Red Wine Aging Techniques in Spring Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Conditions
2.2.1. Preparation of Samples Placed in the Cellar and Vineyard Wells
2.2.2. Monitoring Environmental Conditions: Positioning of Humidity and Temperature Probes
2.2.3. Sample Collection and Analysis
2.2.4. Organoleptic Analysis
2.2.5. Following Experimental Step
3. Results and Discussion
3.1. Statistical Analysis of the Climatic Data
3.2. Albugnano 2017: Sampling After 12 Months
3.3. Albugnano 2017: Sampling After 24 Months
3.4. Albugnano 2017: Sampling After 36 Months
3.5. Albugnano 2017: Organoleptic Analysis
3.6. Albugnano 2020: Sampling After 12 Months
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, D.; Wei, Z.; Han, Y.; Duan, Y.; Shi, B.; Ma, W. A Review on Wine Flavour Profiles Altered by Bottle Aging. Molecules 2023, 28, 6522. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; García, J.F.; Sun, D.W. Advances in Wine Aging Technologies for Enhancing Wine Quality and Accelerating Wine Aging Process. Crit. Rev. Food Sci. 2013, 54, 817–835. [Google Scholar] [CrossRef] [PubMed]
- Wirth, J.; Morel-Salmi, C.; Souquet, J.M.; Dieval, J.B.; Aagaard, O.; Vidal, S.; Fulcrand, H.; Cheynier, V. The Impact of Oxygen Exposure before and after Bottling on the Polyphenolic Composition of RedWines. Food Chem. 2010, 123, 107–116. [Google Scholar] [CrossRef]
- Oberholster, A.; Elmendorf, B.L.; Lerno, L.A.; King, E.S.; Heymann, H.; Brenneman, C.E.; Boulton, R.B. Barrel maturation, oak alternatives and micro-oxygenation: Influence on red wine aging and quality. Food Chem. 2015, 173, 1250–1258. [Google Scholar] [CrossRef] [PubMed]
- Furtado, I.; Lopes, P.; Oliveira, A.S.; Amaro, F.; Bastos, M.d.L.; Cabral, M.; Guedes de Pinho, P.; Pinto, J. The Impact of Different Closures on the Flavor Composition of Wines during Bottle Aging. Foods 2021, 10, 2070. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.M.; Silva Ferreira, A.C.; De Freitas, V.; Silva, A.M.S. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Jeandet, P.; Heinzmann, S.S.; Roullier-Gall, C.; Cilindre, C.; Aron, A.; Deville, M.A.; Moritz, F.; Karbowiak, T.; Demarville, D.; Brun, C.; et al. Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing tastes from the past. Proc. Natl. Acad. Sci. USA 2015, 112, 5893–5898. [Google Scholar] [CrossRef] [PubMed]
- Underwatewines—The Italian Wines Journal Breaking News. Available online: https://shop.underwaterwines.com/en/blogs/notizie?srsltid=AfmBOormm6Bwq-JDOFqxd16nouDmNYdkyY8QTbDi_ebLSFJfmtlKJvS9 (accessed on 7 May 2025).
- Degustibuss.it. Available online: https://www.degustibuss.it/underwater-wine-vino-sottacqua/ (accessed on 7 May 2025).
- Underwater Wines, l’Affinamento in Acque Profonde nel Mondo. Available online: http://vinophila.com/ (accessed on 7 May 2025).
- Birkić, N.; Ožbolt, E.; Reynolds, C.A.; Pavlešić, T.; Lučin, I.; Andabaka, Ž.; Martinović, L.S. Maturation of wine in underwater springs as a novel wine production process. Eur. Food Res. Technol. 2024, 250, 615–622. [Google Scholar] [CrossRef]
- Mercanti, N.; Pieracci, Y.; Macaluso, M.; Fedel, M.; Brazzarola, F.; Palla, F.; Verdini, P.G.; Zinnai, A. Exploring Red Wine Aging: Comparative Analysis of Cellar and Sea Underwater Aging on Chemical Composition and Quality. Foods 2024, 13, 1812. [Google Scholar] [CrossRef] [PubMed]
- Maioli, F.; Picchi, M.; Bandinelli, A.; Colavolpe, G.; Kottakhs, E.; Canuti, V. Effect of underwater aging treatment on wine quality: A preliminary study. Eur. Food Res. Technol. 2025, 251, 391–404. [Google Scholar] [CrossRef]
- ARPA. Clima ed Indicatori Climatici del Piemonte. Available online: https://www.arpa.piemonte.it/rischi_naturali/snippets_arpa_graphs/map_meteoweb/?rete=stazione_meteorologica (accessed on 7 May 2025).
