Monitoring the Dough Properties, Quality Characteristics and Volatile Compounds of Whole Wheat Bread Made by Different Sourdough Types during Frozen Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sourdough Production
2.2.1. Type I Sourdough Preparation
2.2.2. Type II Sourdough Preparation
2.2.3. Type IV Sourdough Preparation
2.3. Whole Wheat Bread Making
2.4. Dynamic Rheological Measurements
2.5. Determination of Freezable Water Content
- ∆H: the enthalpy (J/g) of the melting peak of the endothermic curve;
- ∆Ho: the enthalpy (334 J/g) of the melting peak of pure water;
- Wc: the total water content (%) of the dough.
2.6. Fourier Transform Infrared Spectroscopy (FT-IR)
2.7. Determination of Quality Characteristics of Breads
2.7.1. Specific Volume
2.7.2. Texture Profile Analysis (TPA)
2.7.3. Color Analysis
2.8. Determination of Volatile Compounds of Breads
2.9. Statistical Analysis
3. Results and Discussion
3.1. Rheological Properties
3.2. Freezable Water (FW) Content of Frozen Bread Dough
3.3. Secondary Structures of Proteins in Bread Doughs
3.4. Quality Characteristics of Bread
3.4.1. Specific Volume and Texture
3.4.2. Color
3.5. Volatile Compounds
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, X.; Wu, S.; Li, W.; Koksel, F.; Du, Y.; Sun, L.; Fang, Y.; Hu, Q.; Pei, F. The effects of cooperative fermentation by yeast and lactic acid bacteria on the dough rheology, retention and stabilization of gas cells in a whole wheat flour dough system–A review. Food Hydrocoll. 2023, 135, 108212. [Google Scholar] [CrossRef]
- Gómez, M.; Gutkoski, L.C.; Bravo-Núñez, Á. Understanding whole-wheat flour and its effect in breads: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3241–3265. [Google Scholar] [CrossRef]
- Verdonck, C.; De Bondt, Y.; Pradal, I.; Bautil, A.; Langenaeken, N.A.; Brijs, K.; Goos, P.; De Vuyst, L.; Courtin, C.M. Impact of process parameters on the specific volume of wholemeal wheat bread made using sourdough-and baker’s yeast-based leavening strategies. Int. J. Food Microbiol. 2023, 396, 110193. [Google Scholar] [CrossRef]
- Altınel, B.; Ünal, S.S. The effects of certain enzymes on the rheology of dough and the quality characteristics of bread prepared from wheat meal. J. Food Sci. Technol. 2017, 54, 1628–1637. [Google Scholar] [CrossRef] [PubMed]
- Selomulyo, V.O.; Zhou, W. Frozen bread dough: Effects of freezing storage and dough improvers. J. Cereal Sci. 2007, 45, 1–17. [Google Scholar] [CrossRef]
- Ribotta, P.D.; León, A.E.; Añón, M.C. Effect of freezing and frozen storage of doughs on bread quality. J. Agric. Food Chem. 2001, 49, 913–918. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, H.; Xu, X.; Xu, D. Deterioration mechanisms and quality improvement methods in frozen dough: An updated review. Trends Food Sci. Technol. 2023, 143, 104251. [Google Scholar] [CrossRef]
