The Effect of β-Glucans from Oats and Yeasts on the Dynamics of Ice Crystal Growth in Acidophilic Ice Cream Based on Liquid Hydrolyzed Whey Concentrate
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Ice Cream Production
2.3. Methods
2.3.1. Chemical Composition and Physicochemical Properties
2.3.2. Analysis of Ice Crystals
2.3.3. Statistical Processing
3. Results and Discussion
3.1. Chemical Composition and Physicochemical Parameters
3.2. Microscopy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Syed, Q.A.; Anwar, S.; Shukat, R.; Zahoor, T. Effects of different ingredients on texture of ice cream. J. Nutr. Health Food Eng. 2018, 8, 422–435. [Google Scholar] [CrossRef]
- Aliabbasi, N.; Emam-Djomeh, Z. Application of nanotechnology in dairy desserts and ice cream formulation with the emphasize on textural, rheological, antimicrobial, and sensory properties. eFood 2024, 5, e170. [Google Scholar] [CrossRef]
- Shevchenko, O.; Mykhalevych, A.; Polischuk, G.; Buniowska-Olejnik, M.; Bass, O.; Bandura, U. Technological functions of hydrolyzed whey concentrate in ice cream. Ukr. Food J. 2022, 11, 498–517. [Google Scholar] [CrossRef]
- Mykhalevych, A.; Buniowska-Olejnik, M.; Polishchuk, G.; Puchalski, C.; Kamińska-Dwórznicka, A.; Berthold-Pluta, A. The Influence of Whey Protein Isolate on the Quality Indicators of Acidophilic Ice Cream Based on Liquid Concentrates of Demineralized Whey. Foods 2024, 13, 170. [Google Scholar] [CrossRef]
- Markowska, J.; Tyfa, A.; Drabent, A.; Stępniak, A. The Physicochemical Properties and Melting Behavior of Ice Cream Fortified with Multimineral Preparation from Red Algae. Foods 2023, 12, 4481. [Google Scholar] [CrossRef] [PubMed]
- Sharqawy, M.H.; Goff, H.D. Effect of temperature variation on ice cream recrystallization during freezer defrost cycles. J. Food Eng. 2022, 335, 111188. [Google Scholar] [CrossRef]
- Lomolino, G.; Zannoni, S.; Zabara, A.; Da Lio, M.; De Iseppi, A. Ice recrystallisation and melting in ice cream with different proteins levels and subjected to thermal fluctuation. Int. Dairy J. 2020, 100, 104557. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, A.; Liu, L.; Kan, Z.; Wang, W. The relationship between water-holding capacities of soybean–whey mixed protein and ice crystal size for ice cream. J. Food Process Eng. 2021, 44, e13723. [Google Scholar] [CrossRef]
- Kot, A.; Jakubczyk, E.; Kamińska-Dwórznicka, A. The Effectiveness of Combination Stabilizers and Ultrasound Homogenization in Milk Ice Cream Production. Appl. Sci. 2023, 13, 7561. [Google Scholar] [CrossRef]
- Yan, L.; Yu, D.; Liu, R.; Jia, Y.; Zhang, M.; Wu, T.; Sui, W. Microstructure and meltdown properties of low-fat ice cream: Effects of microparticulated soy protein hydrolysate/xanthan gum (MSPH/XG) ratio and freezing time. J. Food Eng. 2021, 291, 110291. [Google Scholar] [CrossRef]
- Tvorogova, A.A.; Landikhovskaya, A.V.; Kazakova, N.V.; Zakirova, R.R.; Pivtsaeva, M.M. Scientific and practical aspects of trehalose contain in ice cream without sucrose. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 052017. [Google Scholar] [CrossRef]
- Landikhovskaya, A.V.; Tvorogova, A.A.; Kazakova, N.V.; Gursky, I.A. The effect of trehalose on dispersion of ice crystals and consistency of low-fat ice cream. Food Process. Tech. Technol. 2020, 50, 450–459. [Google Scholar] [CrossRef]
