Considerations for the Successful Detection and Quantification of Genetically Modified Events in Grain and Food Samples Using Multiplex Digital PCR
Abstract
:1. Introduction
2. Factors to Consider for Optimization of Digital PCR (dPCR) Assays
2.1. Effects of DNA Quality and Inhibitors on dPCR
2.2. Impact of DNA Degradation on dPCR
2.3. Effect of DNA Quantity on dPCR
2.4. Impact of Taxon-Specific Reference Gene Choice on dPCR Results
2.5. Digital PCR Instruments and Droplet Volumes
3. Multiplex Digital PCR for Detection and Quantification of GMOs
3.1. Optimization of Multiplex dPCR
3.2. Multiplex dPCR Assays
Multiplex dPCR | ||||
---|---|---|---|---|
Crop | Assay Used | dPCR Instrument Used | Reference | Comment |
Corn | 2-plex | QuantStudio 3D. ThermoFisher (Waltham, MA, USA) | [41] | Element-specific |
4-plex & 10-plex | BioRad QX100. BioRad (Hercules, CA, USA) | [38] | ||
4-plex | BioRad QX200. BioRad (Hercules, CA, USA) | [39] | ||
5-plex | BioRad QX100 | [40] | Universal primer multiplex | |
Soybean | 2 & 3-plex | BioRad QX200 | [36] | |
4-plex | BioRad QX200 | [44] | Element & event-specific | |
4-plex & 6-plex | Naica Crystal dPCR. STILLA (Boston, MA, USA). | [43] | ||
Rice | 3-plex | BioRad QX200 | [45] | One universal LNA probe |
Canola | 4-plex | BioRad QX200 | [36] | Event-specific |
4. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morisset, D.; Štebih, D.; Milavec, M.; Gruden, K.; Žel, J. Quantitative analysis of food and feed samples with droplet digital PCR. PLoS ONE 2013, 8, e62583. [Google Scholar] [CrossRef]
- Pecoraro, S.; Berben, G.; Burns, M.; Corbisier, P.; De Giacomo, M.; De Loose, M.; Dagand, E.; Dobnik, D.; Eriksson, R.; Holst-Jensen, A.; et al. Overview and Recommendations for the Application of Digital PCR; EUR 29673 EN; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-00180-5. [Google Scholar] [CrossRef]
- Whale, A.S.; Hugget, J.F.; Tzonev, S. Fundamentals of multiplexing with digital PCR. Biomolecular Detection and Quantification. Biomol. Detect. Quantif. 2016, 10, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Cankar, K.; Stebih, D.; Dreo, T.; Zel, J.; Gruden, K. Critical points of DNA quantification by real-time PCR–effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnol. 2006, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Chen, F.; Du, Y.; Liu, C.; Bu, G.; Xin, Y.; Liu, B. A modified SDS-based DNA extraction method from raw soybean. Biosci. Rep. 2019, 39, BSR20182271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Demeke, T.; Malabanan, J.; Holigroski, M.; Eng, M. Effect of source of DNA on quantitative analysis of genetically engineered traits using digital PCR and real-time PCR. J. AOAC Int. 2017, 100, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Hougs, L.; Gatto, F.; Goerlich, O.; Grohmann, L.; Lieske, K.; Mazzara, M.; Narendja, F.; Ovesna, J.; Papazova, N.; Scholtens, I.; et al. Verification of Analytical Methods for GMO Testing When Implementing Interlaboratory Validated Methods; EUR 29015 EN; Publication Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-77310-5. [Google Scholar] [CrossRef]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef]
- Rezadoost, M.H.; Kordrostami, M.; Kumleh, H.H. An efficient protocol for isolation of inhibitor-free nucleic acids even from recalcitrant plants. 3 Biotech. 2016, 6, 61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iwobi, A.; Gerdes, L.; Busch, U.; Pecoraro, S. Droplet digital PCR for routine analysis of genetically modified foods (GMO)—A comparison with real-time quantitative PCR. Food Control 2016, 69, 205–213. [Google Scholar] [CrossRef]