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2010. [Google Scholar]
- Nigrelli, G. Indagine Ambientale di Una Unità di Paesaggio Collinare del Monferrato Settentrionale; Corso di Laurea in Scienze Naturali, Unpublished Graduate Thesis; Università degli Studi di Torino, Facoltà di Scienze M.F.N.: Turin, Italy, 1998; 156p. [Google Scholar]
- Piana, F.; Fioraso, G.; Irace, A.; Mosca, P.; D’Atri, A.; Barale, L.; Falletti, P.; Monegato, G.; Morelli, M.; Tallone, S.; et al. Geology of Piemonte region (NW Italy, Alps–Apennines interference zone). J. Maps 2017, 13, 395–405. [Google Scholar] [CrossRef]
- Consorzio Barbera d’Asti e Vini del Monferrato. Available online: https://www.viniastimonferrato.it/en/denominazioni/albugnano-doc/ (accessed on 7 May 2025).
- OIV. Compendium of International Methods of Analysis of Wines and Musts; Edition 2025; OIV: Dijon, France; Available online: https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis (accessed on 7 May 2025)ISBN 978-2-85038-111-9.
- Di Stefano, R.; Guidoni, S. The analysis of total polyphenols in musts and wines. Vignevini 1989, 1, 47–52. [Google Scholar]
- Langlois, J.; Ballester, J.; Campo, E.; Dacremont, C.; Peyron, D. Combining olfactory and gustatory clues in the judgment of aging potential of red wine by wine professionals. Am. J. Enol. Vitic. 2010, 61, 15–22. [Google Scholar] [CrossRef]
- Barbe, J.-C.; Garbay, J.; Tempère, S. The Sensory Space of Wines: From Concept to Evaluation and Description. A Review. Foods 2021, 10, 1424. [Google Scholar] [CrossRef] [PubMed]
- ISO 8587:2006; Sensory Analysis—Methodology—Ranking. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/36172.html (accessed on 7 May 2025).
- ISO 10399:2018; Sensory Analysis—Methodology—Duo-Trio Test. International Organization for Standardization: Geneva, Switzerland, 2018. Available online: https://store.uni.com/en/uni-en-iso-10399-2018 (accessed on 7 May 2025).
