Transcriptomic Profiling Uncovers Molecular Basis for Sugar and Acid Metabolism in Two Pomegranate (Punica granatum) Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Sampling
2.2. Determination of the Content of Main Components of Soluble Sugars and Organic Acids
2.3. RNA Extraction, Library Construction and Sequencing
2.4. Transcriptomic Data Analysis and DEGs Identification
2.5. WGCNA
2.6. Real-Time Fluorescence Quantitative Analysis (qRT-PCR)
2.7. Statistical Analysis
3. Results
3.1. Dynamic Changes of Principal Soluble Sugars and Organic Acids Components During Developmental Period
3.2. Identification of DEGs
3.3. Functional Enrichment Analysis of DEGs
3.4. Screening of Candidate Genes for Soluble Sugars and Organic Acids Metabolism
3.5. WGCNA Identified TFs Related to Citric Acid Metabolism
3.6. Correlation Analysis
3.7. qRT-PCR Validation of DEGs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, B.; Zhang, C.; Guo, T.; Wei, Y. Punica granatum L. polysaccharides: A review on extraction, structural characteristics and bioactivities. Carbohydr. Res. 2024, 544, 109246. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, H.; Hegazi, N.; El-Shamy, S.; Farag, M.A. Pomegranate juice as a functional food: A comprehensive review of its polyphenols, therapeutic merits, and recent patents. Food Funct. 2020, 11, 5768–5781. [Google Scholar] [CrossRef]
- Dogara, A.M.; Hama, H.A.; Ozdemir, D. Update on the potential of Punica granatum L. traditional uses and pharmacological uses: A review. Adv. Pharmacol. Pharm. Sci. 2024, 2024, 6523809. [Google Scholar] [CrossRef] [PubMed]
- Tornese, R.; Montefusco, A.; Placì, R.; Semeraro, T.; Durante, M.; De Caroli, M.; Calabrese, G.; Caprifico, A.E.; Lenucci, M.S. Antiangiogenic potential of pomegranate extracts. Plants 2024, 13, 3350. [Google Scholar] [CrossRef]
- Melgarejo-Sánchez, P.; Núñez-Gómez, D.; Martínez-Nicolás, J.J.; Hernández, F.; Legua, P.; Melgarejo, P. Pomegranate variety and pomegranate plant part, relevance from bioactive point of view: A review. Bioresour. Bioprocess. 2021, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Kshirsagar, K.R.; Pathak, S.S.; Patil, S.M. Pomegranate (Punica granatum L.): A fruitful fountain of remedial potential. Cureus 2023, 15, 9. [Google Scholar] [CrossRef]
- Fakudze, N.T.; Aniogo, E.C.; George, B.P.; Abrahamse, H. The therapeutic efficacy of Punica granatum and its bioactive constituents with special reference to photodynamic therapy. Plants 2022, 11, 2820. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, J.; Li, J.; Zhang, H.; Li, Y.; Farooq, S.; Bacha, S.A.S.; Wang, J. Evaluation of sugar and organic acid composition and their levels in highbush blueberries from two regions of China. J. Integr. Agric. 2020, 19, 2352–2361. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, S.; Ma, Y.; Liu, Z.; Tu, H.; Wang, H.; Zhang, J.; Chen, Q.; He, W.; Li, M.; et al. Soluble sugar and organic acid composition and flavor evaluation of Chinese cherry fruits. Food Chem. X 2023, 20, 100953. [Google Scholar] [CrossRef]
- Jiang, C.; Fang, Z.; Zhou, D.; Pan, S.; Ye, X. Changes in secondary metabolites, organic acids and soluble sugars during the development of plum fruit cv. ‘Furongli’ (Prunus salicina Lindl). J. Sci. Food Agric. 2019, 99, 1010–1019. [Google Scholar] [CrossRef]
