Impact of Fluxapyroxad and Mefentrifluconazole on Microbial Succession and Metabolic Regulation in Rice Under Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. MFZ and FXP Concentration Analysis
2.4. Illumina Sequencing and Functional Prediction for Bacterial Community
2.5. Extraction of Metabolites and Metabolomics Analysis
3. Results and Discussion
3.1. Method Validation of MFZ and FXP in Samples
3.2. The Residues and Dissipation of FXP and MFZ in Rice–Soil Systems
3.3. Effects of FXP and MFZ Residues on Bacterial Diversity and Composition
3.4. Functional Prediction of Rhizospheric Bacterial Communities
3.5. Effects of FXP and MFZ on Metabolic Profiles in Rice Samples
3.5.1. Metabolomic Profiling
3.5.2. Impact on Rice Aroma-Related Phenolic Compounds
3.5.3. Metabolic Pathway Regulation
3.6. Correlation Tests Between Bacterial Endophytes and Metabolites of Rice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- She, Y.; Gao, X.; Lu, W.C.; Yang, Z.; Niu, B.; Zhou, Y.; Huang, X.Y.; Chen, C. Ionomic and Metabolomic Analyses Reveal Association between Nutritional Value and Aleurone Layer Thickness in Rice. Food Chem. 2025, 471, 142829. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, D.; Zhao, L.; Liu, J.; Shang, B.; Yang, W.; Duan, X.; Sun, H. Metabolomic Analysis Reveals Insights into Deterioration of Rice Quality during Storage. Foods 2022, 11, 1729. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.T.; Liu, K.; Ning, M.; Jatoi, M.A.; Muzaffar, N.; Usman, H. A Gastronomic Exploration of Protein Digestibility, Antioxidant Activity, and Bioavailability of Selenium-Enriched Germinated Brown Rice under Various Cooking Methods. J. Agric. Food Res. 2025, 19, 101714. [Google Scholar] [CrossRef]
- Wongsa, P.; Anantawa, V.; Suthiluk, P.; Setha, S.; Naradisorn, M.; Rawdkuen, S.; Shetty, K. Nutritional Quality, Volatile Organic Compounds and Element Compositions of Indigenous Upland Rice. J. Food Compos. Anal. 2025, 142, 107517. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, W.; Sui, Y.; Zhu, Z.; Li, S.; Shi, J.; Xiong, T.; Cai, F.; Wen, J.; Zheng, Z.; et al. Characterization of Volatile Organic Compounds in Selenium-Enriched Brown Rice Tea of Different Colors Using E-Nose, HS-GC-IMS and HS-SPME-GC-MS. LWT 2025, 224, 117830. [Google Scholar] [CrossRef]
- Yi, C.; Qiang, N.; Zhu, H.; Xiao, Q.; Li, Z. Extrusion Processing: A Strategy for Improving the Functional Components, Physicochemical Properties, and Health Benefits of Whole Grains. Food Res. Int. 2022, 160, 111681. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Sun, S.; Zheng, M.; Liu, M.; Liu, J.; Liu, H. Grain Actives Modulate Gut Microbiota to Improve Obesity-Related Metabolic Diseases: A Review. Food Res. Int. 2025, 199, 115367. [Google Scholar] [CrossRef]
- El Khosht, F.F.; Bergkvist, G.; Dahlin, A.S.; Watson, C.A.; Forkman, J.; Nilsson, J.; Öborn, I. Rotational Grass-Legume Leys Increase Arable Crop Yields, Particularly at Low N Fertiliser Rates. Field Crops Res. 2025, 326, 109835. [Google Scholar] [CrossRef]
- Salehi, A.; Surböck, A.; Freyer, B.; Friedel, J.K.; Gollner, G. 10-Year Study on the Impact of Organic Fertilization on Winter Wheat Yield and Quality Following Lucerne and Grain Pea in a Dry Sub-Humid Region under Organic Cultivation in Austria. J. Agric. Food Res. 2025, 21, 101888. [Google Scholar] [CrossRef]
- Marahatta, S.; Sah, S.K.; McDonald, A.; Timsina, J.; Devkota, K.P. Improving Soil Health and Crop Productivity through Conservation Agriculture and Nitrogen Management in Rice-Mustard-Maize Systems. Field Crops Res. 2025, 325, 109825. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Y.; Jiang, J.; He, H.; Zhang, C.; Zhao, X. Residual Behavior and Risk Assessment of Fluopyram, Acetamiprid and Chlorantraniliprole Used Individually or in Combination on Strawberry. Environ. Sci. Pollut. Res. 2023, 30, 64700–64709. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Pineda, C.; Iacona, G.D.; Duzy, L.; Eikenberry, S.; Frank, A.R.; Watson, G.; Gerber, L.R. Prioritizing Resource Allocation to Reduce Adverse Effects of Pesticide Risk for Endangered Species. Sci. Total Environ. 2024, 921, 171032. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. 2020. Available online: http://www.fao.org/faostat/en/#data/EP (accessed on 11 December 2024).
