Investigating the Role of Food-Derived Peptides in Hyperuricemia: From Mechanisms of Action to Structural Effects
Abstract
:1. Introduction
2. Pathogenesis and Inhibition of HUA
2.1. Inhibition of Uric Acid Synthesis
2.2. Improvement of Intestinal and Renal UA Excretion and Inhibition of UA Reabsorption
3. Food-Derived Peptides Alleviate HUA via XO Inhibition
3.1. Molecular Mass
3.2. Amino Acids with Bicyclic Structure
3.3. Amino Acids with Monocyclic Structure
3.4. Amino Acids with Linear Structures
4. Food-Derived Peptides Alleviate HUA by Modulating UA Transporter Proteins
4.1. mRNA Modulation
4.2. Occupation of Transporter Protein Sites
4.2.1. Roles of Spatial Positional Resistance and Flexible Structures
4.2.2. Regulation of Transport Proteins Through Spatial Site Resistance and Flexible Amino Acids
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aihemaitijiang, S.; Zhang, Y.Q.; Zhang, L.; Yang, J.; Ye, C.; Halimulati, M.; Zhang, W.; Zhang, Z.F. The association between purine-rich food intake and hyperuricemia: A cross-sectional study in Chinese adult residents. Nutrients 2020, 12, 3835. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Chen, J.J.; Wu, C.Y.; Yang, C.W.; Yang, H. Hyperuricemia and progression of chronic kidney disease: A review from physiology and pathogenesis to the role of urate-lowering therapy. Diagnostics 2021, 11, 1674. [Google Scholar] [CrossRef] [PubMed]
- Chen Xu, M.; Yokose, C.; Rai, S.K.; Pillinger, M.H.; Choi, H.K. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: The national health and nutrition examination Survey, 2007–2016. Arthritis Rheumatol. 2019, 71, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Yokose, C.; McCormick, N.; Choi, H.K. Dietary and lifestyle-centered approach in gout care and prevention. Curr. Rheumatol. Rep. 2021, 23, 51. [Google Scholar] [CrossRef]
- Gibson, T. Hyperuricemia, gout and the kidney. Curr. Opin. Rheumatol. 2012, 24, 127–131. [Google Scholar] [CrossRef]
- Li, L.J.; Zhang, Y.P.; Zeng, C.C. Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. Am. J. Transl. Res. 2020, 12, 3167–3181. [Google Scholar]
- Taniguchi, T.; Omura, K.; Motoki, K.; Sakai, M.; Chikamatsu, N.; Ashizawa, N.; Takada, T.; Iwanaga, T. Hypouricemic agents reduce indoxyl sulfate excretion by inhibiting the renal transporters OAT1/3 and ABCG2. Sci. Rep. 2021, 11, 7232. [Google Scholar] [CrossRef]
- Dubchak, N.; Falasca, G.F. New and improved strategies for the treatment of gout. Int. J. Nephrol. Renov. Dis. 2010, 3, 145–166. [Google Scholar] [CrossRef]
- Acosta, A.A.; Hogg, R.J. Rasburicase for hyperuricemia in hemolytic uremic syndrome. Pediatr. Nephrol. 2011, 27, 325–329. [Google Scholar] [CrossRef]
- Mehmood, A.; Zhao, L.; Wang, C.; Nadeem, M.; Raza, A.; Ali, N.; Shah, A.A. Management of hyperuricemia through dietary polyphenols as a natural medicament: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2017, 59, 1433–1455. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.Y.; Cai, Y.F.; Wang, K.; Wang, Y.S. Anti-hyperuricemia bioactive peptides: A review on obtaining, activity, and mechanism of action. Food Funct. 2024, 15, 5714–5736. [Google Scholar] [CrossRef] [PubMed]