- Li, Z.; Fan, S.; Hong, Y.; Li, N. Improved physicochemical and fermentation properties of frozen dough with bacterial cellulose. Int. J. Food Sci. Technol. 2022, 57, 4763–4771. [Google Scholar] [CrossRef]
- Wu, G.; Liu, X.; Hu, Z.; Wang, K.; Zhao, L. Impact of xanthan gum on gluten microstructure and bread quality during the freeze-thaw storage. LWT 2022, 162, 113450. [Google Scholar] [CrossRef]
- Ding, X.; Li, T.; Zhang, H.; Guan, C.; Qian, J.; Zhou, X. Effect of barley antifreeze protein on dough and bread during freezing and freeze-thaw cycles. Foods 2020, 9, 1698. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Ai, Z.; Zhang, H. Thermal, rheological properties and microstructure of hydrated gluten as influenced by antifreeze protein from oat (Avena sativa L.). J. Cereal Sci. 2020, 93, 102934. [Google Scholar] [CrossRef]
- Wang, P.; Tao, H.; Jin, Z.; Xu, X. Impact of water extractable arabinoxylan from rye bran on the frozen steamed bread dough quality. Food Chem. 2016, 200, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Adams, V.; Ragaee, S.M.; Abdel-Aal, E.S.M. Rheological properties and bread quality of frozen yeast-dough with added wheat fiber. J. Sci. Food Agric. 2017, 97, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.; Lee, B.; Hou, G.G.; Lee, S. Physicochemical characterization of whole-grain wheat flour in a frozen dough system for bake off technology. J. Cereal Sci. 2014, 60, 520–525. [Google Scholar] [CrossRef]
- He, N.; Xia, M.; Zhang, X.; He, M.; Li, L.; Li, B. Quality attributes and functional properties of whole wheat bread baked from frozen dough with the addition of enzymes and hydrocolloids. J. Sci. Food Agric. 2024, 104, 1928–1941. [Google Scholar] [CrossRef] [PubMed]
- Fekri, A.; Torbati, M.; Khosrowshahi, A.Y.; Shamloo, H.B.; Azadmard-Damirchi, S. Functional effects of phytate-degrading, probiotic lactic acid bacteria and yeast strains isolated from Iranian traditional sourdough on the technological and nutritional properties of whole wheat bread. Food Chem. 2020, 306, 125620. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, Z.; Guo, X.; Wang, F.; Huang, J.; Sun, B.; Wang, X. Sourdough improves the quality of whole-wheat flour products: Mechanisms and challenges—A review. Food Chem. 2021, 360, 130038. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, Q.; Luo, Z.; Xiao, Z. Effects of sourdough fermentation and an innovative compound improver on the baking performance, nutritional quality, and antistaling property of whole wheat bread. ACS Food Sci. Technol. 2022, 2, 825–835. [Google Scholar] [CrossRef]
- De Vuyst, L.; Neysens, P. The sourdough microflora: Biodiversity and metabolic interactions. Trends Food Sci. Technol. 2005, 16, 43–56. [Google Scholar] [CrossRef]