- Sun, X.; Wu, Y.; Song, Z.; Chen, X. A review of natural polysaccharides for food cryoprotection: Ice crystals inhibition and cryo-stabilization. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100291. [Google Scholar] [CrossRef]
- Xu, H.; Gao, Z.; Huang, M.; Fan, Q.; Cui, L.; Xie, P.; Liu, L.; Guan, X.; Jin, J.; Jin, Q.; et al. Static stability of partially crystalline emulsions stabilized by milk proteins: Effects of κ-carrageenan, λ-carrageenan, ι-carrageenan, and their blends. Food Hydrocoll. 2024, 147, 109387. [Google Scholar] [CrossRef]
- Míšková, Z.; Salek, R.N.; Křenková, B.; Kůrová, V.; Němečková, I.; Pachlová, V.; Buňka, F. The effect of κ-and ι-carrageenan concentrations on the viscoelastic and sensory properties of cream desserts during storage. LWT 2021, 145, 111539. [Google Scholar] [CrossRef]
- Kamińska-Dwórznicka, A.; Janczewska-Dupczyk, A.; Kot, A.; Łaba, S.; Samborska, K. The impact of ι-and κ-carrageenan addition on freezing process and ice crystals structure of strawberry sorbet frozen by various methods. J. Food Sci. 2020, 85, 50–56. [Google Scholar] [CrossRef]
- Mykhalevych, A.; Polishchuk, G.; Nassar, K.; Osmak, T.; Buniowska-Olejnik, M. β-Glucan as a Techno-Functional Ingredient in Dairy and Milk-Based Products—A Review. Molecules 2022, 27, 6313. [Google Scholar] [CrossRef]
- Mishra, N. Cereal β Glucan as a Functional Ingredient. In Innovations in Food Technology; Springer: Singapore, 2020; pp. 109–122. [Google Scholar] [CrossRef]
- Aljewicz, M.; Florczuk, A.; Dabrowska, A. Influence of β-glucan structures and contents on the functional properties of low-fat ice cream during storage. Pol. J. Food Nutr. Sci. 2020, 70, 233–240. [Google Scholar] [CrossRef]
- Buniowska-Olejnik, M.; Mykhalevych, A.; Polishchuk, G.; Sapiga, V.; Znamirowska-Piotrowska, A.; Kot, A.; Kamińska-Dwórznicka, A. Study of Water Freezing in Low-Fat Milky Ice Cream with Oat β-Glucan and Its Influence on Quality Indicators. Molecules 2023, 28, 2924. [Google Scholar] [CrossRef]
- Shibani, F.; Asadollahi, S.; Eshaghi, M. The effect of beta-glucan as a fat substitute on the sensory and physico-chemical properties of low-fat ice cream. J. Food Saf. Process. 2021, 1, 71–84. [Google Scholar]
- Şengül, M.; Ufuk, S. Therapeutic and functional properties of beta-glucan, and its effects on health. Eurasian J. Food Sci. Technol. 2022, 6, 29–41. [Google Scholar]
- Tomczyńska-Mleko, M.; Mykhalevych, A.; Sapiga, V.; Polishchuk, G.; Terpiłowski, K.; Mleko, S.; Sołowiej, B.G.; Pérez-Huertas, S. Influence of Plant-Based Structuring Ingredients on Physicochemical Properties of Whey Ice Creams. Appl. Sci. 2024, 14, 2465. [Google Scholar] [CrossRef]
- Sun, X.; Guo, R.; Zhan, T.; Kou, Y.; Ma, X.; Song, H.; Zhou, W.; Song, L.; Zhang, H.; Xie, F.; et al. Retarding ice recrystallization by tamarind seed polysaccharide: Investigation in ice cream mixes and insights from molecular dynamics simulation. Food Hydrocoll. 2024, 149, 109579. [Google Scholar] [CrossRef]
- Mykhalevych, A.; Moiseyeva, L.; Polishchuk, G.; Bandura, U. Determining patterns of lactose hydrolysis in liquid concentrates of demineralized whey. East.-Eur. J. Enterp. Technol. 2024, 6, 24–32. [Google Scholar] [CrossRef]
- Lynch, J.M.; Barbano, D.M. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J. AOAC Int. 1999, 82, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- NP Standard No. 469 in Portuguese; Milk—Fat Content Determination, Gerber Method; Instituto Português da Qualidade: Monte de Caparica, Portugal, 2002.
