of Cultivated Meat: Evaluating Agricultural Feedstock Production. PLoS ONE 2025, 20, e0316480. [Google Scholar] [CrossRef]
- Trinidad, K.R.; Ashizawa, R.; Nikkhah, A.; Semper, C.; Casolaro, C.; Kaplan, D.L.; Savchenko, A.; Blackstone, N.T. Environmental Life Cycle Assessment of Recombinant Growth Factor Production for Cultivated Meat Applications. J. Clean. Prod. 2023, 419, 138153. [Google Scholar] [CrossRef]
- Biteau, C.; Bry-Chevalier, T.; Crummett, D.; Loewy, K.; Ryba, R.; Jules, M.S. Have the Environmental Benefits of Insect Farming Been Overstated? A Critical Review. EcoEvoRxiv 2024. [Google Scholar] [CrossRef]
- Mantoam, E.J.; Angnes, G.; Mekonnen, M.M.; Romanelli, T.L. Energy, Carbon and Water Footprints on Agricultural Machinery. Biosyst. Eng. 2020, 198, 304–322. [Google Scholar] [CrossRef]
- Moore, D.; Heilweck, M.; Fears, W.B.; Petros, P.; Squires, S.J.; Tamburini, E.; Waldron, R.P., Jr. An Assessment of the Potential Value for Climate Remediation of Ocean Calcifiers in Sequestration of Atmospheric Carbon. ScienceOpen Preprints 2022. [Google Scholar] [CrossRef]
- Alonso, A.A.; Álvarez-Salgado, X.A.; Antelo, L.T. Assessing the Impact of Bivalve Aquaculture on the Carbon Circular Economy. J. Clean. Prod. 2021, 279, 123873. [Google Scholar] [CrossRef]
- Tamburini, E.; Fano, E.A.; Castaldelli, G.; Turolla, E. Life Cycle Assessment of Oyster Farming in the Po Delta, Northern Italy. Resources 2019, 8, 170. [Google Scholar] [CrossRef]
- Lal, R.; Monger, C.; Nave, L.; Smith, P. The Role of Soil in Regulation of Climate. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20210084. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Zhuang, Q.; Jin, X.; Bian, Z.; Zhou, M.; Meng, Z.; Han, C.; Guo, X.; Jin, W.; et al. A Review on Carbon Source and Sink in Arable Land Ecosystems. Land 2022, 11, 580. [Google Scholar] [CrossRef]
- Shrestha, P.; Karim, R.A.; Sieverding, H.L.; Archer, D.W.; Kumar, S.; Nleya, T.; Graham, C.J.; Stone, J.J. Life Cycle Assessment of Wheat Production and Wheat-Based Crop Rotations. J. Environ. Qual. 2020, 49, 1515–1529. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Xi, M.; Kong, L.; Chen, X.; Zhang, L.; Zhang, H.; Dai, Q.; Wu, W. Energy Budgeting and Carbon Footprint of Different Wheat–Rice Cropping Systems in China. Sci. Total Environ. 2023, 879, 163102. [Google Scholar] [CrossRef] [PubMed]
- Fatichi, S.; Pappas, C.; Zscheischler, J.; Leuzinger, S. Modelling Carbon Sources and Sinks in Terrestrial Vegetation. New Phytol. 2019, 221, 652–668. [Google Scholar] [CrossRef]
- Johnson, E.H. Experimental Tests of Bivalve Shell Shape Reveal Potential Tradeoffs between Mechanical and Behavioral Defenses. Sci. Rep. 2020, 10, 19425. [Google Scholar] [CrossRef]
- Leal, P.H.; Marques, A.C. The Evolution of the Environmental Kuznets Curve Hypothesis Assessment: A Literature Review under a Critical Analysis Perspective. Heliyon 2022, 8, e11521. [Google Scholar] [CrossRef]
- Drewnowski, A. Alternative Proteins in Low- and Middle-Income Countries Face a Questionable Future: Will Technology Negate Bennett’s Law? Curr. Dev. Nutr. 2024, 8, 101994. [Google Scholar] [CrossRef]
- Aggarwal, R.; Bains, K. Protein, Lysine and Vitamin D: Critical Role in Muscle and Bone Health. Crit. Rev. Food Sci. Nutr. 2022, 62, 2548–2559. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, E.; Zhang, X.; Li, D.; Wang, Q.; Sun, Y. Nutritional Value and Physicochemical Characteristics of Alternative Protein for Meat and Dairy—A Review. Foods 2022, 11, 3326. [Google Scholar] [CrossRef]
- Langyan, S.; Yadava, P.; Khan, F.N.; Dar, Z.A.; Singh, R.; Kumar, A. Sustaining Protein Nutrition Through Plant-Based Foods. Front. Nutr. 2022, 8, 772573. [Google Scholar] [CrossRef]