- Martín-Garcia, A.; Riu-Aumatell, M.; López-Tamames, E. Influence of process parameters on sourdough microbiota, physical properties and sensory profile. Food Rev. Int. 2023, 39, 334–348. [Google Scholar] [CrossRef]
- Novotni, D.; Čukelj, N.; Smerdel, B.; Ćurić, D. Quality attributes and firming kinetics of partially baked frozen wholewheat bread with sourdough. Int. J. Food Sci. Technol. 2013, 48, 2133–2142. [Google Scholar] [CrossRef]
- Yoo, B.; Rao, M. Creep and dynamic rheological behavior of tomato concentrates: Effect of concentration and finisher screen size. J. Texture Stud. 1996, 27, 451–459. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, J.; Tu, J.; Yu, L.; Niu, L. The alleviative effect of sweet potato protein hydrolysates on the quality deterioration of frozen dough bread in comparison to trehalose. LWT 2023, 175, 114505. [Google Scholar] [CrossRef]
- Wang, J.; Su, Y.; Jia, F.; Jin, H. Characterization of casein hydrolysates derived from enzymatic hydrolysis. Chem. Cent. J. 2013, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- AACC. Approved Methods of the American Association of Cereal Chemists, 10th ed.; The American Association of Cereal Chemist Press: St. Paul, MN, USA, 2000. [Google Scholar]
- Tulukcu, E.; Cebi, N.; Sagdic, O. Chemical fingerprinting of seeds of some salvia species in Turkey by using GC-MS and FTIR. Foods 2019, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Rzepa, J.; Wojtal, Ł.; Staszek, D.; Grygierczyk, G.; Labe, K.; Hajnos, M.; Kowalska, T.; Waksmundzka-Hajnos, M. Fingerprint of selected Salvia species by HS-GC-MS analysis of their volatile fraction. J. Chromatogr. Sci. 2009, 47, 575–580. [Google Scholar] [CrossRef]
- Giboreau, A.; Cuvelier, G.; Launay, B. Rheological behaviour of three biopolymer/water systems, with emphasis on yield stress and viscoelastic properties. J. Texture Stud. 1994, 25, 119–138. [Google Scholar] [CrossRef]
- Sun, X.; Wu, S.; Koksel, F.; Xie, M.; Fang, Y. Effects of ingredient and processing conditions on the rheological properties of whole wheat flour dough during breadmaking—A review. Food Hydrocoll. 2023, 135, 108123. [Google Scholar] [CrossRef]
- Kenny, S.; Wehrle, K.; Dennehy, T.; Arendt, E. Correlations between empirical and fundamental rheology measurements and baking performance of frozen bread dough. Cereal Chem. 1999, 76, 421–425. [Google Scholar] [CrossRef]
- Zeng, F.; Yang, Y.; Liu, Q.; Yang, J.; Jin, Z.; Jiao, A. Effect of fermentation methods on properties of dough and whole wheat bread. J. Sci. Food Agric. 2023, 103, 4876–4886. [Google Scholar] [CrossRef]
- Jin, X.; Lin, S.; Gao, J.; Wang, Y.; Ying, J.; Dong, Z.; Zhou, W. How manipulation of wheat bran by superfine-grinding affects a wide spectrum of dough rheological properties. J. Cereal Sci. 2020, 96, 103081. [Google Scholar] [CrossRef]
- Singh, S.; Singh, N. Relationship of polymeric proteins and empirical dough rheology with dynamic rheology of dough and gluten from different wheat varieties. Food Hydrocoll. 2013, 33, 342–348. [Google Scholar] [CrossRef]
