Rapid Detection of Antibiotic Mycelial Dregs Adulteration in Single-Cell Protein Feed by HS-GC-IMS and Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. HS-GC-IMS Measurement
2.3. Data Processing
3. Results and Discussion
3.1. Topographic Plots
3.2. Fingerprint Analysis of NR and AMD
3.3. Discriminant Analysis of Adulterated Samples
3.3.1. Exploratory Analysis Using PCA
3.3.2. Exploratory Analysis Using OPLS-DA
3.4. Quantitative Analysis of Adulterated Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, R.; Raj, T.; Nss, G.; Srensen, M.; Dhawan, V. Opportunities and challenges in single-cell protein production using lignocellulosic material. Biofuels Bioprod. Biorefining 2024, 18, 310–321. [Google Scholar] [CrossRef]
- Jones, S.W.; Karpol, A.; Friedman, S.; Maru, B.T.; Tracy, B.P. Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr. Opin. Biotechnol. 2020, 61, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Guo, X.; Li, Q.; Yuan, X.; Zhang, Z.; Tremblay, L.A.; Li, Z. Biochar derivation at low temperature: A novel strategy for harmful resource usage of antibiotic mycelial dreg. Environ. Res. 2024, 250, 118376. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhou, T.; Song, Y.; Yan, B.; Mu, L.; Tao, J.; Pei, L. Alkaline hydrothermal treatment of gentamycin mycelial residues: Characteristics of disintegration, solid-state fermentation, and antibiotic resistance genes reduction. Biomass Convers. Biorefinery 2025, 15, 5493–5507. [Google Scholar] [CrossRef]
- Liu, S.; Hou, X.; Xin, Q.; Wang, Y.; Xin, Y.; Liu, G.; Zhou, C.; Liu, H.; Yan, Q. Degradation of rifamycin from mycelial dreg by activated persulfate: Degradation efficiency and reaction kinetics. Sci. Total Environ. 2022, 821, 153229. [Google Scholar] [CrossRef]
- Melekhin, A.O.; Tolmacheva, V.V.; Goncharov, N.O.; Apyari, V.V.; Dmitrienko, S.G.; Shubina, E.G.; Grudev, A.I. Multi-class, multi-residue determination of 132 veterinary drugs in milk by magnetic solid-phase extraction based on magnetic hypercrosslinked polystyrene prior to their determination by high-performance liquid chromatography-tandem mass spectrometry. Food Chem. 2022, 387, 132866. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Xie, X.; Diao, Z.; Xie, K.; Zhang, G.; Zhang, T.; Dai, G. Quantitative analysis of spectinomycin and lincomycin in poultry eggs by accelerated solvent extraction coupled with gas chromatography tandem mass spectrometry. Foods 2020, 9, 651. [Google Scholar] [CrossRef]
- Mehrabi, A.; Mahmoudi, R.; Morasa, H.K.; Norian, R.; Mosavi, S.; Ahmadi, Z.; Kazemi, M.; Alizadeh, A. Evaluation of sulfonamide antibiotic residues of honey samples produced in different regions of qazvin province by ELISA. J. Chem. Health Risks 2022, 12, 363–369. [Google Scholar]