- Echave, J.; Barral, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Bottle Aging and Storage of Wines: A Review. Molecules 2021, 26, 713. [Google Scholar] [CrossRef] [PubMed]
- Ugliano, M. Oxygen contribution to wine aroma evolution during bottle aging. J. Agric. Food Chem. 2013, 61, 6125–6136. [Google Scholar] [CrossRef] [PubMed]
- Karbowiak, T.; Gougeon, R.D.; Alinc, J.B.; Brachais, L.; Debeaufort, F.; Voilley, A.; Chassagne, D. Wine Oxidation and the Role of Cork. Crit. Rev. Food Sci. 2009, 50, 20–52. [Google Scholar] [CrossRef]
- Guerrini, L.; Maioli, F.; Picchi, M.; Zanoni, B.; Parenti, A.; Canuti, V. Kinetic modeling of a Sangiovese wine’s chemical and physical parameters during one-year aging in different tank materials. Eur. Food Res. Technol. 2022, 248, 1525–1539. [Google Scholar] [CrossRef]
Conservation Site | N° of Samples | Sample Container (n.° of Bottles) | Storage Method |
---|---|---|---|
Cellar (well) | 3 | Sealed pvc tube | Free bottles |
6 (3 + 3) | Plastic box | Free bottles | |
Vacuum bottles | |||
Cellar (traditional aging) | 3 | No container | Free bottles |
Vineyard (well) | 3 | Sealed pvc tube | Free bottles |
4 (2 + 2) | Iron cage | Free bottles | |
Vacuum bottles |
Parameters Analyzed | Albugnano Superiore 2020 |
---|---|
Total acidity (g/L) | 5.57 ± 0.01 |
Volatile acidity (g/L) | 0.88 ± 0.02 |
Reducing sugars (g/L) | 1.00 ± 0.01 |
pH | 3.60 ± 0.01 |
Alcohol content (% v/v) | 14.03 ± 0.02 |
Free SO2 (mg/L) | 29 ± 1 |
Total SO2 (mg/L) | 107 ± 3 |
Tartaric stability | 32 ± 1 |
Variable | Observations | Minimum | Maximum | Mean | Std. Deviation | R2 | F | Pr > F |
---|---|---|---|---|---|---|---|---|
June 2020 | 60 | 13.90 | 20.29 | 17.25 | 1.61 | 0.00 | 0.02 | 0.89 |
July 2020 | 60 | 19.73 | 22.41 | 20.72 | 0.51 | 0.00 | 0.08 | 0.78 |
August 2020 | 60 | 20.84 | 22.93 | 21.94 | 0.40 | 0.06 | 3.95 | 0.05 |
September 2020 | 60 | 18.18 | 21.19 | 20.23 | 0.88 | 0.00 | 0.15 | 0.70 |
October 2020 | 60 | 14.90 | 19.25 | 16.57 | 1.13 | 0.06 | 3.91 | 0.05 |
November 2020 | 60 | 11.85 | 16.14 | 14.31 | 1.29 | 0.12 | 7.69 | 0.01 |
December 2020 | 60 | 9.10 | 11.98 | 10.23 | 0.53 | 0.04 | 2.50 | 0.12 |
June 2021 | 60 | 15.65 | 20.18 | 18.25 | 1.34 | 0.04 | 2.67 | 0.11 |
July 2021 | 60 | 19.20 | 21.22 | 20.01 | 0.57 | 0.04 | 2.51 | 0.12 |
August 2021 | 60 | 19.61 | 22.25 | 20.68 | 0.64 | 0.08 | 5.11 | 0.03 |