- Skjånes, K.; Aesoy, R.; Herfindal, L.; Skomedal, H. Bioactive peptides from microalgae: Focus on anti-cancer and immunomodulating activity. Physiol. Plant. 2021, 173, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Suryaningtyas, I.T.; Ahn, C.-B.; Je, J.-Y. Cytoprotective peptides from blue mussel protein hydrolysates: Identification and mechanism investigation in human umbilical vein endothelial cells injury. Mar. Drugs 2021, 19, 609. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Jung, W.-K.; Je, J.-Y. Protective effect of multifunctional peptides PIISVYWK and FSVVPSPK on oxidative stress-mediated HUVEC injury through antioxidant and anti-apoptotic action. Process Biochem. 2023, 125, 121–129. [Google Scholar] [CrossRef]
- Abachi, S.; Pilon, G.; Marette, A.; Bazinet, L.; Beaulieu, L. Beneficial effects of fish and fish peptides on main metabolic syndrome associated risk factors: Diabetes, obesity and lipemia. Crit. Rev. Food Sci. Nutr. 2023, 63, 7896–7944. [Google Scholar] [CrossRef]
- Lath, A.; Santal, A.R.; Kaur, N.; Kumari, P.; Singh, N.P. Anti-cancer peptides: Their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol. Genet. Eng. Rev. 2022, 39, 45–84. [Google Scholar] [CrossRef]
- Liu, W.L.; Chen, X.W.; Li, H.; Zhang, J.; An, J.L.; Liu, X.Q. Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022, 11, 2361. [Google Scholar] [CrossRef]
- Xu, Y.R.; Gong, H.; Zou, Y.; Mao, X.Y. Antihyperuricemic activity and inhibition mechanism of xanthine oxidase inhibitory peptides derived from whey protein by virtual screening. J. Dairy Sci. 2024, 107, 1877–1886. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Tryptophan-containing milk protein-derived dipeptides inhibit xanthine oxidase. Peptides 2012, 37, 263–272. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, M.; Huang, Y.; Fan, S.; Peng, J.; Li, S.; Su, X.; Wang, Y.; Lu, C. Food-derived bio-functional peptides for the management of hyperuricemia and associated mechanism. Food Sci. Hum. Wellness 2024, 13, 1767–1786. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Rao, Q.; Wang, C.; Chen, X.; Zhang, Y.; Suo, H.; Song, J. Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods 2023, 12, 4465. [Google Scholar] [CrossRef] [PubMed]
- Major, T.J.; Dalbeth, N.; Stahl, E.A.; Merriman, T.R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2018, 14, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cui, J.; Hou, J.L.; Wang, W.Q. Research progress of natural active substances with uric-acid-reducing activity. J. Agric. Food Chem. 2022, 70, 15647–15664. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.F.; Guan, K.F.; Liu, C.H.; Chen, H.R.; Ma, Y.; Wang, R.C. Whey protein peptides PEW and LLW synergistically ameliorate hyperuricemia and modulate gut microbiota in potassium oxonate and hypoxanthine-induced hyperuricemic rats. J. Dairy Sci. 2023, 106, 7367–7381. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, L.L.; Wu, C.M.; Zheng, L.J.; Zhong, G. Konjac glucomannan improves hyperuricemia through regulating xanthine oxidase, adenosine deaminase and urate transporters in rats. J. Funct. Foods 2018, 48, 566–575. [Google Scholar] [CrossRef]
- Benn, C.L.; Dua, P.; Gurrell, R.; Loudon, P.; Pike, A.; Storer, R.I.; Vangjeli, C. Physiology of hyperuricemia and urate-lowering treatments. Front. Med. 2018, 5, 160. [Google Scholar] [CrossRef]