- Litskas, V.D. Environmental Impact Assessment for Animal Waste, Organic and Synthetic Fertilizers. Nitrogen 2023, 4, 16–25. [Google Scholar] [CrossRef]
- Chandran, A.S.; Suri, S.; Choudhary, P. Sustainable Plant Protein: An up-to-Date Overview of Sources, Extraction Techniques and Utilization. Sustain. Food Technol. 2023, 1, 466–483. [Google Scholar] [CrossRef]
- Ardoin, R.; Prinyawiwatkul, W. Consumer Perceptions of Insect Consumption: A Review of Western Research since 2015. Int. J. Food Sci. Technol. 2021, 56, 4942–4958. [Google Scholar] [CrossRef]
- Roy, N.K.; Panda, S.; Dey, G. Engineering a Sustainable Protein Revolution: Recent Advances in Cultured Meat Production. Food Bioeng. 2023, 2, 301–316. [Google Scholar] [CrossRef]
- Bondad-Reantaso, M.G.; MacKinnon, B.; Karunasagar, I.; Fridman, S.; Alday-Sanz, V.; Brun, E.; Le Groumellec, M.; Li, A.; Surachetpong, W.; Karunasagar, I.; et al. Review of Alternatives to Antibiotic Use in Aquaculture. Rev. Aquac. 2023, 15, 1421–1451. [Google Scholar] [CrossRef]
- Cojocaru, A.L.; Liu, Y.; Smith, M.D.; Akpalu, W.; Chávez, C.; Dey, M.M.; Dresdner, J.; Kahui, V.; Pincinato, R.B.M.; Tran, N. The “Seafood” System: Aquatic Foods, Food Security, and the Global South. Rev. Environ. Econ. Policy 2022, 16, 306–326. [Google Scholar] [CrossRef]
- Nanda, P.K.; Das, A.K.; Dandapat, P.; Dhar, P.; Bandyopadhyay, S.; Dib, A.L.; Lorenzo, J.M.; Gagaoua, M. Nutritional Aspects, Flavour Profile and Health Benefits of Crab Meat Based Novel Food Products and Valorisation of Processing Waste to Wealth: A Review. Trends Food Sci. Technol. 2021, 112, 252–267. [Google Scholar] [CrossRef]
- Willer, D.F.; Nicholls, R.J.; Aldridge, D.C. Opportunities and Challenges for Upscaled Global Bivalve Seafood Production. Nat. Food 2021, 2, 935–943. [Google Scholar] [CrossRef]
- Dong, S.-L.; Dong, Y.-W. Sustainability of Aquaculture Production Systems. In Aquaculture Ecology; Dong, S.-L., Tian, X.-L., Gao, Q.-F., Dong, Y.-W., Eds.; Springer Nature: Singapore, 2023; pp. 491–530. ISBN 978-981-19-5486-3. [Google Scholar]
- Morales-Nin, B.; Zimmermann, F.; Merino, G.; Antelo, L.T.; Murillas-Maza, A.; Moksness, E. Challenges on Blue Food Provision. Front. Ocean Sustain. 2024, 2, 1271783. [Google Scholar] [CrossRef]
- Jones, A.R.; Alleway, H.K.; McAfee, D.; Reis-Santos, P.; Theuerkauf, S.J.; Jones, R.C. Climate-Friendly Seafood: The Potential for Emissions Reduction and Carbon Capture in Marine Aquaculture. BioScience 2022, 72, 123–143. [Google Scholar] [CrossRef]
- O’Connell, B.; Wallace, M.W. The Palaeoenvironmental and Biological Significance of Marine Carbonate Depositional Surfaces. Geol. Soc. Lond. Spec. Publ. 2025, 556, 1–24. [Google Scholar] [CrossRef]
- Farmery, A.K.; Alexander, K.; Anderson, K.; Blanchard, J.L.; Carter, C.G.; Evans, K.; Fischer, M.; Fleming, A.; Frusher, S.; Fulton, E.A.; et al. Food for All: Designing Sustainable and Secure Future Seafood Systems. Rev. Fish Biol. Fish. 2022, 32, 101–121. [Google Scholar] [CrossRef] [PubMed]
- Troell, M.; Costa-Pierce, B.; Stead, S.; Cottrell, R.S.; Brugere, C.; Farmery, A.K.; Little, D.C.; Strand, Å.; Pullin, R.; Soto, D.; et al. Perspectives on Aquaculture’s Contribution to the Sustainable Development Goals for Improved Human and Planetary Health. J. World Aquac. Soc. 2023, 54, 251–342. [Google Scholar] [CrossRef]
- Brice, J.V. Wave Mechanics in Constructed Oyster Reefs and the Design of Nature-Based Coastal Adaptation. Bachelor’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2024. [Google Scholar]