- Saa, D.T.; Di Silvestro, R.; Dinelli, G.; Gianotti, A. Effect of sourdough fermentation and baking process severity on dietary fibre and phenolic compounds of immature wheat flour bread. LWT—Food Sci. Technol. 2017, 83, 26–32. [Google Scholar] [CrossRef]
- Zhou, B.; Dai, Y.; Guo, D.; Zhang, J.; Liang, H.; Li, B.; Sun, J.; Wu, J. Effect of desalted egg white and gelatin mixture system on frozen dough. Food Hydrocoll. 2022, 132, 107889. [Google Scholar] [CrossRef]
- Nikinmaa, M.; Mattila, O.; Holopainen-Mantila, U.; Heiniö, R.-L.; Nordlund, E. Impact of lactic acid bacteria starter cultures and hydrolytic enzymes on the characteristics of wholegrain crackers. J. Cereal Sci. 2019, 88, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Liu, Y.; Liu, X.; Wang, H.; Zhang, H. Cryoprotective effect of wheat gluten enzymatic hydrolysate on fermentation properties of frozen dough. J. Cereal Sci. 2022, 104, 103423. [Google Scholar] [CrossRef]
- Yu, W.; Xu, D.; Zhang, H.; Guo, L.; Hong, T.; Zhang, W.; Jin, Y.; Xu, X. Effect of pigskin gelatin on baking, structural and thermal properties of frozen dough: Comprehensive studies on alteration of gluten network. Food Hydrocoll. 2020, 102, 105591. [Google Scholar] [CrossRef]
- Bock, J.E.; Connelly, R.K.; Damodaran, S. Impact of bran addition on water properties and gluten secondary structure in wheat flour doughs studied by attenuated total reflectance Fourier transform infrared spectroscopy. Cereal Chem. 2013, 90, 377–386. [Google Scholar] [CrossRef]
- Wang, J.; Yue, Y.; Liu, T.; Zhang, B.; Wang, Z.; Zhang, C. Change in glutenin macropolymer secondary structure in wheat sourdough fermentation by FTIR. Interdiscip. Sci. Comput. Life Sci. 2017, 9, 247–253. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, J.; Yang, S.; Feng, J.; Jia, F.; Zhang, C. Protein degradation in wheat sourdough fermentation with Lactobacillus plantarum M616. Interdiscip. Sci. Comput. Life Sci. 2015, 7, 205–210. [Google Scholar] [CrossRef]
- Shen, J.; Shi, K.; Dong, H.; Yang, K.; Lu, Z.; Lu, F.; Wang, P. Screening of sourdough starter strains and improvements in the quality of whole wheat steamed bread. Molecules 2022, 27, 3510. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, X.; Zhang, Y.; Yang, W.; Ma, G.; Ma, N.; Hu, Q.; Pei, F. A novel lactic acid bacterium for improving the quality and shelf life of whole wheat bread. Food Control 2020, 109, 106914. [Google Scholar] [CrossRef]
- Demirkesen-Bicak, H.; Arici, M.; Yaman, M.; Karasu, S.; Sagdic, O. Effect of different fermentation condition on estimated glycemic index, in vitro starch digestibility, and textural and sensory properties of sourdough bread. Foods 2021, 10, 514. [Google Scholar] [CrossRef] [PubMed]