- Yusnaini, R.; Nasution, R.; Saidi, N.; Arabia, T.; Idroes, R.; Ikhsan, I.; Bahtiar, R.; Iqhrammullah, M. Ethanolic extract from Limonia acidissima L. fruit attenuates serum uric acid level via URAT1 in potassium oxonate-induced hyperuricemic rats. Pharmaceuticals 2023, 16, 419. [Google Scholar] [CrossRef]
- Hosoyamada, M.; Ichida, K.; Enomoto, A.; Hosoya, T.; Endou, H. Function and localization of urate transporter 1 in mouse kidney. J. Am. Soc. Nephrol. 2004, 15, 261–268. [Google Scholar] [CrossRef]
- Dinour, D.; Gray, N.K.; Campbell, S.; Shu, X.; Sawyer, L.; Richardson, W.; Rechavi, G.; Amariglio, N.; Ganon, L.; Sela, B.A.; et al. Homozygous SLC2A9 mutations cause severe renal h33ypouricemia. J. Am. Soc. Nephrol. 2010, 21, 64–72. [Google Scholar] [CrossRef]
- Zhang, J.H.; Wang, H.X.; Fan, Y.Z.; Yu, Z.; You, G.F. Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. Pharmacol. Ther. 2021, 217, 107647. [Google Scholar] [CrossRef]
- Xu, L.Q.; Shi, Y.F.; Zhuang, S.G.; Liu, N. Recent advances on uric acid transporters. Impact J. 2017, 8, 100852–100862. [Google Scholar] [CrossRef] [PubMed]
- Eckenstaler, R.; Benndorf, R.A. The role of ABCG2 in the pathogenesis of primary hyperuricemia and gout—An update. Int. J. Mol. Sci. 2021, 22, 6678. [Google Scholar] [CrossRef] [PubMed]
- Ichida, K.; Hosoyamada, M.; Kimura, H.; Takeda, M.; Utsunomiya, Y.; Hosoya, T.; Endou, H. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 2003, 63, 143–155. [Google Scholar] [CrossRef]
- Bataille, A.M.; Goldmeyer, J.; Renfro, J.L. Avian renal proximal tubule epithelium urate secretion is mediated by Mrp4. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2008, 295, R2024–R2033. [Google Scholar] [CrossRef]
- Riese, R.J.; Sakhaee, K. Uric acid nephrolithiasis: Pathogenesis and treatment. J. Urol. 1992, 148, 765–771. [Google Scholar] [CrossRef]
- Bhatnagar, V.; Richard, E.L.; Wu, W.; Nievergelt, C.M.; Lipkowitz, M.S.; Jeff, J.; Maihofer, A.X.; Nigam, S.K. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: Potential role of remote sensing and signaling. Clin. Kidney J. 2016, 9, 444–453. [Google Scholar] [CrossRef]
- Ichida, K.; Matsuo, H.; Takada, T.; Nakayama, A.; Murakami, K.; Shimizu, T.; Yamanashi, Y.; Kasuga, H.; Nakashima, H.; Nakamura, T.; et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun. 2012, 3, 764. [Google Scholar] [CrossRef]
- DeBosch, B.J.; Kluth, O.; Fujiwara, H.; Schüermann, A.; Moley, K. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter. Nat. Commun. 2014, 5, 4642. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Zhong, H.; Chen, F.; Regenstein, J.; Hu, X.S.; Cai, L.Y.; Feng, F.Q. The gut microbiota as a target to control hyperuricemia pathogenesis: Potential mechanisms and therapeutic strategies. Crit. Rev. Food Sci. Nutr. 2022, 62, 3979–3989. [Google Scholar] [CrossRef]
- Luissint, A.C.; Parkos, C.A.; Nusrat, A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology 2016, 151, 616–632. [Google Scholar] [CrossRef]