- Slashcheva, A.; Nykyforov, R.; Popova, S.; Korenets, Y. Rationale for the use of protein-carbohydrate mix in the technology of disperse products. East. Eur. J. Enterp. Technol. 2016, 2, 64–71. [Google Scholar] [CrossRef]
- Kamińska-Dwórznicka, A.; Kot, A.; Jakubczyk, E.; Buniowska-Olejnik, M.; Nowacka, M. Effect of ultrasound-assisted freezing on the crystal structure of mango sorbet. Crystals 2023, 13, 396. [Google Scholar] [CrossRef]
- Muse, M.R.; Hartel, R.W. Ice cream structural elements that affect melting rate and hardness. J. Dairy Sci. 2004, 87, 1–10. [Google Scholar] [CrossRef]
- Kamińska-Dwórznicka, A.; Łaba, S.; Jakubczyk, E. The effects of selected stabilizers addition on physical properties and changes in crystal structure of whey ice cream. LWT 2022, 154, 112841. [Google Scholar] [CrossRef]
- Romulo, A.; Meindrawan, B. Effect of Dairy and Non-Dairy Ingredients on the Physical Characteristic of Ice Cream. IOP Conf. Ser. Earth Environ. Sci. 2021, 794, 012145. [Google Scholar] [CrossRef]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: https://eur-lex.europa.eu/eli/reg/2006/1924/oj/eng (accessed on 5 May 2025).
- Rout, P.; Saha, S. Rheology of ice cream: From fundamentals to applications. Innov. Agric. 2023, 6, 1–7. [Google Scholar] [CrossRef]
- Goff, H.D. Ice cream. In Lipid Technologies and Applications; Routledge: New York, NY, USA, 2018; pp. 329–355. [Google Scholar]
- Góral, M.; Kozłowicz, K.; Pankiewicz, U.; Góral, D.; Kluza, F.; Wójtowicz, A. Impact of stabilizers on the freezing process, and physicochemical and organoleptic properties of coconut milk-based ice cream. LWT 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Fuangpaiboon, N.; Kijroongrojana, K. Sensorial and physical properties of coconut-milk ice cream modified with fat replacers. Maejo Int. J. Sci. Technol. 2017, 11, 133. [Google Scholar]
- Guleria, P.; Kumari, S.; Dangi, N. β-glucan: Health benefits and role in food industry—A review. Int. J. Enhanc. Res. Sci. Technol. Eng. 2015, 4, 3–7. [Google Scholar]
- Suchecka, D.; Gromadzka-Ostrowska, J.; Żyła, E.; Harasym, J.P.; Oczkowski, M. Selected physiological activities and health promoting properties of cereal beta-glucans. A review. J. Anim. Feed. Sci. 2017, 26, 183–191. [Google Scholar] [CrossRef]
- Kaur, R.; Sharma, M.; Ji, D.; Xu, M.; Agyei, D. Structural Features, Modification, and Functionalities of Beta-Glucan. Fibers 2020, 8, 1. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, J.; Zhao, Q.; Zheng, J. Structure and characteristic of β-glucan in cereal: A review. J. Food Process. Preserv. 2015, 39, 3145–3153. [Google Scholar] [CrossRef]
- Baer, R.J.; Keating, K.R. Determination of ice cream mix freezing points: A comparison of methods. J. Dairy Sci. 1987, 70, 555–558. [Google Scholar] [CrossRef]
- Raikos, V.; Grant, S.B.; Hayes, H.; Ranawana, V. Use of β-glucan from spent brewer’s yeast as a thickener in skimmed yogurt: Physicochemical, textural, and structural properties related to sensory perception. J. Dairy Sci. 2018, 101, 5821–5831. [Google Scholar] [CrossRef]
- Abbasi, S.; Saeedabadian, A. Influences of lactose hydrolysis of milk and sugar reduction on some physical properties of ice cream. J. Food Sci. Technol. 2015, 52, 367–374. [Google Scholar] [CrossRef]