- Bunquin, M.A.B.; Daygon, V.D.; Opena, J.; Mitchell, J. Exploring Alternative Detection Methods for Azole-Containing Pesticide Residue Detection in Food: A Systematic Review and Future Perspective. Trends Food Sci. Technol. 2025, 161, 105064. [Google Scholar] [CrossRef]
- Singh, A.; Chand Kumawat, K. Unraveling the Potential of Microbial Diversity in Pesticide Remediation: An Eco-Friendly Approach for Environmental Sustainability. J. Agric. Food Res. 2025, 21, 101832. [Google Scholar] [CrossRef]
- Cui, K.; Fang, L.; Ding, R.; Ni, R.; Liang, J.; Li, T.; Wang, J.; Liu, J.; Guan, S.; Dong, Z.; et al. Dissipation and Metabolism of Fluxapyroxad, Oxathiapiprolin and Penthiopyrad in Grapes: A Comprehensive Risk Assessment from Field to Raisins. Food Chem. 2025, 485, 144510. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.-C.; Sun, J.; Yan, W.-F.; Wang, Y.-P.; Jin, J.; Li, Z.-Y.; Dong, Y.-Z.; Yu, J.-W.; Zhang, X. A Novel Cocrystal of the Zn(II) Coordination Molecule and the Benzimidazole for Efficient Detection of Triethylamine and Antibacterial Property. J. Mol. Struct. 2024, 1321, 140054. [Google Scholar] [CrossRef]
- Zheng, L.; Cao, C.; Chen, Z.; Cao, L.; Huang, Q.; Song, B. Efficient Pesticide Formulation and Regulation Mechanism for Improving the Deposition of Droplets on the Leaves of Rice (Oryza sativa L.). Pest Manag. Sci. 2021, 77, 3198–3207. [Google Scholar] [CrossRef]
- Zhu, C.L.; Lü, H.X.; Huang, Y.H.; Cheng, J.; Li, H.; Li, Y.W.; Mo, C.H.; Zhao, H.M.; Xiang, L.; Cai, Q.Y. Rice Genotypes and Root-Associated Niches Shifted Bacterial Community in Response to Pollution of Di-(2-Ethylhexyl) Phthalate (DEHP) for Promoting DEHP Removal. J. Hazard. Mater. 2023, 452, 131227. [Google Scholar] [CrossRef]
- EFSA. 2012. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/2522 (accessed on 3 January 2025).
- EFSA. 2018. Available online: https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5379 (accessed on 3 January 2025).
- Zhao, J.; Duan, G.; Chang, J.; Wang, H.; Zhu, D.; Li, J.; Zhu, Y. Co-Exposure to Cyazofamid and Polymyxin E: Variations in Microbial Community and Antibiotic Resistance in the Soil-Animal-Plant System. Environ. Res. 2025, 273, 121160. [Google Scholar] [CrossRef]
- Wang, G.; Shen, X.; Bai, C.; Zhuang, Z.; Jiang, H.; Yang, M.; Wei, X.; Wu, Z. Metabolomic Study on the Quality Differences and Physiological Characteristics between Rice Cultivated in Drought and Flood Conditions. Food Chem. 2023, 425, 135946. [Google Scholar] [CrossRef]
- Qian, C.; Wu, J.; Wang, H.; Yang, D.; Cui, J. Metabolomic Profiles Reveals the Dose-Dependent Effects of Rice Grain Yield and Nutritional Quality upon Exposure Zero-Valent Iron Nanoparticles. Sci. Total Environ. 2023, 879, 163089. [Google Scholar] [CrossRef] [PubMed]
- MARA. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2021. Available online: http://www.moa.gov.cn/nybgb/2015/shiqi/201712/t20171219_6103890.htm (accessed on 23 May 2025).