- Yamada, N.; Iwamoto, C.; Kano, H.; Yamaoka, N.; Fukuuchi, T.; Kaneko, K.; Asamia, Y. Evaluation of purine utilization by strains with potential to decrease the absorption of food-derived purines in the human intestine. Nucl. Nucleot Nucl. 2016, 35, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.F.; Chen, H.R.; Guan, K.F.; Sun, Y.; Wang, R.C.; Ma, Y. Identification, inhibitory mechanism and transepithelial transport of xanthine oxidase inhibitory peptides from whey protein after simulated gastrointestinal digestion and intestinal absorption. Food Res. Int. 2022, 162, 111959. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.M.; Meng, J.; Li, F.; Yu, H.F.; Lin, D.M.; Lin, S.Q.; Li, M.; Zhou, H.; Yang, B.X. Ganoderma lucidumpolysaccharide peptide alleviates hyperuricemia by regulating adenosine deaminase and urate transporters. Food Funct. 2022, 13, 12619–12631. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y.; Shi, C.C.; Wang, M.; Zhou, M.; Liang, M.; Zhang, T.; Yuan, E.D.; Wang, Z.; Yao, M.J.; Ren, J.Y. Tryptophan residue enhances walnut protein-derived peptides exerting xanthine oxidase inhibition and antioxidant activities. J. Funct. Foods 2019, 53, 276–285. [Google Scholar] [CrossRef]
- Zhong, H.; Abdullah; Zhang, Y.P.; Deng, L.L.; Zhao, M.J.; Tang, J.; Zhang, H.; Feng, F.Q.; Wang, J. Exploring the potential of novel xanthine oxidase inhibitory peptide (ACECD) derived from Skipjack tuna hydrolysates using affinity-ultrafiltration coupled with HPLC–MALDI-TOF/TOF-MS. Food Chem. 2021, 347, 129068. [Google Scholar] [CrossRef]
- Murota, I.; Taguchi, S.; Sato, N.; Park, E.Y.; Nakamura, Y.; Sato, K. Identification of Antihyperuricemic Peptides in the Proteolytic Digest of Shark Cartilage Water Extract Using Activity-Guided Fractionation. J. Agric. Food Chem. 2014, 62, 2392–2397. [Google Scholar] [CrossRef]
- Chen, X.L.; Guan, W.L.; Li, Y.J.; Zhang, J.J.; Cai, L.Y. Xanthine Oxidase Inhibitory Peptides from: Characterization and In Vitro/In Silico Evidence. Foods 2023, 12, 982. [Google Scholar] [CrossRef]
- Zhao, Q.; Jiang, X.; Mao, Z.J.; Zhang, J.J.; Sun, J.N.; Mao, X.Z. Exploration, sequence optimization and mechanism analysis of novel xanthine oxidase inhibitory peptide from Ostrea rivularis Gould. Food Chem. 2023, 404, 134537. [Google Scholar] [CrossRef]
- Mao, Z.J.; Jiang, H.; Mao, X.Z. Identification and anti-hyperuricemic activity of xanthine oxidase inhibitory peptides from pacific white shrimp and swimming crab based on molecular docking screening. J. Agric. Food Chem. 2023, 71, 1620–1627. [Google Scholar] [CrossRef]
- Cui, F.C.; Xi, L.Q.; Zhao, G.Q.; Wang, D.F.; Tan, X.Q.; Li, J.R.; Li, T.T. Screening of xanthine oxidase inhibitory peptides by ligand fishing and molecular docking technology. Food Biosci. 2022, 50, 102152. [Google Scholar] [CrossRef]
- Hou, M.F.; Xiang, H.; Hu, X.; Chen, S.J.; Wu, Y.Y.; Xu, J.C.; Yang, X.Q. Novel potential XOD inhibitory peptides derived from Trachinotus ovatus: Isolation, identification and structure-function analysis. Food Biosci. 2022, 47, 101639. [Google Scholar] [CrossRef]
- Li, Y.J.; Kang, X.Y.; Li, Q.Y.; Shi, C.C.; Lian, Y.Y.; Yuan, E.D.; Zhou, M.; Ren, J.Y. Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity. Peptides 2018, 107, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.H.; Ji, H.W.; Zhang, D.; Wei, L.Y.; Peng, S.; Chen, M.; Song, W.K.; Qu, Y.S.; Liu, S.C. Preparation of xanthine oxidase inhibitory peptide from Far Eastern sardine and its uric acid-lowering activity study. Food Ferment. Ind. 2022, 48, 79–86. [Google Scholar] [CrossRef]