- Dingle, T.C.; Sedlak, R.H.; Cook, L.; Jerome, K.R. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin. Chem. 2013, 59, 1670–1672. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.C.; Laperriere, G.; Germain, H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Sci. Rep. 2017, 7, 2409. [Google Scholar] [CrossRef]
- Gryson, N. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: A review. Anal. Bioanal. Chem. 2010, 396, 2003–2022. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, K.R.; Martin, A.; Gowda, L.R.; Prakash, V. Detection of genetically modified soya and maize: Impact of heat processing. Food Chem. 2009, 117, 514–552. [Google Scholar] [CrossRef]
- Fernandes, T.J.R.; Costa, J.; Plácido, A.; Villa, C.; Grazina, L.; Meira, L.; Oliveira, M.B.P.P.; Mafra, I. Genetically modified organism analysis as affected by DNA degradation. In Genetically Modified Organisms in Food. Production, Safety, Regulation and Public Health; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Amsterdam, The Netherlands, 2016; pp. 111–118. [Google Scholar]
- Ballari, R.V.; Martin, A. Assessment of DNA degradation by thermal and UV radiation processing: Implications for quantification of genetically modified organisms. Food Chem. 2013, 141, 2130–2136. [Google Scholar] [CrossRef]
- Pacheco Coello, R.; Pestana Justo, J.; Factos Mendoza, A.; Santos Ordonez, E. Comparison of three DNA extraction methods for the detection and quantification of GMO in Ecuadorian manufactured food. BMC Res. Notes 2017, 10, 758. [Google Scholar] [CrossRef] [PubMed]
- Demeke, T.; Beecher, B.; Eng, M. Assessment of genetically engineered events in heat-treated and non-treated samples using droplet digital PCR and real-time quantitative PCR. Food Control 2020, 115, 107291. [Google Scholar] [CrossRef]
- Mano, J.; Hatano, S.; Nagatomi, Y.; Futo, S.; Takabatake, R.; Kitta, K. Highly sensitive GMO detection using real-time PCR with a large amount of DNA template: Single-laboratory validation. J. AOAC Intl. 2018, 101, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Demeke, T.; Eng, M.; Holigroski, M.; Lee, S.-J. Effect of Amount of DNA on Digital PCR Assessment of Genetically Engineered Canola and Soybean Events. Food Anal. Methods 2021, 14, 372–379. [Google Scholar] [CrossRef]
- Demeke, T.; Eng, M. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events. Biomol. Detect. Quantif. (BDQ) 2018, 15, 24–29. [Google Scholar] [CrossRef]
- Jacchia, S.; Kagkli, D.-M.; Lievens, A.; Angers-Loustau, A.; Savini, C.; Emons, H.; Mazzara, M. Identification of single target taxon-specific reference assays for the most commonly genetically transformed crops using digital droplet PCR. Food Control 2018, 93, 191–200. [Google Scholar] [CrossRef]
- Pavšič, J.; Žel, J.; Milavec, M. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification. Anal. Bioanal. Chem. 2016, 408, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Meng, Y.; Sui, Z.; Wang, J.; Wu, L.; Fu, B. Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material. Sci. Rep. 2015, 5, 13174. [Google Scholar] [CrossRef]
- Košir, A.B.; Divieto, C.; Pavšič, J.; Pavarelli, S.; Dobnik, D.; Dreo, T.; Bellotti, R.; Sassi, M.P.; Žel, J. Droplet volume variability as a critical factor for accuracy of absolute quantification using droplet digital PCR. Anal. Bioanal. Chem. 2017, 409, 6689–6697. [Google Scholar] [CrossRef]