- Karaman, K.; Sagdic, O.; Durak, M.Z. Use of phytase active yeasts and lactic acid bacteria isolated from sourdough in the production of whole wheat bread. LWT 2018, 91, 557–567. [Google Scholar] [CrossRef]
- Yildirim, R.M.; Arici, M. Effect of the fermentation temperature on the degradation of phytic acid in whole-wheat sourdough bread. LWT 2019, 112, 108224. [Google Scholar] [CrossRef]
- Silvas-García, M.; Ramírez-Wong, B.; Torres-Chávez, P.; Carvajal-Millan, E.; Barrón-Hoyos, J.; Bello-Pérez, L.A.; Quintero-Ramos, A. Effect of freezing rate and storage time on gluten protein solubility, and dough and bread properties. J. Food Process Eng. 2014, 37, 237–247. [Google Scholar] [CrossRef]
- Begum, Y.A.; Chakraborty, S.; Deka, S.C. Bread fortified with dietary fibre extracted from culinary banana bract: Its quality attributes and in vitro starch digestibility. Int. J. Food Sci. Technol. 2020, 55, 2359–2369. [Google Scholar] [CrossRef]
- Rashidi, A.; HadiNezhad, M.; Rajabzadeh, N.; Yarmand, M.-S.; Nemati, S. Frozen baguette bread dough II. Textural and sensory characteristics of baked product. J. Cereal Sci. 2016, 70, 9–15. [Google Scholar] [CrossRef]
- Han, Z.; Gao, J.; Wang, X.; Wang, W.; Dong, J.; Zhang, Y.; Wang, S. Formation and alterations of the potentially harmful Maillard reaction products during the production and storage of brown fermented milk. Molecules 2019, 24, 272. [Google Scholar] [CrossRef]
- Nor Qhairul Izzreen, M.; Petersen, M.A.; Hansen, Å.S. Volatile compounds in crumb of whole-meal wheat bread fermented with different yeast levels and fermentation temperatures. Cereal Chem. 2016, 93, 209–216. [Google Scholar] [CrossRef]
- Birch, A.N.; Petersen, M.A.; Hansen, Å.S. Aroma of wheat bread crumb. Cereal Chem. 2014, 91, 105–114. [Google Scholar] [CrossRef]
- Xi, J.; Zhao, Q.; Xu, D.; Jin, Y.; Wu, F.; Jin, Z.; Xu, X. Volatile compounds in Chinese steamed bread influenced by fermentation time, yeast level and steaming time. LWT 2021, 141, 110861. [Google Scholar] [CrossRef]
G′ = K′(ω)n′ | G″ = K″(ω)n″ | ||||||
---|---|---|---|---|---|---|---|
Bread Type | Storage Time (Day) | K′ (×103 Pa) | n′ | R2 | K″ (×103 Pa) | n″ | R2 |
WWYB | 0 | 8.39 ± 0.71 Ax | 0.23 ± 0.01 Ax | 0.96 | 5.86 ± 0.68 Ax | 0.17 ± 0.01 By | 0.98 |
14 | 8.15 ± 0.29 Ax | 0.21 ± 0.00 ABy | 0.97 | 4.98 ± 0.06 Ax | 0.20 ± 0.00 Az | 0.99 | |
28 | 8.66 ± 1.13 Ax | 0.21 ± 0.01 Bz | 0.98 | 5.58 ± 0.73 Ax | 0.19 ± 0.00 Az | 0.98 | |
Type I WWSB | 0 | 8.35 ± 0.12 Ax | 0.25 ± 0.01 Bx | 0.93 | 5.77 ± 0.01 Ax | 0.23 ± 0.01 Cx | 0.97 |
14 | 7.38 ± 0.63 Ax | 0.27 ± 0.01 Bx | 0.97 | 4.83 ± 0.25 Ax | 0.28 ± 0.00 Bx | 0.99 | |
28 | 9.36 ± 1.60 Ax | 0.34 ± 0.00 Ax | 0.96 | 6.10 ± 1.02 Ax | 0.35 ± 0.00 Ax | 0.98 | |
Type II WWSB | 0 | 4.98 ± 0.02 Ay | 0.25 ± 0.00 Ax | 0.97 | 3.44 ± 0.03 Ay | 0.23 ± 0.00 Bx | 0.99 |
14 | 4.09 ± 0.07 Cy | 0.26 ± 0.02 Ax | 0.99 | 2.51 ± 0.01 Cy | 0.28 ± 0.01 Ax | 0.99 | |