- He, W.W.; Su, G.W.; Sun-Waterhouse, D.X.; Waterhouse, G.I.N.; Zhao, M.M.; Liu, Y. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions. Food Chem. 2019, 272, 453–461. [Google Scholar] [CrossRef]
- Wei, L.Y.; Ji, H.W.; Song, W.K.; Peng, S.; Zhan, S.H.; Qu, Y.S.; Chen, M.; Zhang, D.; Liu, S.C. Identification and molecular docking of two novel peptides with xanthine oxidase inhibitory activity from Auxis thazard. Food Sci. Technol. 2022, 42, e106921. [Google Scholar] [CrossRef]
- Hao, L.; Ding, Y.L.; Fan, Y.; Xia, C.S.; Meng, Y.Q.; Jia, Q.N.; Zhang, J.; Xue, C.H.; Hou, H. New insights into anti-hyperuricemic effects of novel peptides from Antarctic Krill (Euphausia superba) by Q-Exactive Orbitrap MS-based non-targeted metabolomics. Food Biosci. 2024, 59, 104063. [Google Scholar] [CrossRef]
- Zhao, Q.; Meng, Y.; Liu, J.C.; Hu, Z.L.; Du, Y.T.; Sun, J.N.; Mao, X.Z. Separation, identification and docking analysis of xanthine oxidase inhibitory peptides from pacific cod bone-flesh mixture. LWT 2022, 167, 113862. [Google Scholar] [CrossRef]
- Qi, X.F.; Chen, H.R.; Guan, K.F.; Sun, Y.; Wang, R.C.; Li, Q.M.; Ma, Y. Novel xanthine oxidase inhibitory peptides derived from whey protein: Identification, in vitro inhibition mechanism and in vivo activity validation. Bioorganic Chem. 2022, 128, 106097. [Google Scholar] [CrossRef]
- Liu, N.X.; Wang, Y.; Zeng, L.; Yin, S.G.; Hu, Y.; Li, S.S.; Fu, Y.; Zhang, X.P.; Xie, C.; Shu, L.J.; et al. RDP3, a novel antigout peptide derived from water extract of rice. J. Agric. Food Chem. 2020, 68, 7143–7151. [Google Scholar] [CrossRef]
- Dong, Y.F.; Sun, N.; Ge, Q.; Lv, R.Z.; Lin, S.Y. Antioxidant soy peptide can inhibit xanthine oxidase activity and improve LO2 cell damage. Food Biosci. 2023, 52, 102455. [Google Scholar] [CrossRef]
- Shu, L.J.; Yang, M.F.; Liu, N.X.; Liu, Y.X.; Sun, H.L.; Wang, S.Y.; Zhang, Y.; Li, Y.L.; Yang, X.W.; Wang, Y. Short hexapeptide optimized from rice-derived peptide 1 shows promising anti-hyperuricemia activities. J. Agric. Food Chem. 2022, 70, 6679–6687. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.X.; Wang, Y.; Yang, M.F.; Bian, W.X.; Zeng, L.; Yin, S.G.; Xiong, Z.Q.; Hu, Y.; Wang, S.Y.; Meng, B.L.; et al. New rice-derived short peptide potently alleviated hyperuricemia induced by potassium oxonate in rats. J. Agric. Food Chem. 2018, 67, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y.; Kang, X.Y.; Shi, C.C.; Li, Y.J.; Majumder, K.; Ning, Z.X.; Ren, J.Y. Moderation of hyperuricemia in rats via consuming walnut protein hydrolysate diet and identification of new antihyperuricemic peptides. Food Funct. 2018, 9, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Q.; He, H.; Hou, T. Purification, identification, and computational analysis of xanthine oxidase inhibitory peptides from kidney bean. J. Food Sci. 2021, 86, 1081–1088. [Google Scholar] [CrossRef]
- Zhao, L.; Ai, X.; Pan, F.; Zhou, N.; Zhao, L.; Cai, S.B.; Tang, X.N. Novel peptides with xanthine oxidase inhibitory activity identified from macadamia nuts: Integrated in silico and in vitro analysis. Eur. Food Res. Technol. 2022, 248, 2031–2042. [Google Scholar] [CrossRef]
- Jang, I.-T.; Hyun, S.-H.; Shin, J.-W.; Lee, Y.-H.; Ji, J.-H.; Lee, J.-S. Characterization of an anti-gout xanthine oxidase inhibitor from pleurotus ostreatus. Mycobiology 2018, 42, 296–300. [Google Scholar] [CrossRef]