- Skryplonek, K.; Gomes, D.; Viegas, J.; Pereira, C.; Henriques, M. Lactose-free frozen yogurt: Production and characteristics. Acta Sci. Pol. Technol. Aliment. 2017, 16, 171–179. [Google Scholar] [CrossRef]
- Dutra Rosolen, M.; Gennari, A.; Volpato, G.; Volken de Souza, C.F. Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases. Enzym. Res. 2015, 2015, 806240. [Google Scholar] [CrossRef] [PubMed]
- Majore, K.; Ciprovica, I. Sensory Assessment of Bi-Enzymatic-Treated Glucose-Galactose Syrup. Fermentation 2023, 9, 136. [Google Scholar] [CrossRef]
- Suzuki, T. The hydration of glucose: The local configurations in sugar–water hydrogen bonds. Phys. Chem. Chem. Phys. 2008, 10, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Khaliduzzaman; Siddiqui, A.A.; Islam, M.M.; Easdani, M.; Bhuiyan, M.H.R. Effect of Honey on Freezing Point and Acceptability of Ice Cream. Bangladesh Res. Pub. J. 2012, 7, 355–360. [Google Scholar]
- Karp, S.; Wyrwisz, J.; Kurek, M.A. Comparative analysis of the physical properties of o/w emulsions stabilised by cereal β-glucan and other stabilisers. Int. J. Biol. Macromol. 2019, 132, 236–243. [Google Scholar] [CrossRef]
- Sapiga, V.; Polischuk, G.; Buniowska, M.; Shevchenko, I.; Osmak, T. Polyfunctional Properties of Oat β-Glucan in the Composition of Milk-Vegetable Ice Cream. Ukr. Food J. 2021, 10, 691–702. [Google Scholar] [CrossRef]
- Abdel-Haleem, A.M.; Awad, R.A. Some quality attributes of low fat ice cream substituted with hulless barley flour and barley ß-glucan. J. Food Sci. Technol. 2015, 52, 6425–6434. [Google Scholar] [CrossRef]
- Mejri, W.; Bornaz, S.; Sahli, A. Formulation of non-fat yogurt with β-glucan from spen brewer’s yeast. J. Hyg. Eng. Des. 2014, 8, 163–173. [Google Scholar]
- Khorshidian, N.; Yousefi, M.; Shadnoush, M.; Mortazavian, A.M. An overview of β-glucan functionality in dairy products. Curr. Nutr. Food Sci. 2018, 14, 280–292. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, Y.; Bakry, A.M.; Xiong, S.; Yin, T.; Zhang, B.; Huang, J.; Liu, Z.; Huang, Q. Effect of yeast β-glucan on gel properties, spatial structure and sensory characteristics of silver carp surimi. Food Hydrocoll. 2019, 88, 256–264. [Google Scholar] [CrossRef]
- Krishna, K.P.; Rasco, B.A.; Juming, T.; Sablani, S.S. State/Phase Transitions, Ice Recrystallization, and Quality Changes in Frozen Foods Subjected to Temperature Fluctuations. Food Eng. Rev. 2020, 12, 421–451. [Google Scholar]
- Demir, Ş.; Arslan, S. The effects of select stabilizers addition on physicochemical, textural, microstructural and sensory properties of ice cream. Food Meas. 2023, 17, 1119–1131. [Google Scholar] [CrossRef]
- Bahramparvar, M.; Tehrani, M.M. Application and Functions of Stabilizers in Ice Cream. Food Rev. Int. 2011, 27, 389–407. [Google Scholar] [CrossRef]
- Ndoye, F.T.; Alvarez, G. Characterization of ice recrystallization in ice cream during storage using the focused beam reflectance measurement. J. Food Eng. 2015, 148, 24–34. [Google Scholar] [CrossRef]