28 | 4.54 ± 0.05 By | 0.23 ± 0.00 Ay | 0.99 | 2.74 ± 0.11 By | 0.26 ± 0.01 ABy | 0.99 | |
Type IV WWSB | 0 | 7.50 ± 0.39 Ax | 0.25 ± 0.01 Ax | 0.95 | 5.12 ± 0.20 Ax | 0.23 ± 0.01 Bx | 0.99 |
14 | 8.07 ± 0.62 Ax | 0.25 ± 0.00 Ax | 0.97 | 5.28 ± 0.21 Ax | 0.26 ± 0.00 Ay | 0.99 | |
28 | 5.44 ± 0.37 By | 0.23 ± 0.01 Byz | 0.98 | 3.56 ± 0.12 By | 0.24 ± 0.01 ABy | 0.99 |
Bread Type | |||||
---|---|---|---|---|---|
Storage Time (Day) | WWYB | Type I WWSB | Type II WWSB | Type IV WWSB | |
β-sheets (1682–1696 cm−1) | 0 | 5.87 ± 1.92 Ax | 4.24 ± 0.97 Ax | 8.83 ± 5.05 Ax | 7.42 ± 1.88 Ax |
14 | 5.61 ± 2.77 Ax | 8.25 ± 3.83 Ax | 8.82 ± 6.20 Ax | 9.89 ± 0.01 Ax | |
28 | 8.88 ± 0.63 Ax | 8.85 ± 4.20 Ax | 6.75 ±3.11 Ax | 8.76 ± 4.54 Ax | |
β-turns (1662–1681 cm−1) | 0 | 24.16 ± 2.59 Ax | 20.91± 3.53 Ax | 21.22 ± 1.89 Ax | 20.08 ± 1.55 Ax |
14 | 22.18 ± 1.30 ABx | 21.77 ± 2.59 Ax | 17.89 ± 4.56 Ax | 15.52 ± 0.21 Ax | |
28 | 18.03 ± 1.15 Bx | 15.26 ± 0.07 Ax | 18.59 ± 2.33 Ax | 22.60 ± 4.88 Ax | |
α-helices (1650–1660 cm−1) | 0 | 23.56 ± 1.36 Ax | 13.44 ± 2.69 By | 16.15 ± 5.29 Axy | 22.86 ± 2.58 Ax |
14 | 24.86 ± 4.38 Ax | 12.36 ± 1.10 By | 24.76 ± 2.23 Ax | 22.99 ± 2.23 Ax | |
28 | 21.70 ± 0.07 Axy | 25.61 ± 4.30 Ax | 21.60 ± 2.36 Axy | 16.90 ± 2.41 Ay | |
Random coils (1640–1650 cm−1) | 0 | 19.93 ± 5.44 Ax | 16.86 ± 0.40 Ax | 21.40 ± 1.09 Ax | 22.82 ± 4.37 Ax |
14 | 16.43 ± 1.73 Axy | 13.98 ± 1.00 By | 17.12 ± 2.65 Axy | 20.56 ± 0.41 Ax | |
28 | 20.44 ± 1.00 Ax | 19.43 ± 0.93 Ax | 21.97 ± 2.07 Ax | 20.38 ± 3.40 Ax | |
Antiparallel β-sheets (1615–1637 cm−1) | 0 | 24.27 ± 3.26 Ay | 40.72 ± 0.50 Ax | 21.36 ± 4.03 Ay | 20.46 ± 0.39 Ay |
14 | 27.95 ± 2.35 Ay | 37.97 ± 2.15 Ax | 23.62 ± 1.18 Ay | 23.93 ± 3.68 Ay | |
28 | 28.39 ± 0.16 Ax | 27.44 ± 1.43 Bx | 23.30 ± 4.52 Axy | 18.83 ± 1.53 Ay | |
Intermolecular β-sheets (1612–1614 cm−1) | 0 | 2.22 ± 0.97 Az | 3.83 ± 0.78 Ay | 11.03 ± 1.29 Ax | 6.37 ± 1.85 By |
14 | 2.97 ± 0.30 Ay | 5.66 ± 1.18 Axy | 7.79 ± 2.07 Ax | 7.12 ± 2.06 Bxy | |
28 | 2.56 ± 1.01 Ay | 3.40 ± 0.46 Ay | 7.79 ± 3.46 Axy | 12.53 ± 0.89 Ax |
Bread Type | |||||
---|---|---|---|---|---|
Storage Time (Day) | WWYB | Type I WWSB | Type II WWSB | Type IV WWSB | |
Hardness (N) | 0 | 3.84 ± 0.13 Bx | 3.91 ± 0.25 Bx | 3.63 ± 0.11 Cx | 3.41 ± 0.69 Bx |
14 | 4.35 ± 0.42 By | 5.78 ± 0.30 Ax | 4.79 ± 0.66 By | 6.26 ± 0.76 Ax | |
28 | 5.31 ± 0.55 Az | 6.14 ± 0.77 Ayz | 7.81 ± 0.37 Ax | 6.63 ± 0.54 Ay | |
Springiness | 0 | 0.87 ± 0.03 ABz | 0.92 ± 0.02 Axy | 0.88 ± 0.01 Ayz | 0.93 ± 0.02 Ax |
14 | 0.94 ± 0.05 Ax | 0.83 ± 0.03 By | 0.85 ± 0.01 By | 0.83 ± 0.01 By | |
28 | 0.79 ± 0.08 Bx | 0.84 ± 0.01 Bx | 0.81 ± 0.01 Cx | 0.76 ± 0.05 Bx | |
Cohesiveness | 0 | 0.75 ± 0.02 By | 0.79 ± 0.01 Ax | 0.79 ± 0.02 Ax | 0.80 ± 0.01 Ax |
14 | 0.80 ± 0.01 Ax | 0.75 ± 0.01 By | 0.76 ± 0.01 By | 0.75 ± 0.01 By | |