- Whale, A.S.; De Spiegelaere, W.; Trypsteen, W.; Nour, A.A.; Bae, Y.-K.; Benes, V.; Burke, D.; Cleveland, M.; Corbisier, P.; Devonshire, A.S.; et al. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clin. Chem. 2020, 66, 1012–1029. [Google Scholar]
- Du, Y.; Yan, Z.; Song, K.; Jin, K.; Xiao, L.; Sun, Z.; Tan, Y.; Zhang, P.; Du, Z.; Yang, R.; et al. Development and evaluation of a multiplex droplet digital polymerase chain reaction method for simultaneous detection of five biothreat pathogens. Front. Microbiol. 2022, 13, 970973. [Google Scholar] [CrossRef] [PubMed]
- Santos-Barriopedro, I.; Ursuegui, S.; Fradet, E.; Dangla, R. Robust higher-order multiplexing in digital PCR by color-combination. bioRxiv 2023. [Google Scholar] [CrossRef]
- Zhong, Q.; Bhattacharya, S.; Kotsopoulos, S.; Olson, J.; Taly, V.; Griffiths, D.; Link, D.R.; Larson, J.W. Multiplex digital PCR: Breaking the one target per color barrier of quantitative PCR. Lab Chip 2011, 11, 2167–2174. [Google Scholar] [CrossRef] [PubMed]
- Maar, D.; Heredita, N.J.; Hodges, S. Expanded droplet digital PCR multiplexing capability using two different strategies. In BIORAD Bulletin 7204. 2019. Available online: https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_7204.pdf (accessed on 28 December 2024).
- Stilla. Digital PCR Multiplex Assay Optimization. Available online: https://www.stillatechnologies.com/digital-pcr/primer-design/multiplex-assay-optimization/ (accessed on 28 December 2024).
- Lievens, A.; Jacchia, S.; Kagkli, D.; Savini, C.; Querci, M. Measuring digital PCR quality: Performance parameters and their optimization. PLoS ONE 2016, 11, e0153317. [Google Scholar] [CrossRef]
- Brink, B.G.; Meskas, J.; Brinkman, R.R. DdPCRclust: An R package and Shiny app for automated analysis of multiplexed ddPCR data. Bioinformatics 2018, 34, 2687–2689. [Google Scholar] [CrossRef]
- De Falco, A.; Olinger, C.M.; Klink, B.; Mittelbronn, M.; Stieber, D. Digital PCR cluster predictor: A universal R-package and shiny app for the automated analysis of multiplex digital PCR data. Bioinformatics 2023, 39, btad282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weidner, C.; Frenzel, J.; Bartsch, D.; Waiblinger, H.-S.; Mankertz, J. Guideline for the verification of digital PCR methods in analytical GMO testing. J. Consum. Prot. Food Saf. (JCF) 2024, 19, 335–337. [Google Scholar] [CrossRef]
- Demeke, T.; Lee, S.-J.; Eng, M. Increasing the Efficiency of Canola and Soybean GMO Detection and Quantification Using Multiplex Droplet Digital PCR. Biology 2022, 11, 201. [Google Scholar] [CrossRef] [PubMed]
- Košir, A.B.; Demšar, T.; Štebih, D.; Žel, J.; Milavec, M. Digital PCR as an effective tool for GMO quantification in complex matrices. Food Chem. 2019, 294, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Dobnik, D.; Spilsberg, B.; Bogožalec Košir, A.; Holst-Jensen, A.; Žel, J. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction. Anal. Chem. 2015, 87, 8218–8226. [Google Scholar] [CrossRef] [PubMed]
- Dobnik, D.; Štebih, D.; Blejec, A.; Morisset, D.; Žel, J. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection. Sci. Rep. 2016, 6, 35451. [Google Scholar] [CrossRef]