- Zhang, P.; Jiang, Z.Q.; Lei, J.; Yan, Q.J.; Chang, C. Novel hemoglobin-derived xanthine oxidase inhibitory peptides: Enzymatic preparation and inhibition mechanisms. J. Funct. Foods 2023, 102, 105459. [Google Scholar] [CrossRef]
- Yu, Z.P.; Cao, Y.X.; Kan, R.T.; Ji, H.Z.; Zhao, W.Z.; Wu, S.J.; Liu, J.B.; Shiuan, D. Identification of egg protein-derived peptides as xanthine oxidase inhibitors: Virtual hydrolysis, molecular docking, and in vitro activity evaluation. Food Sci. Hum. Wellness 2022, 11, 1591–1597. [Google Scholar] [CrossRef]
- Murota, I.; Tamai, T.; Baba, T.; Sato, N.; Park, E.Y.; Nakamura, Y.; Sato, K. Moderation of oxonate-induced hyperuricemia in rats via the ingestion of an ethanol-soluble fraction of a shark cartilage proteolytic digest. J. Funct. Foods 2012, 4, 459–464. [Google Scholar] [CrossRef]
- Tian, Y.C.; Lin, L.Z.; Zhao, M.M.; Peng, A.; Zhao, K. Xanthine oxidase inhibitory activity and antihyperuricemic effect of Moringa oleifera Lam. leaf hydrolysate rich in phenolics and peptides. J. Ethnopharmacol. 2021, 270, 113808. [Google Scholar] [CrossRef]
- Nishino, T.; Okamoto, K.; Eger, B.T.; Pai, E.F.; Nishino, T. Mammalian xanthine oxidoreductase—Mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J. 2008, 275, 3278–3289. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.-D.; Li, F.; Zhang, Y.-M.; Huang, X.-N.; Yu, F.-T.; Su, L.-Y.; Liu, X.-L.; Wang, C.-H. Preparation, purification, and identification of novel feather keratin-derived peptides with antioxidative and xanthine oxidase inhibitory activities. J. Agric. Food Chem. 2023, 71, 8061–8070. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.X.; An, Q.; Le, L.Q.; Geng, F.; Jiang, L.Z.; Yan, J.; Xiang, D.B.; Peng, L.X.; Zou, L.; Zhao, G.; et al. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Crit. Rev. Food Sci. Nutr. 2020, 62, 2855–2871. [Google Scholar] [CrossRef] [PubMed]
- Chan-Zapata, I.; Sandoval-Castro, C.; Segura-Campos, M.R. Proteins and peptides from vegetable food sources as therapeutic adjuvants for the type 2 diabetes mellitus. Crit. Rev. Food Sci. Nutr. 2022, 62, 2673–2682. [Google Scholar] [CrossRef]
- Garai, P.; Chandra, K.; Chakravortty, D. Bacterial peptide transporters: Messengers of nutrition to virulence. Virulence 2017, 8, 297–309. [Google Scholar] [CrossRef]
- An, J.L.; Zhang, Y.X.; Ying, Z.W.; Li, H.; Liu, W.L.; Wang, J.R.; Liu, X.Q. The formation, structural characteristics, absorption pathways and bioavailability of calcium-peptide chelates. Foods 2022, 11, 2762. [Google Scholar] [CrossRef]
- de Oliveira, E.P.; Burini, R.C. High plasma uric acid concentration: Causes and consequences. Diabetol. Metab. Syndr. 2012, 4, 12. [Google Scholar] [CrossRef]
- Zhao, Z.A.; Jiang, Y.; Chen, Y.Y.; Wu, T.; Lan, Q.S.; Li, Y.M.; Li, L.; Yang, Y.; Lin, C.T.; Cao, Y.; et al. CDER167, a dual inhibitor of URAT1 and GLUT9, is a novel and potent uricosuric candidate for the treatment of hyperuricemia. Acta Pharmacol. Sin. 2022, 43, 121–132. [Google Scholar] [CrossRef]
- Hosomi, A.; Nakanishi, T.; Fujita, T.; Tamai, I. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS ONE 2012, 7, e30456. [Google Scholar] [CrossRef]