September 2021 | 60 | 18.48 | 20.33 | 19.70 | 0.50 | 0.01 | 0.63 | 0.43 |
October 2021 | 60 | 14.50 | 19.75 | 16.67 | 1.41 | 0.04 | 2.26 | 0.14 |
November 2021 | 60 | 8.20 | 14.58 | 11.47 | 2.15 | 0.44 | 45.33 | <0.0001 |
December 2021 | 60 | 7.60 | 12.90 | 10.32 | 1.01 | 0.20 | 57.11 | <0.0001 |
June 2022 | 60 | 16.97 | 22.10 | 19.41 | 1.34 | 0.10 | 6.56 | 0.01 |
July 2022 | 60 | 18.00 | 24.00 | 20.29 | 1.18 | 0.05 | 3.22 | 0.08 |
August 2022 | 60 | 17.50 | 22.80 | 20.53 | 1.21 | 0.07 | 4.04 | 0.05 |
September 2022 | 60 | 17.91 | 22.83 | 20.38 | 1.45 | 0.03 | 1.94 | 0.17 |
October 2022 | 60 | 17.14 | 18.52 | 17.69 | 0.36 | 0.36 | 33.04 | <0.0001 |
November 2022 | 60 | 11.54 | 17.37 | 14.42 | 1.45 | 0.05 | 3.13 | 0.082 |
December 2022 | 60 | 8.54 | 12.33 | 10.07 | 0.99 | 0.18 | 13.05 | 0.001 |
Parameters Analyzed | Traditional Aging | Cellar PVC Tube | Cellar Vacuum Bottles | Cellar Free Bottles | Vineyard PVC Tube | Vineyard Vacuum Bottles | Vineyard Free Bottles |
---|---|---|---|---|---|---|---|
Total acidity (g/L) | 6.00 ± 0.01 | 6.01 ± 0.01 | 5.99 ± 0.02 | 5.99 ± 0.01 | 6.00 ± 0.02 | 6.00 ± 0.01 | n.a. |
Volatile acidity (g/L) | 0.80 ± 0.03 | 0.80 ± 0.01 | 0.80 ± 0.01 | 0.80 ± 0.01 | 0.81 ± 0.01 | 0.80 ± 0.01 | n.a. |
Reducing sugars (g/L) | 1.00 ± 0.01 | 1.00 ± 0.01 | 1.00 ± 0.01 | 1.00 ± 0.01 | 1.00 ± 0.01 | 1.00 ± 0.01 | n.a. |
pH | 3.60 ± 0.01 | 3.61 ± 0.01 | 3.60 ± 0.01 | 3.60 ± 0.01 | 3.61 ± 0.01 | 3.60 ± 0.01 | n.a. |
Alcohol content (% v/v) | 14.380 ± 0.03 | 14.40 ± 0.01 | 14.39 ± 0.03 | 14.36 ± 0.04 | 14.32 ± 0.01 | 14.35 ± 0.01 | n.a. |
Free SO2 (mg/L) | 12 ± 3 | 12 ± 1 | 11 ± 1 | 12 ± 3 | 12 ± 1 | 13 ± 3 | n.a. |
Total SO2 (mg/L) | 58 ± 1 | 59 ± 1 | 58 ± 1 | 63 ± 1 | 65 ± 1 | 66 ± 1 | n.a. |
CO2 (g/L) | 0.230 ± 0.02 | 0.210 ± 0.01 | 0.190 ± 0.01 | 0.230 ± 0.02 | 0.220 ± 0.01 | 0.220 ± 0.01 | n.a. |
Dissolved O2 (mg/L) | 0.763 ± 0.01 | 0.053 ± 0.01 | 0.024 ± 0.02 | 0.069 ± 0.01 | 0.079 ± 0.03 | 0.013 ± 0.01 | n.a. |
Total polyphenols (mg/L) | 2175 ± 3 | 2219 ± 3 | 2145 ± 1 | 2187 ± 1 | 2173 ± 2 | 2189 ± 4 | n.a. |
Total anthocyanins (mg/L) | 95 ± 2 | 112 ± 2 | 163 ± 1 | 108 ± 3 | 107 ± 1 | 158 ± 6 | n.a. |
420 nm absorbance | 1.911 ± 0.04 | 1.869 ± 0.01 | 1.902 ± 0.03 | 1.863 ± 0.01 | 1.845 ± 0.01 | 1.848 ± 0.01 | n.a. |
520 nm absorbance | 1.537 ± 0.01 | 1.499 ± 0.02 | 1.519 ± 0.03 | 1.501 ± 0.02 | 1.512 ± 0.02 | 1.491 ± 0.02 | n.a. |