28 | 0.75 ± 0.02 Bx | 0.75 ± 0.01 Bx | 0.75 ± 0.01 Bx | 0.74 ± 0.02 Bx | |
Chewiness (N) | 0 | 2.53 ± 0.21 Bx | 2.82 ± 0.21 Bx | 2.52 ± 0.12 Cx | 2.53 ± 0.50 Bx |
14 | 3.27 ± 0.15 Ayz | 3.61 ± 0.15 Axy | 3.10 ± 0.42 Bz | 3.87 ± 0.39 Ax | |
28 | 3.14 ± 0.40 Az | 3.86 ± 0.47 Ayz | 4.76 ± 0.23 Ax | 3.72 ± 0.43 Ayz |
Crust | Crumb | ||||||
---|---|---|---|---|---|---|---|
Bread Type | Storage Time (Days) | L* | a* | b* | L* | a* | b* |
WWYB | 0 | 48.63 ± 2.25 By | 12.01 ± 0.68 Ax | 19.71 ± 1.75 Bz | 63.61 ± 1.08 By | 3.91 ± 0.27 Bx | 17.38 ± 0.33 Ax |
14 | 53.84 ± 2.76 Ax | 11.43 ± 0.42 Axy | 20.49 ± 1.94 Bx | 68.97 ± 1.00 Ax | 3.69 ± 0.27 Bx | 17.72 ± 0.93 Ax | |
28 | 53.35 ± 2.05 Ax | 10.97 ± 0.45 By | 22.97 ± 1.02 Ax | 63.73 ± 0.99 By | 4.33 ± 0.26 Ax | 17.82 ± 0.42 Ax | |
Type I WWSB | 0 | 55.65 ± 2.48 Ax | 10.65 ± 0.79 By | 23.66 ± 0.96 Ax | 64.83 ± 3.15 Axy | 3.09 ± 0.26 By | 16.86 ± 0.91 ABx |
14 | 53.60 ± 4.77 Ax | 11.77 ± 1.58 ABx | 22.82 ± 1.95 Ax | 64.13 ± 0.85 Az | 3.21 ± 0.30 ABy | 16.36 ± 0.41 Bz | |
28 | 52.47 ± 2.92 Ax | 12.47 ± 0.78 Ax | 19.95 ± 1.95 By | 64.73 ± 0.80 Axy | 3.53 ± 0.26 Ay | 17.42 ± 0.32 Axy | |
Type II WWSB | 0 | 52.84 ± 2.88 Ax | 11.07 ± 0.99 Axy | 21.54 ± 1.44 Ay | 67.06 ± 1.36 Ax | 3.30 ± 0.32 Ay | 16.87 ± 0.56 Ax |
14 | 52.09 ± 2.46 Ax | 11.48 ± 0.37 Ax | 17.79 ± 1.99 By | 66.03 ± 0.84 Ay | 3.33 ± 0.25 Axy | 17.15 ± 0.39 Axy | |
28 | 53.51 ± 4.07 Ax | 11.42 ± 0.98 Ax | 20.77 ± 2.41 Ay | 65.77 ± 1.10 Ax | 3.33 ± 0.14 Ay | 17.26 ± 0.28 Ay | |
Type IV WWSB | 0 | 53.93 ± 3.60 Ax | 10.98 ± 1.33 Bxy | 23.52 ± 1.64 Ax | 66.53 ± 1.60 Ax | 3.09 ± 0.35 By | 16.80 ± 0.52 Ax |
14 | 49.67 ± 2.57 Bx | 12.49 ± 0.45 Ax | 20.74 ± 2.13 Bx | 65.36 ± 0.58 ABy | 3.68 ± 0.20 Ax | 16.62 ± 0.40 Ayz | |
28 | 50.62 ± 1.99 ABx | 12.31 ± 0.59 Ax | 22.94 ± 1.01 Ax | 64.34 ± 1.08 By | 3.59 ± 0.38 Ay | 16.98 ± 0.56 Ayz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozulku, G. Monitoring the Dough Properties, Quality Characteristics and Volatile Compounds of Whole Wheat Bread Made by Different Sourdough Types during Frozen Storage. Foods 2024, 13, 1388. https://doi.org/10.3390/foods13091388
Ozulku G. Monitoring the Dough Properties, Quality Characteristics and Volatile Compounds of Whole Wheat Bread Made by Different Sourdough Types during Frozen Storage. Foods. 2024; 13(9):1388. https://doi.org/10.3390/foods13091388
Chicago/Turabian StyleOzulku, Gorkem. 2024. "Monitoring the Dough Properties, Quality Characteristics and Volatile Compounds of Whole Wheat Bread Made by Different Sourdough Types during Frozen Storage" Foods 13, no. 9: 1388. https://doi.org/10.3390/foods13091388
APA StyleOzulku, G. (2024). Monitoring the Dough Properties, Quality Characteristics and Volatile Compounds of Whole Wheat Bread Made by Different Sourdough Types during Frozen Storage. Foods, 13(9), 1388. https://doi.org/10.3390/foods13091388