- Li, S.; Fan, X.; Wu, Y.; Liao, K.; Huang, Y.; Han, L.; Liu, X.; Yang, Z. A novel analytical strategy for discriminating antibiotic mycelial residue adulteration in feed based on atr-ir and microscopic infrared imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 261, 120060. [Google Scholar] [CrossRef]
- Ge, C.; Yang, Z.; Fan, X.; Huang, Y.; Shi, Z.; Zhang, X.; Han, L. A new spectral simulating method based on near-infrared hyperspectral imaging for evaluation of antibiotic mycelia residues in protein feeds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 319, 124536. [Google Scholar] [CrossRef]
- Rodríguez, S.D.; Rolandelli, G.; Buera, M.P. Detection of quinoa flour adulteration by means of FT-MIR spectroscopy combined with chemometric methods. Food Chem. 2019, 274, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lorjaroenphon, Y.; Li, H.; Cadwallader, K.R.; Wang, X.; Zhang, Y. Quantification of odorants in animal feeds at commercial swine and poultry operations. Trans. ASABE 2018, 61, 693–698. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, J.; Wang, J.; Wang, X.; Du, D. Recent development of HS-GC-IMS technology in rapid and non-destructive detection of quality and contamination in agri-food products. TrAC Trends Anal. Chem. 2021, 144, 116435. [Google Scholar] [CrossRef]
- Kranenburg, R.F.; Verduin, J.; Stuyver, L.I.; Ridder, R.D.; Beek, A.V.; Colmsee, E.; Asten, A.V. Benefits of derivatization in GC-MS-based identification of new psychoactive substances. Forensic Chem. 2020, 20, 110273. [Google Scholar] [CrossRef]
- Hernández-Mesa, M.; Ropartz, D.; García-Campaña, A.M.; Rogniaux, H.; Dervilly-Pinel, G.; Le Bizec, B. Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends. Molecules 2019, 24, 2706. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, T.; Yang, D.; Xie, J. Application of gas chromatography-ion mobility spectrometry in the analysis of food volatile components. Acta Chromatogr. 2023, 35, 35–45. [Google Scholar] [CrossRef]
- Tian, H.; Xiong, J.; Chen, S.; Yu, H.; Chen, C.; Huang, J.; Yuan, H.; Lou, X. Rapid identification of adulteration in raw bovine milk with soymilk by electronic nose and headspace-gas chromatography ion-mobility spectrometry. Food Chem. X 2023, 18, 100696. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; García-Nicolás, M.; Castell, A.; Campillo, N.; Viñas, P.; López-García, I.; Hernández-Córdoba, M. Untargeted headspace gas chromatography—Ion mobility spectrometry analysis for detection of adulterated honey. Talanta 2019, 205, 120123. [Google Scholar] [CrossRef]
- Dou, X.; Zhang, L.; Yang, R.; Wang, X.; Yu, L.; Yue, X.; Ma, F.; Mao, J.; Wang, X.; Li, P. Adulteration detection of essence in sesame oil based on headspace gas chromatography-ion mobility spectrometry. Food Chem. 2022, 370, 131373. [Google Scholar] [CrossRef]