- Ikegaya, A. Composition of free sugars and organic acids in Japanese strawberry cultivars and their influence on the perception of sweetness and sourness. J. Food Sci. 2024, 89, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Bian, Y.; Hou, S.; Li, X. Sugar transport played a more important role than sugar biosynthesis in fruit sugar accumulation during Chinese jujube domestication. Planta 2018, 248, 1187–1199. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Wu, M.; Jiao, X.; Chen, S.; Jia, D.; Xu, X.; Huang, C. Dynamic changes of fruit physiological quality and sugar components during fruit growth and development of Actinidia eriantha. Horticulturae 2022, 8, 529. [Google Scholar] [CrossRef]
- Mollah, M.D.A.; Zhang, X.; Zhao, L.; Jiang, X.; Ogutu, C.O.; Peng, Q.; Belal, M.A.A.; Yang, Q.; Cai, Y.; Nishawy, E.; et al. Two vacuolar invertase inhibitors PpINHa and PpINH3 display opposite effects on fruit sugar accumulation in peach. Front. Plant Sci. 2022, 13, 1033805. [Google Scholar] [CrossRef] [PubMed]
- Eom, J.; Chen, L.; Sosso, D.; Julius, B.T.; Lin, I.; Qu, X.Q.; Braun, D.M.; Frommer, W.B. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr. Opin. Plant Biol. 2015, 25, 53–62. [Google Scholar] [CrossRef]
- Etienne, A.; Genard, M.; Lobit, P.; Mbeguie-A-Mbeguie, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Sun, J.; Jackson, A. Dynamic changes of enzymes involved in sugar and organic acid level modification during blueberry fruit maturation. Food Chem. 2020, 309, 125617. [Google Scholar] [CrossRef]
- Igamberdiev, A.U.; Eprintsev, A.T. Organic acids: The pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front. Plant Sci. 2016, 7, 1042. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, C.; Luo, M.; Wu, Y.; Duan, S.; Li, J.; Wang, L.; Song, S.; Xu, W.; Wang, S.; et al. Proteomic analysis of pear ripening process provides new evidence for the sugar/acid metabolism difference between core and mesocarp. Proteomics 2016, 16, 3025–3041. [Google Scholar] [CrossRef]
- Ding, Z.; Yan, J.Y.; Xu, X.; Li, G.; Zheng, S. WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis. Plant J. 2013, 76, 825–835. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.; Yu, D. Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiol. 2018, 176, 790–803. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Bui, T.P.; Le, N.T.; Nguyen, C.X.; Le, M.T.T.; Dao, N.T.; Phan, Q.; Van Le, T.; To, H.M.T.; Pham, N.B.; et al. Disrupting Sc-uORFs of a transcription factor bZIP1 using CRISPR/Cas9 enhances sugar and amino acid contents in tomato (Solanum lycopersicum). Planta 2023, 257, 57. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Dong, T.; Qiu, X.; Rong, Y.; Wang, Z.; Zhu, J. Nitrogen nutrition is a key modulator of the sugar and organic acid content in citrus fruit. PLoS ONE 2019, 14, e0223356. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Li, Y.; Nai, G.; Liang, G.; Ma, Z.; Chen, B.; Mao, J. Changes and response mechanism of sugar and organic acids in fruits under water deficit stress. PeerJ 2022, 10, e13691. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, Y.; Li, Y.; Liao, S.; Sun, Y.; Liu, F. Supplemental light and silicon improved strawberry fruit size and sugars concentration under both full and deficit irrigation. Sci. Hortic. 2023, 313, 111912. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Niu, X.; Zheng, X.; Chen, X.; Zheng, G.H.; Wu, J.C. Comparative transcriptome analysis reveals key genes potentially related to organic acid and sugar accumulation in loquat. PLoS ONE 2021, 16, e0238873. [Google Scholar] [CrossRef]