- Liu, Y.W.; Sun, W.F.; Zhang, X.X.; Li, J.; Zhang, H.H. Compound Tufuling Granules ([characters: See text]) regulate glucose transporter 9 expression in kidney to influence serum uric acid level in hyperuricemia mice. Chin. J. Integr. Med. 2015, 21, 823–829. [Google Scholar] [CrossRef]
- Soliman, M.M.; Nassan, M.A.; Aldhahrani, A.; Althobaiti, F.; Mohamed, W.A. Molecular and Histopathological Study on the Ameliorative Impacts of Petroselinum Crispum and Apium Graveolens against Experimental Hyperuricemia. Sci. Rep. 2020, 10, 9512. [Google Scholar] [CrossRef] [PubMed]
- Li, W.H.; Chen, X.R.; Li, F.; Zhang, H.Y.; Song, Z.Y.; Li, D.P. Quercetin ameliorates hyperuricemic nephropathy by repressing uric acid synthesis and reabsorption in mice and cells. eFood 2024, 5, e139. [Google Scholar] [CrossRef]
- Tan, P.K.; Ostertag, T.M.; Miner, J.N. Mechanism of high affinity inhibition of the human urate transporter URAT1. Sci. Rep. 2016, 6, 34995. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.K.; Liu, S.; Gunic, E.; Miner, J.N. Discovery and characterization of verinurad, a potent and specific inhibitor of URAT1 for the treatment of hyperuricemia and gout. Sci. Rep. 2017, 7, 665. [Google Scholar] [CrossRef]
- Zhao, T.T.; Zhao, Z.; Lu, F.T.; Chang, S.; Zhang, J.J.; Pang, J.X.; Tian, Y.X. Two- and three-dimensional QSAR studies on hURAT1 inhibitors with flexible linkers: Topomer CoMFA and HQSAR. Mol. Divers. 2020, 24, 141–154. [Google Scholar] [CrossRef]
- Vander Meersche, Y.; Cretin, G.; Gheeraert, A.; Gelly, J.-C.; Galochkina, T. ATLAS: Protein flexibility description from atomistic molecular dynamics simulations. Nucleic Acids Res. 2024, 52, D384–D392. [Google Scholar] [CrossRef]
No. | Source | Peptide Sequence | Key Amino Acids | Inhibition Type | Experimental Model | Molecular Weight (Da) | Dose–Response Relationship | Ref. | |
---|---|---|---|---|---|---|---|---|---|
1 | Fish and marine life | Oyster | WGWGW | W | XOD↓ | In vitro | 690.75 | IC50 = 1.86 ± 0.024 mM | [48] |
2 | Pacific white shrimp | AEAQMWR | W | XOD↓ GLUT9↓ URAT1↓ | In vitro | 891.01 | IC50 = 8.85 ± 0.05 mM | [49] | |
3 | Small yellow croaker | WDDMEKIW | W | XOD↓ | In vitro | 1122.24 | IC50 = 3.16 ± 0.03 mM | [47] | |
4 | Scophthalmus maximus | WDDMEKIWHH | W, H | XOD↓ | In vitro | 1259.38 | IC50 = 1.598 mM | [50] | |
5 | Katsuwonus pelamis | ACECD | - | XOD↓ | In vitro | 539.58 | IC50 = 7.23 mM | [45] | |
6 | Trachinotus ovatus | LLPW | W, P | XOD↓ | In vitro | 527.31 | IC50 = 4.17 ± 0.12 mM | [51] | |
WLLP | W, P | 527.31 | IC50 = 43.06 ± 0.73 mM | ||||||
FPAW | W, P | 519.25 | IC50 = 3.81 ± 0.18 mM | ||||||
FHLP | PH | 512.27 | IC50 ≥ 50.00 mM | ||||||
7 | Shark cartilage | YLDNY | - | XOD↓ | 686.71 | 5 mg/kg body weight intravenously and 50 mg/kg body weight orally had a significant XOI | [46] | ||
SPPYWPY | W, P | Male Wistar rats | 908.99 | ||||||
8 | Bonito | WML | W | XOD↓ | Male Sprague–Dawley rats | 448.21 | - | [52] | |
9 | Sardines | FLR | - | XOD↓ | HK-2 cells | 435.28 | IC50 = 1.148 mM | [53] | |
10 | Tuna | RPK | P | XOD↓ | Sprague–Dawley rats | 400.21 | IC50 = 1.867 mM | [54] | |
FH | H | XOD↓ | 302.33 | IC50 = 25.70 mM | |||||
11 | Auxis thazard | PDL | P | XOD↓ | In vitro | 344.87 | IC50 = 12.73 ± 0.32 mM | [55] | |
SVGGAL | - | 504.26 | IC50 = 11.12 ± 0.18 mM | ||||||
