The EU Interreg Project “ADRINET”: Assessment of Well-Known and Emerging Pollutants in Seafood and Their Potential Effects for Food Safety
Abstract
:1. Introduction
- the type of fishing gears used and the practice (higher impact by dragged gear and particularly dredges);
- the geographic location of the activity (and its intensity);
- the type of habitat, its status, and its environment, together with the marine species and communities.
2. Material and Methods
2.1. Sampling
2.2. Cadmium Analysis in Digestive Glands and Mantles of Sepia spp. and Loligo spp.
2.2.1. Digestion and Analysis
2.2.2. Analytical Method
2.2.3. Quality Control
2.2.4. Statistical Analysis
2.3. Microplastics Analysis
2.3.1. Sample Collection and Preparation
2.3.2. Quality Control
2.3.3. Hydrogen Peroxide Treatment
2.3.4. Floatation and Filtration
2.3.5. Observation of the Filters and Detection of the Items
2.4. Antibiotics Analysis
2.4.1. Multi Residual Analysis
2.4.2. Chemicals and Reagents
- Methanol and n-hexane (hypergrade for LC-MS LiChrosolv®);
- Trichloroacetic acid (TCA) crystals, disodium hydrogen phosphate dihydrate, citric acid monohydrate, and EDTA (for preparing EDTA-McIlvaine buffer solution, pH 4);
- Ampicillin, penicillin G, cloxacillin, amoxicillin, penicillin V, oxacillin, dicloxacillin, nafcillin, enrofloxacin, ciprofloxacin, danofloxacin, marbofloxacin, flumequine, tetracycline, 4-epitetracycline, oxytetracycline, 4-epioxytetracycline, chlortetracycline, 4-epichloretracycline, doxycycline, sulfadiazine, sulfathiazole, sulfadimethoxine, sulfadimidine, and enrofloxacin d5 as the internal standards (IS).
2.4.3. Standard Solutions
2.4.4. Sample Extraction
2.4.5. HPLC-HRMS Analyses
2.4.6. Method Validation
3. Results
3.1. Cadmium in Loligo spp. and Sepia spp.
3.2. Microplastics in Sparus aurata and Dicentrarchus labrax
Statistical Analysis Results
3.3. Antibiotics in Sparus aurata and Dicentrarcus labrax
3.3.1. Results of Multiresidual Analysis
3.3.2. Validation Performances
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Impellitteri, F.; Multisanti, C.R.; Rusanova, P.; Piccione, G.; Falco, F.; Faggio, C. Exploring the Impact of Contaminants of Emerging Concern on Fish and Invertebrates Physiology in the Mediterranean Sea. Biology 2023, 12, 767. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Shen, X.; Jiang, M. Ecological Risk Assessment of Heavy Metal Pollution in the Water of China’s Coastal Shellfish Culture Areas. Environ. Sci. Pollut. Res. Int. 2020, 27, 18392–18402. [Google Scholar] [CrossRef] [PubMed]
- Storelli, M.M.; Garofalo, R.; Giungato, D.; Giacominelli-Stuffler, R. Intake of Essential and Non-Essential Elements from Consumption of Octopus, Cuttlefish and Squid. Food Addit. Contam. Part. B 2010, 3, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Koenig, S.; Solé, M.; Fernández-Gómez, C.; Díez, S. New Insights into Mercury Bioaccumulation in Deep-Sea Organisms from the NW Mediterranean and Their Human Health Implications. Sci. Total Environ. 2013, 442, 329–335. [Google Scholar] [CrossRef]
- Marine. Available online: https://water.europa.eu/marine (accessed on 22 August 2023).