- Ma, B.; Ding, Y.; Li, C.; Li, M.; Ma, F.; Yuan, Y. Comparative proteomic analysis reveals key proteins linked to the accumulation of soluble sugars and organic acids in the mature fruits of the wild Malus species. Plants 2019, 8, 488. [Google Scholar] [CrossRef]
- Kashash, Y.; Doron-Faigenboim, A.; Bar-Yaakov, I.; Hatib, K.; Beja, R.; Trainin, T.; Holland, D.; Porat, R. Diversity among pomegranate varieties in chilling tolerance and transcriptome responses to cold storage. J. Agric. Food Chem. 2019, 67, 760–771. [Google Scholar] [CrossRef]
- Zhao, X.; Feng, Y.; Ke, D.; Teng, Y.; Yuan, Z. Comparative transcriptomic and metabolomic profiles reveal fruit peel color variation in two red pomegranate cultivars. Plant Mol. Biol. 2024, 114, 51. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Ren, H.; Zhao, X.; Yuan, Z. Integrated transcriptomic, metabolomic, and functional analyses unravel the mechanism of bagging delaying fruit cracking of pomegranate (Punica granatum L.). Food Chem. 2024, 451, 139384. [Google Scholar] [CrossRef]
- Huo, Y.; Yang, H.; Ding, W.; Huang, T.; Yuan, Z.; Zhu, Z. Combined transcriptome and proteome analysis provides insights into petaloidy in pomegranate. Plants 2023, 12, 2402. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Wang, C.; Yang, X.; Jiao, Q.; Yin, Y. Transcriptomics and metabolomics analyses identified key genes associated with sugar and acid metabolism in sweet and sour pomegranate cultivars during the developmental period. Plant Physiol. Biochem. 2022, 181, 12–22. [Google Scholar] [CrossRef]
- Liao, H.Z.; Lin, X.K.; Du, J.J.; Peng, J.J.; Zhou, K.B. Transcriptomic analysis reveals key genes regulating organic acid synthesis and accumulation in the pulp of Litchi chinensis Sonn. cv. Feizixiao. Sci. Hortic. 2022, 303, 111220. [Google Scholar]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 2011, 12, 323. [Google Scholar] [CrossRef]
- Guo, F.; Yu, W.; Fu, F.; Hou, H.; Zhang, J.; Guo, J.; Wu, P.; Li, X.; El-Kassaby, Y.A.; Wang, G. Ginkgo biloba wood transcriptome reveals critical genes for secondary cell wall formation and transcription factors involved in lignin biosynthesis. Ind. Crops Prod. 2024, 216, 118736. [Google Scholar] [CrossRef]
- Zhang, Y.; Diao, S.; Ding, X.; Sun, J.; Luan, Q.; Jiang, J. Transcriptional regulation modulates terpenoid biosynthesis of Pinus elliottii under drought stress. Ind. Crops Prod. 2023, 202, 116975. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, Y.; Zhang, Y.; Dai, Z.; Wang, P.; Zhang, J. Transcriptome and metabolome analysis of fruit firmness and organic acids in two different varieties of melon (Cucumis melo L.). Acta Physiol. Plant. 2023, 45, 95. [Google Scholar] [CrossRef]
- Tao, H.; Sun, H.; Wang, Y.; Song, X.; Guo, Y. New insights on ‘gala’ apple fruit development: Sugar and acid accumulation: A transcriptomic approach. J. Plant Growth Regul. 2020, 39, 680–702. [Google Scholar] [CrossRef]
- Sweetman, C.; Deluc, L.G.; Cramer, G.R.; Ford, C.M.; Soole, K.L. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 2009, 70, 1329–1344. [Google Scholar] [CrossRef]