12 | Antarctic Krill | DIFDPL | - | XOD↓ | Male Balb/c mice | 718.79 | - | [56] | |
13 | Pacific cod bone–flesh mixture | FF | - | XOD↓ | 312.36 | IC50 = 0.80 mM | [57] | ||
YF | - | 328.36 | IC50 = 0.52 mM | ||||||
WPW | W, P | In vitro | 487.55 | IC50 = 1.68 mM | |||||
WPDARG | W, P | 700.74 | IC50 = 0.40 mM | ||||||
YNVTGW | W | 738.78 | IC50 = 0.23 mM | ||||||
14 | Milk | Whey protein | ALPM | P | XOD↓ | Male Sprague–Dawley rats | 430.22 | IC50 = 7.23 ± 0.22 mM | [58] |
LWM | W | 448.21 | IC50 = 5.01 ± 0.31 mM | ||||||
15 | Whey protein | PEW | W, P | XOD↓ | Caco-2 cells | 430.45 | IC50 = 3.46 ± 0.22 mM | [42] | |
LLW | W | 430.54 | IC50 = 3.02 ± 0.17 mM | ||||||
16 | Whey protein | GL | - | XOD↓ | 188.20 | IC50 = 10.20 ± 0.89 mM | [18] | ||
PM | P | In vitro | 246.30 | IC50 = 23.82 ± 0.94 mM | |||||
AL | - | 202.20 | IC50 = 34.49 ± 0.89 mM | ||||||
AM | - | 220.20 | IC50 = 40.45 ± 0.92 mM | ||||||
17 | Plant | Rice | AAAAMAGPK-NH2 | P | XOD↓ URAT1↓ | Kunming and nude mice | 785.97 | XOI = 23.4 ± 1.4 U/L (1 mg/kgAAAAMAGPK-NH2) | [59] |
18 | Soy | SHECN | H | XOD↓ | LO2 cells | 588.59 | The UA concentration of 2.5 mg/mL SHECN was 88.98 ± 0.78 μg/mL | [60] | |
19 | Shelled Oryza sativa fruit | AAAAGA | - | XOD↓ URAT1↓ GLUT9↓ | Kunming and nude mice | 430.45 | 100nMAAAAGA UA concentration of 35.32 ± 0.001 mg/L | [61] | |
20 | Shelled Oryza sativa fruit | AAAAGAKAR | - | XOD↓ | Sprague−Dawley male rats | 785.91 | - | [62] | |
21 | Walnut | WDQW | W | XOD↓ | In vitro | 633.65 | - | [44] | |
22 | Walnut | WPPKN | W, P | XOD↓ | 640.8 | IC50 = 26.25 ± 0.177 mM | [63] | ||
ADIYTE | - | Male Sprague–Dawley rats | 710.7 | IC50= 23.73 ± 0.29 mM | |||||
23 | Kidney bean | DWYDIK | W | XOD↓ | In vitro | 838.9 | XOI = 68.63 ± 5.07% (1 mg/mLDWYDIK) | [64] | |
24 | Macadamia nut | PGPR | P | XOD↓ | In vitro | 425.49 | IC50 = 24.84 ± 0.02 mM | [65] | |
GPY | P | 335.36 | IC50 = 30.44 ± 0.33 mM | ||||||
HGGR | H | 425.45 | IC50 = 24.89 ± 0.19 mM | ||||||
25 | Fungi | Pleurotus ostreatus | FCH | H | XOD↓ | Male Sprague–Dawley rats | 405.47 | IC50 = 2.04 mM | [66] |
26 | Others | Hemoglobin | LIGLW | W | XOD↓ | In vitro | 600.75 | IC50 = 1.09 ± 0.03 mM | [67] |
27 | Egg protein | EEK | - | XOD↓ | In vitro | 404.41 | IC50 = 0.334 mM | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Liu, W.; Li, K.; Zhang, M.; Liu, X.; Li, L.; Guo, Z.; Li, H. Investigating the Role of Food-Derived Peptides in Hyperuricemia: From Mechanisms of Action to Structural Effects. Foods 2025, 14, 58. https://doi.org/10.3390/foods14010058
Han Y, Liu W, Li K, Zhang M, Liu X, Li L, Guo Z, Li H. Investigating the Role of Food-Derived Peptides in Hyperuricemia: From Mechanisms of Action to Structural Effects. Foods. 2025; 14(1):58. https://doi.org/10.3390/foods14010058
Chicago/Turabian StyleHan, Yu, Wanlu Liu, Kexin Li, Mingzhen Zhang, Xinqi Liu, Lu Li, Zhao Guo, and He Li. 2025. "Investigating the Role of Food-Derived Peptides in Hyperuricemia: From Mechanisms of Action to Structural Effects" Foods 14, no. 1: 58. https://doi.org/10.3390/foods14010058
APA StyleHan, Y., Liu, W., Li, K., Zhang, M., Liu, X., Li, L., Guo, Z., & Li, H. (2025). Investigating the Role of Food-Derived Peptides in Hyperuricemia: From Mechanisms of Action to Structural Effects. Foods, 14(1), 58. https://doi.org/10.3390/foods14010058