- Das, S.; Kar, I.; Patra, A.K. Cadmium Induced Bioaccumulation, Histopathology, Gene Regulation in Fish and Its Amelioration—A Review. J. Trace Elem. Med. Biol. 2023, 79, 127202. [Google Scholar] [CrossRef]
- DeForest, D.K.; Brix, K.V.; Adams, W.J. Assessing Metal Bioaccumulation in Aquatic Environments: The Inverse Relationship between Bioaccumulation Factors, Trophic Transfer Factors and Exposure Concentration. Aquat. Toxicol. 2007, 84, 236–246. [Google Scholar] [CrossRef]
- Bhattacharya, S. The Role of Probiotics in the Amelioration of Cadmium Toxicity. Biol. Trace Elem. Res. 2020, 197, 440–444. [Google Scholar] [CrossRef]
- Baralla, E.; Demontis, M.P.; Dessì, F.; Varoni, M.V. An Overview of Antibiotics as Emerging Contaminants: Occurrence in Bivalves as Biomonitoring Organisms. Animals 2021, 11, 3239. [Google Scholar] [CrossRef]
- Bošković, N.; Joksimović, D.; Bajt, O. Microplastics in Fish and Sediments from the Montenegrin Coast (Adriatic Sea): Similarities in Accumulation. Sci. Total Environ. 2022, 850, 158074. [Google Scholar] [CrossRef]
- Danso, D.; Chow, J.; Streit, W.R. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Appl. Environ. Microbiol. 2019, 85, e01095-19. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Bai, H.; Chen, B.; Sun, X.; Qu, K.; Xia, B. Microplastic Pollution in North Yellow Sea, China: Observations on Occurrence, Distribution and Identification. Sci. Total Environ. 2018, 636, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Van Cauwenberghe, L.; Vanreusel, A.; Mees, J.; Janssen, C.R. Microplastic Pollution in Deep-Sea Sediments. Environ. Pollut. 2013, 182, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, M.S. Effects of Microplastics on Fish and in Human Health. Front. Environ. Sci. 2022, 10, 827289. [Google Scholar] [CrossRef]
- Xu, S.; Ma, J.; Ji, R.; Pan, K.; Miao, A.-J. Microplastics in Aquatic Environments: Occurrence, Accumulation, and Biological Effects. Sci. Total Environ. 2020, 703, 134699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, J.; Zhou, B.; Zhou, Y.; Dai, Z.; Zhou, Q.; Chriestie, P.; Luo, Y. Enhanced Adsorption of Oxytetracycline to Weathered Microplastic Polystyrene: Kinetics, Isotherms and Influencing Factors. Environ. Pollut. 2018, 243, 1550–1557. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Li, Y.; Huang, G.; Yang, C.; Chen, C.; Zhou, T.; Zhao, Y.; Ma, J. Adsorption Behavior of the Antibiotic Levofloxacin on Microplastics in the Presence of Different Heavy Metals in an Aqueous Solution. Chemosphere 2020, 260, 127650. [Google Scholar] [CrossRef]
- Ogbeide, O.; Tongo, I.; Enuneku, A.; Ogbomida, E.; Ezemonye, L. Human Health Risk Associated with Dietary and Non-Dietary Intake of Organochlorine Pesticide Residues from Rice Fields in Edo State Nigeria. Expo. Health 2016, 8, 53–66. [Google Scholar] [CrossRef]
- ADRINET. Available online: https://adrinet.italy-albania-montenegro.eu/ (accessed on 22 August 2023).
- ADRINET. Preserving Marine Ecosystems in the Southern Adriatic Thanks to Interreg. Available online: https://ec.europa.eu/regional_policy/en/projects/Malta/adrinet-preserving-marine-ecosystems-in-the-southern-adriatic-thanks-to-interreg (accessed on 27 March 2024).
- Ehiemere, V.C.; Ihedioha, J.N.; Ekere, N.R.; Ibeto, C.N.; Abugu, H.O. Pollution and risk assessment of heavy metals in water, sediment and fish (Clarias gariepinus) in a fish farm cluster in Niger Delta region, Nigeria. J. Water Health 2022, 20, 927–945. [Google Scholar] [CrossRef]
- Kisser, M.I. Digestion of Solid Matrices: Digestion with Aqua Regia. Report of Evaluation Study 2005. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=01e2ad0d60811b9efaa54f5c789174ea1afff8b8 (accessed on 25 March 2024).
- Daniel, I.; Matthew, N. Human Risk Assessment of Consuming Farm Raised Fish in Uyo, Nigeria. J. Appl. Life Sci. Int. 2016, 9, 1–10. [Google Scholar] [CrossRef]
- European Commission (EC) No 333/2007 of 28 March 2007 Laying down the Methods of Sampling and Analysis for the Control of the Levels of Trace Elements and Processing Contaminants in Foodstuffs (Text with EEA Relevance) Text with EEA Relevance. Available online: http://data.europa.eu/eli/reg/2007/333/oj (accessed on 25 March 2024).