- Calle, J.L.P.; Vázquez-Espinosa, M.; Barea-Sepúlveda, M.; Ruiz-Rodríguez, A.; Ferreiro-González, M.; Palma, M. Novel Method Based on Ion Mobility Spectrometry Combined with Machine Learning for the Discrimination of Fruit Juices. Foods 2023, 12, 2536. [Google Scholar] [CrossRef]
- Yang, X.; Xing, B.; Guo, Y.; Wang, S.; Guo, H.; Qin, P.; Hou, C.; Ren, G. Rapid, accurate and simply-operated determination of laboratory-made adulteration of quinoa flour with rice flour and wheat flour by headspace gas chromatography-ion mobility spectrometry. LWT—Food Sci. Technol. 2022, 167, 113814. [Google Scholar] [CrossRef]
- Song, Y.; Guo, T.; Liu, S.; Gao, Y.; Wang, Y. Identification of Polygonati Rhizoma in three species and from different producing areas of each species using HS-GC-IMS. LWT—Food Sci. Technol. 2022, 172, 114142. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, K.; Guo, H.; Geng, Y.; Lv, W.; Wang, S.; Guo, Y.; Qin, P.; Ren, G. Characterization of volatile compounds in differently coloured Chenopodium quinoa seeds before and after cooking by headspace-gas chromatography-ion mobility spectrometry. Food Chem. 2021, 348, 129086. [Google Scholar] [CrossRef]
- Zhang, P.P.; Gui, X.J.; Fan, X.H.; Li, H.; Li, H.Y.; Li, X.P.; Dong, F.Y.; Wang, Y.L.; Yao, J.; Shi, J.H.; et al. Quality identification of Amomi fructus using E-nose, HS-GC-IMS, and intelligent data fusion methods. Front. Chem. 2025, 13, 1544743. [Google Scholar] [CrossRef]
- Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, 16, 119–128. [Google Scholar] [CrossRef]
- Bylesj, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Tryg, J. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 2006, 20, 341–351. [Google Scholar] [CrossRef]
- Rocamora-Rivera, B.; Arroyo-Manzanares, N.; Viñas, P. Detection of Adulterated Oregano Samples Using Untargeted Headspace–Gas Chromatography–Ion Mobility Spectrometry Analysis. Foods 2024, 13, 516. [Google Scholar] [CrossRef]
- Xiong, Y.; Zheng, X.; Tian, X.; Wang, C.; Chen, J.; Zhou, L.; Xu, D.; Wang, J.; Gilard, V.; Wu, M.; et al. Comparative study of volatile organic compound profiles in aromatic and non-aromatic rice cultivars using HS-GC-IMS and their correlation with sensory evaluation. LWT—Food Sci. Technol. 2024, 203, 116321. [Google Scholar] [CrossRef]
- Wen, Y.; Li, Z.; Ning, Y.; Yan, Y.; Li, Z.; Wang, N.; Wang, H. Portable Raman spectroscopy coupled with PLSR analysis for monitoring and predicting of the quality of fresh-cut Chinese yam at different storage temperatures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 310, 123956. [Google Scholar] [CrossRef]
Number | Compound | CAS# | Formula | MW a | RI b | Rt c | Dt d |
---|---|---|---|---|---|---|---|
Aldehydes | |||||||
3 | 3-(methylthio)propanal (methional) | 3268-49-3 | C4H8OS | 104.2 | 909.6 | 281.917 | 1.39214 |
7 | Trans-2-pentenal | 1576-87-0 | C5H8O | 84.1 | 752.6 | 193.924 | 1.11452 |
10 | 2-methylbutanal | 96-17-3 | C5H10O | 86.1 | 676.9 | 164.694 | 1.15979 |