620 nm absorbance | 0.342 ± 0.02 | 0.332 ± 0.01 | 0.336 ± 0.02 | 0.330 ± 0.01 | 0.333 ± 0.01 | 0.329 ± 0.01 | n.a. |
Parameters Analyzed | Traditional Aging | Cellar PVC Tube | Cellar Vacuum Bottles | Cellar Free Bottles | Vineyard PVC Tube | Vineyard Vacuum Bottles | Vineyard Free Bottles |
---|---|---|---|---|---|---|---|
Total acidity (g/L) | 6.13 ± 0.01 | 6.13 ± 0.01 | 6.12 ± 0.01 | 6.11 ± 0.01 | 6.11 ± 0.01 | 6.15 ± 0.03 | 6.08 ± 0.01 |
Volatile acidity (g/L) | 0.79 ± 0.01 | 0.78 ± 0.02 | 0.78 ± 0.01 | 0.78 ± 0.01 | 0.78 ± 0.02 | 0.78 ± 0.01 | 0.79 ± 0.01 |
Reducing sugars (g/L) | 1.00 ± 0.01 | 1.00 ± 0.01 | 1.00 ± 0.01 | 1.00 ± 0.01 | 1.00 ± 0.01 | 1.00 ± 0.01 | 1.00 ± 0.01 |
pH | 3.62 ± 0.01 | 3.62 ± 0.01 | 3.62 ± 0.01 | 3.62 ± 0.01 | 3.62 ± 0.01 | 3.62 ± 0.01 | 3.63 ± 0.01 |
Alcohol content (% v/v) | 14.40 ± 0.01 | 14.39 ± 0.01 | 14.38 ± 0.01 | 14.42 ± 0.01 | 14.40 ± 0.01 | 14.39 ± 0.01 | 14.39 ± 0.01 |
Free SO2 (mg/L) | 10 ± 2 | 9 ± 1 | 11 ± 2 | 12 ± 2 | 9 ± 4 | 12 ± 1 | 10 ± 1 |
Total SO2 (mg/L) | 52 ± 4 | 56 ± 2 | 60 ± 2 | 5 ± 1 | 48 ± 4 | 59 ± 2 | 60 ± 4 |
CO2 (g/L) | 0.230 ± 0.02 | 0.220 ± 0.01 | 0.210 ± 0.01 | 0.210 ± 0.01 | 0.190 ± 0.02 | 0.200 ± 0.01 | 0.210 ± 0.01 |
Dissolved O2 (mg/L) | 0.143 ± 0.02 | 0.040 ± 0.01 | 0.031 ± 0.02 | 0.016 ± 0.01 | 0.021 ± 0.04 | 0.011 ± 0.01 | 0.015 ± 0.01 |
Total polyphenols (mg/L) | 1996 ± 2 | 2433 ± 4 | 1507 ± 2 | 1528 ± 8 | 1667 ± 4 | 1694 ± 2 | 1715 ± 4 |
Total anthocyanins (mg/L) | 47 ± 4 | 45 ± 4 | 46 ± 2 | 48 ± 2 | 49 ± 3 | 37 ± 2 | 49 ± 3 |
420 nm absorbance | 2.325 ± 0.01 | 2.335 ± 0.02 | 2.240 ± 0.01 | 2.245 ± 0.03 | 2.390 ± 0.02 | 2.230 ± 0.02 | 2.235 ± 0.01 |
520 nm absorbance | 1.805 ± 0.01 | 1.830 ± 0.02 | 1.785 ± 0.01 | 1.780 ± 0.02 | 1.845 ± 0.01 | 1.760 ± 0.04 | 1.780 ± 0.01 |
620 nm absorbance | 0.405 ± 0.02 | 0.440 ± 0.01 | 0.420 ± 0.02 | 0.415 ± 0.02 | 0.440 ± 0.01 | 0.415 ± 0.02 | 0.405 ± 0.02 |
Parameters Analyzed | Traditional Aging | Cellar PVC Tube | Cellar Vacuum Bottles | Cellar Free Bottles | Vineyard PVC Tube | Vineyard Vacuum Bottles | Vineyard Free Bottles |
---|---|---|---|---|---|---|---|
Total acidity (g/L) | 6.08 ± 0.02 | 6.07 ± 0.01 | 6.06 ± 0.03 | 6.05 ± 0.01 | n.a. | n.a. | n.a. |
Volatile acidity (g/L) | 0.78 ± 0.01 | 0.78 ± 0.02 | 0.78 ± 0.01 | 0.78 ± 0.02 | n.a. | n.a. | n.a. |
Reducing sugars (g/L) | 1.00 ± 0.02 | 1.00 ± 0.01 | 1.00 ± 0.02 | 1.00 ± 0.01 | n.a. | n.a. | n.a. |