- Lombardo, V.A.; Osorio, S.; Borsani, J.; Lauxmann, M.A.; Bustamante, C.A.; Budde, C.O.; Andreo, C.S.; Lara, M.V.; Fernie, A.R.; Drincovich, M.F. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol. 2011, 157, 1696–1710. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhu, L.; Yang, N.; Qu, S.; Cao, W.; Ma, W.; Wei, X.; Ma, B.; Ma, F.; Fu, A.; et al. Transcriptional landscape and dynamics involved in sugar and acid accumulation during apple fruit development. Plant Physiol. 2024, 195, 2772–2786. [Google Scholar] [CrossRef]
- Ali, M.M.; Anwar, R.; Yousef, A.F.; Li, B.; Luvisi, A.; De Bellis, L.; Aprile, A.; Chen, F. Influence of bagging on the development and quality of fruits. Plants 2021, 10, 358. [Google Scholar] [CrossRef]
- Cam, M.; Hisil, Y.; Durmaz, G. Characterisation of pomegranate juices from ten cultivars grown in Turkey. Int. J. Food Prop. 2009, 12, 388–395. [Google Scholar] [CrossRef]
- Nafees, M.; Jafar Jaskani, M.; Ahmad, I.; Maryam; Ashraf, I.; Maqsood, A.; Ahmar, S.; Azam, M.; Hussain, S.; Hanif, A.; et al. Biochemical analysis of organic acids and soluble sugars in wild and cultivated pomegranate germplasm based in Pakistan. Plants 2020, 9, 493. [Google Scholar] [CrossRef]
- An, Y.; Zhu, Q.; Lv, H.; Zhang, X.; Huang, F.; Guo, Y.; Cao, C.; Liu, H.; Li, Y.; Xu, L. Genomic basis of metabolome-mediated cultivar-specific flavor formation in juice sacs of the pomelo (Citrus grandis (L.) Osbeck) cultivars Shatian and Guanxi honey. LWT-Food Sci. Technol. 2024, 191, 115606. [Google Scholar] [CrossRef]
- Du, Q.; Yu, H.; Zhang, Y.; Qiao, Q.; Wang, J.; Zhang, T.; Xue, L.; Lei, J. Uncovering fruit flavor and genetic diversity across diploid wild Fragaria species via comparative metabolomics profiling. Food Chem. 2024, 456, 140013. [Google Scholar] [CrossRef]
- Su, L.; Zhang, T.; Wu, M.; Zhong, Y.; Cheng, Z. Transcriptome and metabolome reveal sugar and organic acid accumulation in Rosa roxburghii fruit. Plants 2023, 12, 3036. [Google Scholar] [CrossRef]
- Cai, B.; Li, Q.; Xu, Y.; Yang, L.; Bi, H.; Ai, X. Genome-wide analysis of the fructose 1,6-bisphosphate aldolase (FBA) gene family and functional characterization of FBA7 in tomato. Plant Physiol. Biochem. 2016, 108, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Song, S.; Fu, D.; Zhou, J.; Chang, H.; Wang, B.; Xu, R.; Zhang, C.; Wang, Y. Combined transcriptome and metabolome analysis reveals the mechanism of fruit quality formation in different watermelon (Citrullus lanatus) cultivars. Sci. Hortic. 2025, 339, 113797. [Google Scholar] [CrossRef]
- Ruan, Y. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Lian, L.; Song, J.; Du, X.; Liu, W.; Zhao, W.; Yang, L.; Li, C.; Qin, Y.; et al. Systematic analysis of the sugar accumulation mechanism in sucrose- and hexose-accumulating cherry tomato fruits. BMC Plant Biol. 2022, 22, 303. [Google Scholar] [CrossRef]
- Samkumar, A.; Karppinen, K.; Dhakal, B.; Martinussen, I.; Jaakola, L. Insights into sugar metabolism during bilberry (Vaccinium myrtillus L.) fruit development. Physiol. Plant. 2022, 174, e13657. [Google Scholar] [CrossRef]