16 | butanal | 123-72-8 | C4H8O | 72.1 | 601.1 | 145.224 | 1.29144 |
19 | 2-methylpropanal | 78-84-2 | C4H8O | 72.1 | 559.1 | 134.428 | 1.10159 |
22 | (E,E)-2,4-heptadienal | 4313-03-5 | C7H10O | 110.2 | 1004.2 | 367.235 | 1.61242 |
23 | 2-methyl-2-pentenal | 623-36-9 | C6H10O | 98.1 | 834.6 | 234.949 | 1.16801 |
31 | heptanal | 111-71-7 | C7H14O | 114.2 | 896.2 | 270.49 | 1.67788 |
34 | (E)-2-hexenal | 6728-26-3 | C6H10O | 98.1 | 827.4 | 230.945 | 1.52248 |
38 | hexanal | 66-25-1 | C6H12O | 100.2 | 789.6 | 209.917 | 1.55987 |
41 | pentanal | 110-62-3 | C5H10O | 86.1 | 732.1 | 185.541 | 1.42109 |
44 | 3-methylbutanal | 590-86-3 | C5H10O | 86.1 | 641.6 | 155.621 | 1.20086 |
49 | 2-methylpentanal | 123-15-9 | C6H12O | 100.2 | 742.6 | 189.841 | 1.52146 |
55 | heptanal | 111-71-7 | C7H14O | 114.2 | 918.6 | 289.668 | 1.67752 |
59 | benzaldehyde | 100-52-7 | C7H6O | 106.1 | 956.4 | 322.013 | 1.14966 |
60 | benzaldehyde | 100-52-7 | C7H6O | 106.1 | 956.3 | 321.943 | 1.46584 |
61 | 2-methylpentanal | 123-15-9 | C6H12O | 100.2 | 755.8 | 195.242 | 1.53061 |
85 | 3-methylbutanal | 590-86-3 | C5H10O | 86.1 | 690.4 | 168.43 | 1.41855 |
100 | (E)-2-hexenal | 6728-26-3 | C6H10O | 98.1 | 853.1 | 245.282 | 1.16731 |
Alcohols | |||||||
5 | 2.3-butanediol | 513-85-9 | C4H10O2 | 90.1 | 814.8 | 223.945 | 1.36602 |
6 | 1.3-butanediol | 107-88-0 | C4H10O2 | 90.1 | 786.1 | 207.973 | 1.36699 |
14 | 2-methylpropanol | 78-83-1 | C4H10O | 74.1 | 620.1 | 150.078 | 1.17084 |
15 | butanol | 71-36-3 | C4H10O | 74.1 | 651.3 | 158.113 | 1.39114 |
24 | linalool | 78-70-6 | C10H18O | 154.3 | 1087.9 | 486.194 | 1.21752 |
30 | 1-heptanol | 111-70-6 | C7H16O | 116.2 | 971.6 | 335.043 | 1.77368 |
32 | n-hexanol | 111-27-3 | C6H14O | 102.2 | 885.5 | 263.272 | 1.62802 |
37 | 2-hexanol | 626-93-7 | C6H14O | 102.2 | 804.3 | 218.077 | 1.574 |
40 | 2-methylbutanol | 137-32-6 | C5H12O | 88.1 | 726.8 | 183.344 | 1.48425 |
45 | 2-propanethiol | 75-33-2 | C3H8S | 76.2 | 608.2 | 147.042 | 1.44187 |
52 | tert-butanol | 75-65-0 | C4H10O | 74.1 | 538.3 | 129.083 | 1.15468 |
53 | 1-octen-3-ol | 3391-86-4 | C8H16O | 128.2 | 980.4 | 342.589 | 1.15779 |
54 | citronellol | 106-22-9 | C10H20O | 156.3 | 1236.7 | 697.768 | 1.35197 |
56 | 1-octen-3-ol | 3391-86-4 | C8H16O | 128.2 | 949.6 | 316.19 | 1.58839 |
65 | 2-butanol | 78-92-2 | C4H10O | 74.1 | 617.8 | 149.49 | 1.3222 |
72 | n-hexanol | 111-27-3 | C6H14O | 102.2 | 867.3 | 253.174 | 1.63915 |
Esters | |||||||
2 | dihydro-5-methyl-2(3H)-furanone | 108-29-2 | C5H8O2 | 100.1 | 947.8 | 314.6 | 1.41535 |
4 | isoamyl acetate | 123-92-2 | C7H14O2 | 130.2 | 846.4 | 241.544 | 1.30701 |
9 | propyl acetate | 109-60-4 | C5H10O2 | 102.1 | 701.7 | 173.04 | 1.16156 |
21 | ethyl 2-methylpropanoate | 97-62-1 | C6H12O2 | 116.2 | 714.7 | 178.404 | 1.56305 |
28 | ethyl hexanoate | 123-66-0 | C8H16O2 | 144.2 | 1002.1 | 364.305 | 1.79254 |