- Nagarajan, V.; Tsai, H.C.; Chen, J.; Hussain, B.; Suprokash, K.; Hseu, Z.Y.; Hsu, B.M. Comparison of Bacterial Communities and Their Functional Profiling Using 16S RRNA Gene Sequencing between the Inherent Serpentine-Associated Sites, Hyper-Accumulator, Downgradient Agricultural Farmlands, and Distal Non-Serpentine Soils. J. Hazard. Mater. 2022, 431, 128557. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Pan, X.; Li, R.; Jiang, D.; Dong, F.; Zhu, W.; Xu, J.; Liu, X.; Wu, X.; Zheng, Y. Enantioselective Monitoring Chiral Fungicide Mefentrifluconazole in Tomato, Cucumber, Pepper and Its Pickled Products by Supercritical Fluid Chromatography Tandem Mass Spectrometry. Food Chem. 2021, 376, 131883. [Google Scholar] [CrossRef]
- SANTE. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. SANTE/12682/2019. 2019. Available online: https://www.Eurl-pesticides.Eu/userfiles/file/eurlall/aqcguidance_sante_2019_12682.pdf (accessed on 11 December 2024).
- Feng, J.; Xu, Y.; Ma, B.; Tang, C.; Brookes, P.C.; He, Y.; Xu, J. Assembly of Root-Associated Microbiomes of Typical Rice Cultivars in Response to Lindane Pollution. Environ. Int. 2019, 131, 104975. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the Roots: The Microbial Ecology of the Rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Hu, X.; Lu, L.; Guo, Z.; Zhu, Z. Volatile Compounds, Affecting Factors and Evaluation Methods for Rice Aroma: A Review. Trends Food Sci. Technol. 2020, 97, 136–146. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, S.; Wei, J.; Chen, X.; Zhu, S.; Zhou, X. Systematical Construction of Rice Flavor Types Based on HS-SPME-GC-MS and Sensory Evaluation. Food Chem. 2023, 413, 135604. [Google Scholar] [CrossRef]
- Miao, S.M.; Xia, Y.; Cui, J.L.; Wang, J.H.; Wang, M.L. Correlation Analysis between Differential Metabolites and Bacterial Endophytes of Ephedra Sinica in Different Years. Ind. Crops Prod. 2022, 175, 114250. [Google Scholar] [CrossRef]
Matrices | Spiked Levels (mg/kg) | FXP | MFZ | ||
---|---|---|---|---|---|
Recoveries | RSDs (%) | Recoveries | RSDs (%) | ||
brown rice | 0.01 | 105.79 | 1.82 | 81.12 | 5.17 |
0.1 | 71.97 | 1.23 | 78.35 | 2.46 | |
5.0 | 109.44 | 4.00 | 86.33 | 5.86 | |
rice husk | 0.01 | 114.96 | 1.23 | 113.61 | 3.58 |
0.1 | 92.85 | 8.76 | 97.92 | 2.38 | |
5.0 | 97.06 | 5.88 | 89.17 | 10.59 | |
soil | 0.01 | 85.81 | 12.12 | 77.56 | 8.01 |
0.1 | 73.54 | 2.30 | 76.32 | 3.08 | |
5.0 | 106.30 | 3.74 | 100.53 | 3.67 | |
rice root | 0.01 | 77.81 | 6.21 | 82.69 | 6.83 |
0.1 | 79.10 | 8.29 | 74.92 | 6.26 | |
5.0 | 83.59 | 10.08 | 108.60 | 6.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Fang, N.; Liang, C.; Wang, X.; Li, Y.; He, H.; Zhao, X.; Luo, Y.; Jiang, J. Impact of Fluxapyroxad and Mefentrifluconazole on Microbial Succession and Metabolic Regulation in Rice Under Field Conditions. Foods 2025, 14, 1904. https://doi.org/10.3390/foods14111904
Zhang C, Fang N, Liang C, Wang X, Li Y, He H, Zhao X, Luo Y, Jiang J. Impact of Fluxapyroxad and Mefentrifluconazole on Microbial Succession and Metabolic Regulation in Rice Under Field Conditions. Foods. 2025; 14(11):1904. https://doi.org/10.3390/foods14111904
Chicago/Turabian StyleZhang, Changpeng, Nan Fang, Chizhou Liang, Xiangyun Wang, Yanjie Li, Hongmei He, Xueping Zhao, Yuqin Luo, and Jinhua Jiang. 2025. "Impact of Fluxapyroxad and Mefentrifluconazole on Microbial Succession and Metabolic Regulation in Rice Under Field Conditions" Foods 14, no. 11: 1904. https://doi.org/10.3390/foods14111904
APA StyleZhang, C., Fang, N., Liang, C., Wang, X., Li, Y., He, H., Zhao, X., Luo, Y., & Jiang, J. (2025). Impact of Fluxapyroxad and Mefentrifluconazole on Microbial Succession and Metabolic Regulation in Rice Under Field Conditions. Foods, 14(11), 1904. https://doi.org/10.3390/foods14111904