- Zhang, Z.; Xing, Y.; Ramakrishnan, M.; Chen, C.; Xie, F.; Hua, Q.; Chen, J.; Zhang, R.; Zhao, J.; Hu, G.; et al. Transcriptomics-based identification and characterization of genes related to sugar metabolism in ‘Hongshuijing’ pitaya. Hortic. Plant J. 2022, 8, 450–460. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Shan, Y.; Qin, Q. Characterization of SWEET family members from loquat and their responses to exogenous induction. Tree Genet. Genomes 2017, 13, 123. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Wang, X.; Peng, C.; Chang, X.; Chen, Z.; Yang, B.; Wang, X.; Qiu, J.; Guo, L.; et al. Identification of key genes controlling sugar and organic acid accumulation in wampee fruit (Clausena Lansium) via genome assembly and genome-wide association analysis. J. Agric. Food Chem. 2024, 72, 41. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Jia, M.; Pan, L.; Chen, W.; Zhou, K.; Xi, W. Sugar transporters PpSWEET9a and PpSWEET14 synergistically mediate peach sucrose allocation from source leaves to fruit. Commun. Biol. 2024, 7, 1068. [Google Scholar] [CrossRef]
- Faria, A.; Calhau, C. The bioactivity of pomegranate: Impact on health and disease. Crit. Rev. Food Sci. Nutr. 2011, 51, 626–634. [Google Scholar] [CrossRef]
- Ko, H.; Ho, L.; Neuhaus, H.E.; Guo, W. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. Plant Physiol. 2021, 187, 2230–2245. [Google Scholar] [CrossRef]
- Huang, X.; Wang, C.; Zhao, Y.; Sun, C.; Hu, D. Mechanisms and regulation of organic acid accumulation in plant vacuoles. Hortic. Res. 2021, 8, 227. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, X.; Gou, B.; Wang, D.; Liu, C.; Sun, J.; Yin, X.; Grierson, D.; Li, S.; Chen, K. The interaction between CitMYB52 and CitbHLH2 negatively regulates citrate accumulation by activating CitALMT in Citrus fruit. Front. Plant Sci. 2022, 13, 848869. [Google Scholar] [CrossRef]
- Jiang, Y.; Qi, Y.; Chen, X.; Yan, Q.; Chen, J.; Liu, H.; Shi, F.; Wen, Y.; Cai, C.; Ou, L. Combined metabolome and transcriptome analyses unveil the molecular mechanisms of fruit acidity variation in Litchi (Litchi chinensis sonn.). Int. J. Mol. Sci. 2023, 24, 1871. [Google Scholar] [CrossRef] [PubMed]
- McCommis, K.S.; Finck, B.N. Mitochondrial pyruvate transport: A historical perspective and future research directions. Biochem. J. 2015, 466, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Zhao, L.; Jiang, X.; Cherono, S.; Liu, J.; Ogutu, C.; Ntini, C.; Zhang, X.; Han, Y. Assessment of organic acid accumulation and its related genes in peach. Food Chem. 2021, 334, 127567. [Google Scholar] [CrossRef]
- Shelp, B.J.; Mullen, R.T.; Waller, J.C. Compartmentation of GABA metabolism raises intriguing questions. Trends Plant Sci. 2012, 17, 57–59. [Google Scholar] [CrossRef]
- Michaeli, S.; Fromm, H. Closing the loop on the GABA shunt in plants: Are GABA metabolism and signaling entwined? Front. Plant Sci. 2015, 6, 419. [Google Scholar] [CrossRef]
- Wu, X.; Huo, R.; Yuan, D.; Zhao, L.; Kang, X.; Gong, B.; Lü, G.; Gao, H. Exogenous GABA improves tomato fruit quality by contributing to regulation of the metabolism of amino acids, organic acids and sugars. Sci. Hortic. 2024, 338, 113750. [Google Scholar] [CrossRef]
- Aprile, A.; Federici, C.; Close, T.J.; De Bellis, L.; Cattivelli, L.; Roose, M.L. Expression of the H+-ATPase AHA10 proton pump is associated with citric acid accumulation in lemon juice sac cells. Funct. Integr. Genom. 2011, 11, 551–563. [Google Scholar] [CrossRef]
- Degu, A.; Hatew, B.; Nunes-Nesi, A.; Shlizerman, L.; Zur, N.; Katz, E.; Fernie, A.R.; Blumwald, E.; Sadka, A. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis. Planta 2011, 234, 501–513. [Google Scholar] [CrossRef]
- Hernandez Mora, J.R.; Micheletti, D.; Bink, M.; Van De Weg, E.; Cantin, C.; Nazzicari, N.; Caprera, A.; Dettori, M.T.; Micali, S.; Banchi, E.; et al. Integrated QTL detection for key breeding traits in multiple peach progenies. BMC Genom. 2017, 18, 404. [Google Scholar] [CrossRef]