- Gamel, T.H.; Badali, K.; Tosh, S.M. Changes of β-glucan physicochemical characteristics in frozen and freeze dried oat bran bread and porridge. J. Cereal Sci. 2013, 58, 104–109. [Google Scholar] [CrossRef]
- Ames, N.; Storsley, J.; Tosh, S. Effects of processing on physicochemical properties and efficacy of β-glucan from oat and barley. Cereal Foods World 2015, 60, 4–8. [Google Scholar] [CrossRef]
- Ames, N.; Tosh, S. Validating the health benefits of barley foods: Effect of processing on physiological properties of beta-glucan in test foods. In Proceedings of the 2011 AACCI Annual Meeting Abstracts, Cereal Foods World (Supplement Online), Palm Springs, CA, USA, 16–19 October 2011; p. A28. [Google Scholar]
- Lan-Pidhainy, X.; Brummer, Y.; Tosh, S.M.; Wolever, T.M.; Wood, P.J. Reducing beta-glucan solubility in oat bran muffins by freeze-thaw treatment attenuates its hypoglycemic effect. Cereal Chem. 2007, 84, 512–517. [Google Scholar] [CrossRef]
- Andrzej, K.M.; Małgorzata, M.; Sabina, K.; Horbańczuk, O.K.; Rodak, E. Application of rich in β-glucan flours and preparations in bread baked from frozen dough. Food Sci. Technol. Int. 2020, 26, 53–64. [Google Scholar] [CrossRef]
- Thammakiti, S.; Suphantharika, M.; Phaesuwan, T.; Verduyn, C. Preparation of spent brewer’s yeast β-glucans for potential applications in the food industry. Int. J. Food Sci. Technol. 2004, 39, 21–29. [Google Scholar] [CrossRef]
Ingredients, % | Labeling of Ice Cream Samples | |||||
---|---|---|---|---|---|---|
C | 0.6% SS | 0.25% OBG | 0.5% OBG | 0.25% YBG | 0.5% YBG | |
Liquid hydrolyzed concentrate of demineralized whey | 75.0 | 75.0 | 75.0 | 75.0 | 75.0 | 75.0 |
White sugar | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
Whey protein isolate | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Stabilization system Cremodan SI 320 (Danisco A/S, Brabrand, Denmark) | – | 0.6 | – | – | – | – |
β-glucan from oats | – | – | 0.25 | 0.5 | – | – |
β-glucan from yeast | – | – | – | – | 0.25 | 0.5 |
Activated starter | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Vanillin | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Water | 9.9 | 9.3 | 9.65 | 9.4 | 9.65 | 9.4 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Sample | Solids, % | Protein, % | Fat, % | Carbohydrates, % | Lactose, % | Monosaccharides, % |
---|---|---|---|---|---|---|
C | 42.05 a ± 0.91 | 6.05 a ± 0.05 | 0.32 a ± 0.01 | 33.08 a ± 0.95 | 0.73 a ± 0.05 | 32.35 a ± 0.09 |
0.6% SS | 42.61 a ± 1.02 | 6.01 a ± 0.02 | 0.73 e ± 0.02 | 33.05 a ± 1.24 | 0.75 a ± 0.02 | 32.30 a ± 0.11 |
0.25% OBG | 42.28 a ± 0.67 | 6.09 a ± 0.06 | 0.37 c ± 0.01 | 33.11 a ± 1.00 | 0.72 a ± 0.05 | 32.39 a ± 0.05 |
0.5% OBG | 42.50 a ± 0.95 | 6.03 a ± 0.01 | 0.40 d ± 0.02 | 33.12 a ± 0.98 | 0.75 a ± 0.03 | 32.37 a ± 0.32 |
0.25% YBG | 42.33 a ± 1.12 | 5.98 a ± 0.05 | 0.35 b ± 0.01 | 33.14 a ± 1.05 | 0.78 b ± 0.01 | 32.36 a ± 0.10 |
0.5% YBG | 42.24 a ± 1.04 | 6.01 a ± 0.03 | 0.39 d ± 0.01 | 33.09 a ± 1.32 | 0.76 a ± 0.06 | 32.33 a ± 0.13 |
Sample | Freezing Point, °C | Overrun, % | Resistance to Melting, Min | ||
---|---|---|---|---|---|
24 h | 1 W | 1 M | |||
C | −4.222 b ± 0.14 | 69.08 a ± 2.55 | 24.01 ab ± 1.15 | 24.32 a ± 0.64 | 24.58 a ± 0.23 |