- Song, J.; Wang, Y.; Huang, L.; Peng, Y.; Tan, K.; Tan, K. The Effects of Bivalve Aquaculture on Carbon Storage in the Water Column and Sediment of Aquaculture Areas. Sci. Total Environ. 2024, 937, 173538. [Google Scholar] [CrossRef]
Protein Source | World Production (2020) | World Production Increasing Since 1990 | World per Capita Consumption (2020) | World per Capita Consumption Increase by 2050 | Protein Content per 100 g of Live or Raw Product | By-Products/Edible Weight | FCR | NRF9.3 | Source |
---|---|---|---|---|---|---|---|---|---|
(Mtons * of live ** or fresh *** weight) | (%) | (g/day) | (%) | (g) | (%) | (kg feed: kg live or fresh weight) | |||
Poultry | 133.4 | 260 | 109.2 | 66 | 20.9 ± 2.9 | 29 | 2.5:1 | 10.4 | [24,27,28,29,30] |
Pork | 109.8 | 60 | 112.3 | 28 | 22.0 ± 3.6 | 52 | 5.0:1 | 7.0 | [24,27,28,30,31] |
Beef | 72.1 | 56 | 68.0 | 56 | 20.4 ± 1.7 | 66 | 10:1 | 3.7 | [24,27,28,30,32] |
Whole wheat flour | 752.0 | 200 | 180.0 | 395 | 14.0 ± 1.0 | 32 | - | 32.3 | [24,30,33,34] |
Soy | 353.5 | 220 | 123 | 186 | 14.3 ± 4.4 | 22 | - | 21.0 | [24,30,35,36] |
Pea | 14.6 | 0 | 9.3 | NA | 5.9 ± 1.2 | 30 | - | 23.1 | [24,30,37,38] |
Farmed salmon | 2.7 | 200 | 35 | 4.3 | 21.2 ± 2.0 | 38 | 1.35:1 | 21.8 | [24,30,38,39] |
Farmed milkfish | 1.3 | 200 | NA | NA | 21.0 ± 2.3 | 45 | 1.35:1 | 21.8 | [24,26,30,40,41] |
Farmed rainbow trout | 0.8 | 170 | 25 | NA | 19.4 ± 1.7 | 45 | 1.35:1 | 21.8 | [24,26,30,42,43] |
Farmed crustacean | 9.4 | 370 | 7.2 | 200 | 21.7 ± 2.5 | 62 | 2.4:1 | 3.6 | [24,26,30,40] |
Insect | 0.2 | 0 | NA | 10,000 | 16.9 ± 3.9 | 0 | 1.2–2.2:1 | 2.15–13.14 | [28,44,45] |
Cultured meat | 0.0 | 0 | NA | NA | av. 20% < meat | 0 | 1.2:1 | NA | [32,46] |
Clam | 4.4 | 800 | 19.8 | 44.5 | 12.8 ± 2.7 | 56 | - | 46.9 | [24,30,32] |
Mussel | 1.1 | 16 | 11.9 ± 3.1 | 35 | - | ||||
Oyster | 6.0 | 400 | 7.5 ± 1.9 | 90 | - |
Protein Source | Carbon Footprint (kg CO2 eq. */kg live ** or Fresh *** Weight) | Land-Use (m2/a·kg) **** | Carbon Sequestration Capacity (kg CO2 */kg live ** or Fresh *** Weight) | Source |
---|---|---|---|---|
Poultry | 2.0–6.8 | 5–8 | - | [52,53] |
Pork | 4.8–11.0 | 8–15 | - | [52] |
Beef | 24.5–42.6 | 43.5–420 | - | [54,55,56] |
Whole wheat | 1.2–1.5 | 0.9–3.8 | 0.03–0.32 | [57,58,59] |
Soy | 0.7–0.8 | 2.8–6.8 | 0.10–0.14 | [60,61] |
Pea | 0.5 | 3.2–4.9 | 0.12–0.55 | [62] |
Farmed salmon | 3.8–16.7 | 3.1 | - | [63] |
Farmed milkfish | 3.6–4.7 | 2.6–4.1 | - | [64,65,66] |
Farmed rainbow trout | 2.2–3.7 | 0.8–1.6 | - | [66,67] |
Farmed crustaceans | 3.1–6.8 | 2.2 | - | [66,68,69] |
Insect | 2.7–4.0 | 3.6 | - | [70,71] |
Cultured meat | 6.6–25 | 7.7 | - | [72] |
Clam | 0.02–0.7 | 5.0 × 10−5 | 0.15–0.27 | [47,73,74,75] |
Mussel | ||||
Oyster |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamburini, E.; Moore, D.; Castaldelli, G. Global Comparison and Future Trends of Major Food Proteins: Can Shellfish Contribute to Sustainable Food Security? Foods 2025, 14, 2205. https://doi.org/10.3390/foods14132205
Tamburini E, Moore D, Castaldelli G. Global Comparison and Future Trends of Major Food Proteins: Can Shellfish Contribute to Sustainable Food Security? Foods. 2025; 14(13):2205. https://doi.org/10.3390/foods14132205
Chicago/Turabian StyleTamburini, Elena, David Moore, and Giuseppe Castaldelli. 2025. "Global Comparison and Future Trends of Major Food Proteins: Can Shellfish Contribute to Sustainable Food Security?" Foods 14, no. 13: 2205. https://doi.org/10.3390/foods14132205
APA StyleTamburini, E., Moore, D., & Castaldelli, G. (2025). Global Comparison and Future Trends of Major Food Proteins: Can Shellfish Contribute to Sustainable Food Security? Foods, 14(13), 2205. https://doi.org/10.3390/foods14132205