pH | 3.70 ± 0.01 | 3.70 ± 0.01 | 3.69 ± 0.01 | 3.70 ± 0.02 | n.a. | n.a. | n.a. |
Alcohol content (% v/v) | 14.44 ± 0.01 | 14.43 ± 0.02 | 14.42 ± 0.01 | 14.38 ± 0.02 | n.a. | n.a. | n.a. |
Free SO2 (mg/L) | 5 ± 1 | 7 ± 1 | 8 ± 2 | 5 ± 1 | n.a. | n.a. | n.a. |
Total SO2 (mg/L) | 48 ± 2 | 42 ± 3 | 37 ± 2 | 29 ± 1 | n.a. | n.a. | n.a. |
CO2 (g/L) | 0.190 ± 0.01 | 0.210 ± 0.02 | 0.230 ± 0.02 | 0.230 ± 0.01 | n.a. | n.a. | n.a. |
Dissolved O2 (mg/L) | 0.042 ± 0.01 | 0.012 ± 0.01 | 0.014 ± 0.01 | 0.009 ± 0.02 | n.a. | n.a. | n.a. |
Total polyphenols (mg/L) | 1239 ± 4 | 1412 ± 4 | 1698 ± 4 | 1551 ± 2 | n.a. | n.a. | n.a. |
Total anthocyanins (mg/L) | 54 ± 2 | 59 ± 1 | 59 ± 2 | 67 ± 2 | n.a. | n.a. | n.a. |
420 nm absorbance | 2.410 ± 0.01 | 2.300 ± 0.02 | 2.240 ± 0.02 | 2.340 ± 0.01 | n.a. | n.a. | n.a. |
520 nm absorbance | 1.840 ± 0.04 | 1.780 ± 0.04 | 1.760 ± 0.01 | 1.780 ± 0.02 | n.a. | n.a. | n.a. |
620 nm absorbance | 0.430 ± 0.02 | 0.420 ± 0.02 | 0.410 ± 0.01 | 0.420 ± 0.01 | n.a. | n.a. | n.a. |
Parameters Analyzed | Traditional Aging | Underwater Aging |
---|---|---|
Total acidity (g/L) | 5.50 ± 0.02 | 5.53 ± 0.01 |
Volatile acidity (g/L) | 0.88 ± 0.01 | 0.87 ± 0.01 |
Reducing sugars (g/L) | 1.00 ± 0.01 | 1.00 ± 0.01 |
pH | 3.67 ± 0.01 | 3.67 ± 0.01 |
Alcohol content (% v/v) | 13.94 ± 0.01 | 13.94 ± 0.02 |
Free SO2 (mg/L) | 21 ± 2 | 24 ± 2 |
Total SO2 (mg/L) | 107 ± 3 | 111 ± 2 |
CO2 (g/L) | 0.07 ± 0.01 | 0.05 ± 0.01 |
Dissolved O2 (mg/L) | 0.086 ± 0.02 | 0.020 ± 0.03 |
Total polyphenols (mg/L) | 2.239 ± 0.01 | 2.426 ± 0.02 |
Total anthocyanins (mg/L) | 68 ± 2 | 75 ± 1 |
420 nm absorbance | 1.760 ± 0.08 | 1.700 ± 0.10 |
520 nm absorbance | 1.480 ± 0.04 | 1.450 ± 0.05 |
620 nm absorbance | 0.210 ± 0.02 | 0.210 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabino, D.; Allochis, D.; Gerbi, G. Red Wine Aging Techniques in Spring Water. Foods 2025, 14, 1961. https://doi.org/10.3390/foods14111961
Rabino D, Allochis D, Gerbi G. Red Wine Aging Techniques in Spring Water. Foods. 2025; 14(11):1961. https://doi.org/10.3390/foods14111961
Chicago/Turabian StyleRabino, Danilo, Davide Allochis, and Gianpiero Gerbi. 2025. "Red Wine Aging Techniques in Spring Water" Foods 14, no. 11: 1961. https://doi.org/10.3390/foods14111961
APA StyleRabino, D., Allochis, D., & Gerbi, G. (2025). Red Wine Aging Techniques in Spring Water. Foods, 14(11), 1961. https://doi.org/10.3390/foods14111961