- Hussain, S.B.; Shi, C.; Guo, L.; Kamran, H.M.; Sadka, A.; Liu, Y. Recent advances in the regulation of citric acid metabolism in citrus fruit. Crit. Rev. Plant Sci. 2017, 36, 241–256. [Google Scholar] [CrossRef]
- Shi, C.; Hussain, S.B.; Yang, H.; Bai, Y.; Khan, M.A.; Liu, Y. CsPH8, a P-type proton pump gene, plays a key role in the diversity of citric acid accumulation in citrus fruits. Plant Sci. 2019, 289, 110288. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Ali, M.M.; Gull, S.; Fang, T.; Wu, W.; Chen, F. Transcriptome data-based identification and expression profiling of genes potentially associated with malic acid accumulation in plum (Prunus salicina Lindl.). Sci. Hortic. 2023, 322, 112397. [Google Scholar] [CrossRef]
- Yu, J.; Gu, K.; Sun, C.; Zhang, Q.; Wang, J.; Ma, F.; You, C.; Hu, D.; Hao, Y. The apple bHLH transcription factor MdbHLH3 functions in determining the fruit carbohydrates and malate. Plant Biotechnol. J. 2021, 19, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Gu, K.; Zhang, Q.; Yu, J.; Wang, C.; You, C.; Cheng, L.; Hu, D. Ethylene inhibits malate accumulation in apple by transcriptional repression of aluminum-activated malate transporter9 via the WRKY31-ERF72 network. New Phytol. 2023, 239, 1014–1034. [Google Scholar]
- Zhang, M.; Lu, W.; Yang, X.; Li, Q.; Lin, X.; Liu, K.; Yin, C.; Xiong, B.; Liao, L.; Sun, G.; et al. Comprehensive analyses of the citrus WRKY gene family involved in the metabolism of fruit sugars and organic acids. Front. Plant Sci. 2023, 14, 1264283. [Google Scholar] [CrossRef]
- Li, S.; Wang, W.; Ma, Y.; Liu, S.; Grierson, D.; Yin, X.; Chen, K. Citrus CitERF6 contributes to citric acid degradation via upregulation of Citaclα1, encoding ATP-citrate lyase subunit α. J. Agric. Food Chem. 2020, 68, 10081–10087. [Google Scholar] [CrossRef]
- Li, S.; Yin, X.; Wang, W.; Liu, X.; Zhang, B.; Chen, K. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3. J. Exp. Bot. 2017, 68, 3419–3426. [Google Scholar] [CrossRef]
- Lin, L.; Yuan, K.; Huang, Y.; Dong, H.; Qiao, Q.; Xing, C.; Huang, X.; Zhang, S. A WRKY transcription factor PbWRKY40 from Pyrus betulaefolia functions positively in salt tolerance and modulating organic acid accumulation by regulating PbVHA-B1 expression. Environ. Exp. Bot. 2022, 196, 104782. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, D.; Zhang, Y.; Teng, Y.; Zhao, X. Transcriptomic Profiling Uncovers Molecular Basis for Sugar and Acid Metabolism in Two Pomegranate (Punica granatum) Varieties. Foods 2025, 14, 1755. https://doi.org/10.3390/foods14101755
Ke D, Zhang Y, Teng Y, Zhao X. Transcriptomic Profiling Uncovers Molecular Basis for Sugar and Acid Metabolism in Two Pomegranate (Punica granatum) Varieties. Foods. 2025; 14(10):1755. https://doi.org/10.3390/foods14101755
Chicago/Turabian StyleKe, Ding, Yilong Zhang, Yingfen Teng, and Xueqing Zhao. 2025. "Transcriptomic Profiling Uncovers Molecular Basis for Sugar and Acid Metabolism in Two Pomegranate (Punica granatum) Varieties" Foods 14, no. 10: 1755. https://doi.org/10.3390/foods14101755
APA StyleKe, D., Zhang, Y., Teng, Y., & Zhao, X. (2025). Transcriptomic Profiling Uncovers Molecular Basis for Sugar and Acid Metabolism in Two Pomegranate (Punica granatum) Varieties. Foods, 14(10), 1755. https://doi.org/10.3390/foods14101755