0.6% SS | −4.688 b ± 0.03 | 75.25 b ± 1.82 | 25.42 b ± 0.57 | 26.12 b ± 0.44 | 27.03 b ± 0.80 |
0.25% OBG | −5.108 c ± 0.25 | 81.52 d ± 3.24 | 27.95 c ± 0.46 | 28.53 c ± 0.97 | 29.96 c ± 1.09 |
0.5% OBG | −6.040 d ± 0.18 | 83.12 d ± 2.61 | 29.12 d ± 0.84 | 29.87 c ± 0.65 | 31.05 d ± 1.37 |
0.25% YBG | −3.888 a ± 0.07 | 77.39 b ± 2.48 | 24.26 a ± 0.53 | 24.58 a ± 0.38 | 25.61 a ± 0.94 |
0.5% YBG | −3.846 a ± 0.02 a | 76.74 b ± 2.04 | 25.81 ab ± 1.20 | 26.07 b ± 0.31 | 26.50 b ± 0.72 |
Sample | Time of Storage | Minimum Diameter of Ice Crystals (μm) | Maximum Diameter of Ice Crystals (μm) | Average Value of Ice Crystal Diameter (μm) |
---|---|---|---|---|
C | 24 h | 9.18 a ± 0.12 | 28.26 a ± 0.70 | 18.50 a ± 1.21 |
1 W | 12.23 b ± 0.03 | 35.37 b ± 0.89 | 25.01 b ± 1.06 | |
1 M | 13.33 c ± 0.14 | 37.39 c ± 0.52 | 27.50 c ± 0.78 | |
0.6% SS | 24 h | 5.64 a ± 0.22 | 30.32 a ± 0.46 | 15.80 a ± 0.67 |
1 W | 10.60 b ± 0.11 | 35.71 b ± 0.35 | 20.50 b ± 0.77 | |
1 M | 16.72 c ± 0.47 | 43.84 c ± 0.60 | 32.15 c ± 1.18 | |
0.25% OBG | 24 h | 5.32 a ± 0.12 | 28.31 a ± 0.42 | 18.74 a ± 0.04 |
1 W | 7.27 b ± 0.02 | 30.07 b ± 0.65 | 19.29 b ± 0.50 | |
1 M | 8.03 c ± 0.05 | 36.60 c ± 1.05 | 20.01 b ± 0.72 | |
0.5% OBG | 24 h | 6.35 a ± 0.19 | 19.81 a ± 0.28 | 11.38 a ± 0.17 |
1 W | 8.35 b ± 0.16 | 27.59 b ± 0.89 | 12.71 b ± 0.16 | |
1 M | 9.52 c ± 0.12 | 30.55 c ± 0.71 | 16.31 c ± 0.15 | |
0.25% YBG | 24 h | 4.54 a ± 0.03 | 15.33 a ± 0.41 | 8.49 a ± 0.37 |
1 W | 4.68 b ± 0.02 | 16.51 a ± 0.64 | 9.26 b ± 0.12 | |
1 M | 4.73 b ± 0.04 | 17.19 b ± 0.31 | 9.52 b ± 0.16 | |
0.5% YBG | 24 h | 5.32 a ± 0.19 | 15.99 a ± 0.50 | 10.24 a ± 0.02 |
1 W | 5.45 a ± 0.09 | 19.31 b ± 0.98 | 10.52 a ± 0.49 | |
1 M | 7.08 b ± 0.18 | 20.72 c ± 0.52 | 11.08 b ± 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mykhalevych, A.; Polishchuk, G.; Znamirowska-Piotrowska, A.; Kamińska-Dwórznicka, A.; Kluz, M.; Buniowska-Olejnik, M. The Effect of β-Glucans from Oats and Yeasts on the Dynamics of Ice Crystal Growth in Acidophilic Ice Cream Based on Liquid Hydrolyzed Whey Concentrate. Foods 2025, 14, 2184. https://doi.org/10.3390/foods14132184
Mykhalevych A, Polishchuk G, Znamirowska-Piotrowska A, Kamińska-Dwórznicka A, Kluz M, Buniowska-Olejnik M. The Effect of β-Glucans from Oats and Yeasts on the Dynamics of Ice Crystal Growth in Acidophilic Ice Cream Based on Liquid Hydrolyzed Whey Concentrate. Foods. 2025; 14(13):2184. https://doi.org/10.3390/foods14132184
Chicago/Turabian StyleMykhalevych, Artur, Galyna Polishchuk, Agata Znamirowska-Piotrowska, Anna Kamińska-Dwórznicka, Maciej Kluz, and Magdalena Buniowska-Olejnik. 2025. "The Effect of β-Glucans from Oats and Yeasts on the Dynamics of Ice Crystal Growth in Acidophilic Ice Cream Based on Liquid Hydrolyzed Whey Concentrate" Foods 14, no. 13: 2184. https://doi.org/10.3390/foods14132184
APA StyleMykhalevych, A., Polishchuk, G., Znamirowska-Piotrowska, A., Kamińska-Dwórznicka, A., Kluz, M., & Buniowska-Olejnik, M. (2025). The Effect of β-Glucans from Oats and Yeasts on the Dynamics of Ice Crystal Growth in Acidophilic Ice Cream Based on Liquid Hydrolyzed Whey Concentrate. Foods, 14(13), 2184. https://doi.org/10.3390/foods14132184