- Niu, C.; Xu, Y.; Zhang, C.; Zhu, P.; Huang, K.; Luo, Y.; Xu, W. Ultrasensitive single fluorescence-labeled probe-mediated single universal primer–multiplex–droplet digital polymerase chain reaction for high-throughput genetically modified organism screening. Anal. Chem. 2018, 90, 5586–5593. [Google Scholar] [CrossRef]
- Noma, S.; Kikuchi, Y.; Satou, M.; Tanaka, T.; Takiya, T.; Okusu, H.; Futo, S.; Takabatake, R.; Kitta, K.; Mano, J. Simple, precise, and less biased GMO quantification by multiplexed genetic element-specific digital PCR. J. AOAC Int. 2022, 105, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Košir, A.B.; Spilsberg, B.; Holst-Jensen, A.; Žel, J.; Dobnik, D. Development of inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines. Sci. Rep. 2017, 7, 8601. [Google Scholar] [CrossRef] [PubMed]
- Košir, A.B.; Muller, S.; Žel, J.; Milavec, M.; Mallory, A.C.; Dobnik, D. Fast and accurate multiplex identification and quantification of seven genetically modified soybean lines using six-color digital PCR. Foods 2023, 12, 4156. [Google Scholar] [CrossRef]
- Demeke, T.; Eng, M. Detection of soybean GMO events using two multiplex droplet digital PCR assays. J. AOAC Intl. 2024, qsae082. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Li, R.; Xu, W.; Cui, J.; Zhang, D.; Zhang, X. Universal LNA Probe-Mediated Multiplex Droplet Digital Polymerase Chain Reaction for Ultrasensitive and Accurate Quantitative Analysis of Genetically Modified Organisms. J. Agric. Food Chem. 2021, 69, 1705–1713. [Google Scholar] [CrossRef] [PubMed]
Company | Name of Instrument | # Color Detection | Comments |
---|---|---|---|
BioRad (Hercules, CA, USA) | QX100 | 2 | Droplet-based |
QX200 | 2 | Droplet-based | |
QX600 | 6 | Droplet-based | |
ThermoFisher (Waltham, MA, USA) | QuantStudio 12k | 2 | Microchamber-based (OpenArray) |
QunatStudio Absolute | |||
Q Digital PCR system | 4 | Microchamber-based | |
RainDance Technologies (Billerica, MA, USA) | RainDrop | Droplet-based; discontinued | |
Fluidigm (South San Francisco, CA, USA) | BioMark HD | Up to 5 | Chip-based |
STILLA (Boston, MA, USA) | Naica system | 3 | Droplet-based (Crystal dPCR) |
Naica system | 6 | Droplet-based (Crystal dPCR) | |
JN Medsys (Singapore) | Clarity Plus dPCR | 6 | Chip-based. 45K partitions. Chip-in-a-tube |
QIAGEN (Hilden, Germany) | QIAcuity Digital | 2, 5 | Array-based |
Formulatrix (Bedford, MA, USA) | Constellation | 5–8 | Microporous plate technology |
OPTOLANE (Yongin-si, Republic of Korea) | Lab on an array | 2 | Array-based. Real-time PCR & dPCR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demeke, T. Considerations for the Successful Detection and Quantification of Genetically Modified Events in Grain and Food Samples Using Multiplex Digital PCR. Foods 2025, 14, 75. https://doi.org/10.3390/foods14010075
Demeke T. Considerations for the Successful Detection and Quantification of Genetically Modified Events in Grain and Food Samples Using Multiplex Digital PCR. Foods. 2025; 14(1):75. https://doi.org/10.3390/foods14010075
Chicago/Turabian StyleDemeke, Tigst. 2025. "Considerations for the Successful Detection and Quantification of Genetically Modified Events in Grain and Food Samples Using Multiplex Digital PCR" Foods 14, no. 1: 75. https://doi.org/10.3390/foods14010075
APA StyleDemeke, T. (2025). Considerations for the Successful Detection and Quantification of Genetically Modified Events in Grain and Food Samples Using Multiplex Digital PCR. Foods, 14(1), 75. https://doi.org/10.3390/foods14010075