29 | ethyl hexanoate | 123-66-0 | C8H16O2 | 144.2 | 1002.2 | 364.382 | 2.11443 |
35 | ethyl trans-2-butenoate | 623-70-1 | C6H10O2 | 114.1 | 829.5 | 232.096 | 1.56569 |
36 | ethyl 2-methylbutyrate | 7452-79-1 | C7H14O2 | 130.2 | 839.6 | 237.745 | 1.65046 |
39 | ethyl 2-methylpropanoate | 97-62-1 | C6H12O2 | 116.2 | 744.9 | 190.772 | 1.56902 |
42 | ethyl propanoate | 105-37-3 | C5H10O2 | 102.1 | 702 | 173.197 | 1.45433 |
46 | ethyl acetate | 141-78-6 | C4H8O2 | 88.1 | 606.6 | 146.624 | 1.33882 |
47 | methyl acetate | 79-20-9 | C3H6O2 | 74.1 | 523.7 | 125.345 | 1.18482 |
51 | butyl formate | 592-84-7 | C5H10O2 | 102.1 | 724.6 | 182.443 | 1.20588 |
62 | 5-ethyldihydro-2(3H)-furanone | 695-06-7 | C6H10O2 | 114.1 | 1050.3 | 432.868 | 1.19034 |
67 | 5-ethyldihydro-2(3H)-furanone | 695-06-7 | C6H10O2 | 114.1 | 1049.6 | 431.743 | 1.5269 |
74 | methyl heptanoate | 106-73-0 | C8H16O2 | 144.2 | 1034.8 | 410.735 | 1.35963 |
87 | 2-methyl propyl acetate | 110-19-0 | C6H12O2 | 116.2 | 748.1 | 192.101 | 1.62005 |
96 | methyl hexanoate | 106-70-7 | C7H14O2 | 130.2 | 921.6 | 292.227 | 1.28646 |
Ketones | |||||||
11 | 2,3-pentandione | 600-14-6 | C5H8O2 | 100.1 | 691.4 | 168.837 | 1.2234 |
17 | 2-butanone | 78-93-3 | C4H8O | 72.1 | 587.8 | 141.793 | 1.24607 |
18 | 2,3-butanedione | 431-03-8 | C4H6O2 | 86.1 | 574.7 | 138.445 | 1.17801 |
20 | acetone | 67-64-1 | C3H6O | 58.1 | 503.5 | 120.15 | 1.11112 |
26 | carvone | 99-49-0 | C10H14O | 150.2 | 1205.8 | 653.865 | 1.81071 |
43 | 2-pentanone | 107-87-9 | C5H10O | 86.1 | 681.5 | 165.873 | 1.37289 |
64 | 5-methyl-3-heptanone | 541-85-5 | C8H16O | 128.2 | 955.9 | 321.569 | 1.27667 |
69 | 3,5-dimethyl-1,2-cyclopentanedione | 13494-07-0 | C7H10O2 | 126.2 | 1050 | 432.323 | 1.18816 |
79 | 2-methyltetrahydrofuran-3-one | 3188-00-9 | C5H8O2 | 100.1 | 827.2 | 230.83 | 1.42196 |
83 | 2,3-pentandione | 600-14-6 | C5H8O2 | 100.1 | 717.8 | 179.646 | 1.28539 |
94 | 2-heptanone | 110-43-0 | C7H14O | 114.2 | 888.2 | 264.771 | 1.26102 |
97 | hydroxyacetone | 116-09-6 | C3H6O2 | 74.1 | 653.7 | 158.723 | 1.22727 |
99 | hexan-2-one | 591-78-6 | C6H12O | 100.2 | 788.9 | 209.539 | 1.17719 |
Acids | |||||||
12 | propanoic acid | 79-09-4 | C3H6O2 | 74.1 | 699.3 | 172.065 | 1.27404 |
25 | butanoic acid | 107-92-6 | C4H8O2 | 88.1 | 770.6 | 201.313 | 1.17355 |
71 | hexanoic acid | 142-62-1 | C6H12O2 | 116.2 | 1034 | 409.581 | 1.62714 |
76 | 2-methylpropionic acid | 79-31-2 | C4H8O2 | 88.1 | 753 | 194.087 | 1.3722 |
80 | butanoic acid | 107-92-6 | C4H8O2 | 88.1 | 808.5 | 220.425 | 1.16493 |
81 | 3-methylbutyric acid | 503-74-2 | C5H10O2 | 102.1 | 838.8 | 237.297 | 1.47743 |
93 | pentanoic acid | 109-52-4 | C5H10O2 | 102.1 | 877.6 | 258.889 | 1.23545 |
Heterocyclics | |||||||
1 | 2-ethyl-3-methylpyrazine | 15707-23-0 | C7H10N2 | 122.2 | 1006.3 | 370.205 | 1.16578 |
13 | pyrrolidine | 123-75-1 | C4H9N | 71.1 | 676.9 | 164.694 | 1.27699 |
50 | 2,3,5-trimethylpyrazine | 14667-55-1 | C7H10N2 | 122.2 | 987.5 | 348.598 | 1.17267 |
77 | methylpyrazine | 109-08-0 | C5H6N2 | 94.1 | 848.3 | 242.58 | 1.40595 |
78 | methylpyrazine | 109-08-0 | C5H6N2 | 94.1 | 837.9 | 236.766 | 1.42044 |
98 | 2-n-butylfuran | 4466-24-4 | C8H12O | 124.2 | 896.6 | 270.821 | 1.19839 |
Others | |||||||
8 | acetoin | 513-86-0 | C4H8O2 | 88.1 | 738.9 | 188.305 | 1.31282 |
27 | α-phellandrene | 99-83-2 | C10H16 | 136.2 | 1002.4 | 364.767 | 1.69006 |
48 | 1-octene | 111-66-0 | C8H16 | 112.2 | 789.5 | 209.831 | 1.46849 |
57 | camphene | 79-92-5 | C10H16 | 136.2 | 950.1 | 316.636 | 1.74609 |
63 | car-3-ene | 13466-78-9 | C10H16 | 136.2 | 1007.4 | 371.827 | 1.7428 |
68 | 1,8-cineole | 470-82-6 | C10H18O | 154.3 | 1008.0 | 372.643 | 1.2958 |
70 | β-ocimene | 13877-91-3 | C10H16 | 136.2 | 1033.8 | 409.291 | 1.2462 |
82 | acetoin | 513-86-0 | C4H8O2 | 88.1 | 731.0 | 185.081 | 1.34384 |
92 | dipropyl sulfide | 111-47-7 | C6H14S | 118.2 | 878.6 | 259.428 | 1.15844 |
Unknowns | |||||||
33 | unidentified | * | * | 0 | 827 | 230.736 | 1.45433 |
66 | unidentified | * | * | 0 | 812.2 | 222.488 | 1.47207 |
73 | unidentified | * | * | 0 | 808.3 | 220.307 | 1.68882 |
84 | unidentified | * | * | 0 | 806.8 | 219.458 | 1.75821 |
86 | unidentified | * | * | 0 | 716.9 | 179.276 | 1.37992 |
88 | unidentified | * | * | 0 | 616.1 | 149.062 | 1.51603 |
Data | Signal | LV. | R2X (cum) | R2Y (cum) | Q2 (cum) | Accuracy (%) |
---|---|---|---|---|---|---|
NR+AD Adu. | 94 | 3 | 0.851 | 0.976 | 0.963 | 100 |
51 | 3 | 0.973 | 0.957 | 0.939 | 100 | |
NR+OD Adu. | 94 | 3 | 0.692 | 0.987 | 0.971 | 100 |
9 | 3 | 0.817 | 0.595 | 0.459 | 95 | |
NR+SD Adu. | 94 | 3 | 0.974 | 0.933 | 0.908 | 100 |
27 | 3 | 0.897 | 0.988 | 0.976 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Li, Y.; Zheng, W.; Suo, D.; Gong, P.; Liu, X.; Fan, X. Rapid Detection of Antibiotic Mycelial Dregs Adulteration in Single-Cell Protein Feed by HS-GC-IMS and Chemometrics. Foods 2025, 14, 1710. https://doi.org/10.3390/foods14101710
Feng Y, Li Y, Zheng W, Suo D, Gong P, Liu X, Fan X. Rapid Detection of Antibiotic Mycelial Dregs Adulteration in Single-Cell Protein Feed by HS-GC-IMS and Chemometrics. Foods. 2025; 14(10):1710. https://doi.org/10.3390/foods14101710
Chicago/Turabian StyleFeng, Yuchao, Yang Li, Wenxin Zheng, Decheng Suo, Ping Gong, Xiaolu Liu, and Xia Fan. 2025. "Rapid Detection of Antibiotic Mycelial Dregs Adulteration in Single-Cell Protein Feed by HS-GC-IMS and Chemometrics" Foods 14, no. 10: 1710. https://doi.org/10.3390/foods14101710
APA StyleFeng, Y., Li, Y., Zheng, W., Suo, D., Gong, P., Liu, X., & Fan, X. (2025). Rapid Detection of Antibiotic Mycelial Dregs Adulteration in Single-Cell Protein Feed by HS-GC-IMS and Chemometrics. Foods, 14(10), 1710. https://doi.org/10.3390/foods14101710