- Dambrosio, A.; Cometa, S.; Capuozzo, F.; Ceci, E.; Derosa, M.; Quaglia, N.C. Occurrence and Characterization of Microplastics in Commercial Mussels (Mytilus galloprovincialis) from Apulia Region (Italy). Foods 2023, 12, 1495. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Nobile, M.; Malandra, R.; Panseri, S.; Arioli, F. Occurrence of Antibiotics in Mussels and Clams from Various FAO Areas. Food Chem. 2018, 240, 16–23. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances Used in Food-Producing Animals and on the Interpretation of Results as Well as on the Methods to be Used for Sampling and Repealing Decisions 2002/657/EC and 98/179/EC. Off. J. Eur. Union. 2021, 180, 84–109. [Google Scholar]
- Commission Regulation (EU). Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006 (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg/2023/915/oj (accessed on 25 March 2024).
- Pereira, P.; Raimundo, J.; Vale, C.; Kadar, E. Metal Concentrations in Digestive Gland and Mantle of Sepia Officinalis from Two Coastal Lagoons of Portugal. Sci. Total Environ. 2009, 407, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Varrà, M.O.; Husáková, L.; Patočka, J.; Ianieri, A.; Ghidini, S.; Zanardi, E. Cadmium, Lead, and Mercury in Two Commercial Squid Species from the North Adriatic Sea (Central Mediterranean): Contamination Levels and Health Risk Assessment. Ital. J. Food Saf. 2023, 12, 11037. [Google Scholar] [CrossRef]
- Raimundo, J.; Pereira, P.; Vale, C.; Caetano, M. Fe, Zn, Cu and Cd Concentrations in the Digestive Gland and Muscle Tissues of Octopus Vulgaris and Sepia Officinalis from Two Coastal Areas in Portugal. Cienc. Mar. 2005, 31, 243–251. [Google Scholar] [CrossRef]
- Mistri, M.; Sfriso, A.A.; Casoni, E.; Nicoli, M.; Vaccaro, C.; Munari, C. Microplastic Accumulation in Commercial Fish from the Adriatic Sea. Mar. Pollut. Bull. 2022, 174, 113279. [Google Scholar] [CrossRef]
- Amangelsin, Y.; Semenova, Y.; Dadar, M.; Aljofan, M.; Bjørklund, G. The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics 2023, 12, 440. [Google Scholar] [CrossRef]
- Varenina, I.; Bilandžić, N.; Luburić, Đ.B.; Kolanović, B.S.; Varga, I. High Resolution Mass Spectrometry Method for the Determination of 13 Antibiotic Groups in Bovine, Swine, Poultry and Fish Meat: An Effective Screening and Confirmation Analysis Approach for Routine Laboratories. Food Control 2022, 133, 108576. [Google Scholar] [CrossRef]
- Gbylik, M.; Posyniak, A.; Mitrowska, K.; Bladek, T.; Zmudzki, J. Multi-Residue Determination of Antibiotics in Fish by Liquid Chromatography-Tandem Mass Spectrometry. Food Addit. Contam. Part. A 2013, 30, 940–948. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 37/2010 Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg/2010/37(1)/oj (accessed on 26 March 2024).
- Environmental Risk Management Plan (ERMP). Available online: https://adrinet.italy-albania-montenegro.eu/sites/adrinet.italy-albania-montenegro.eu/files/2021-09/t1_1_ermp_english.pdf (accessed on 27 March 2024).
- Yang, C.; Song, G.; Lim, W. A Review of the Toxicity in Fish Exposed to Antibiotics. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2020, 237, 108840. [Google Scholar] [CrossRef]
Number of Samples | Sample Types | Parameters | Unit of Measures | Mean ± SD * | Maximum Limit Allowed in Flesh |
---|---|---|---|---|---|
80 | Glands Sepia spp. | Cd | mg/kg | 1.5 ± 0.008 | 1.0 |
80 | Glands Loligo spp. | Cd | mg/kg | 1.2 ± 0.008 | 1.0 |
80 | Mantles Sepia spp. | Cd | mg/kg | 0.02 ± 0.008 | 1.0 |
80 | Mantles Loligo spp. | Cd | mg/kg | 0.8 ± 0.008 | 1.0 |
Number of Samples | Sample Types | Parameters | Unit of Measure | Mean ± SD * | Maximum Allowed Limit in Flesh |
---|---|---|---|---|---|
54 | Mantles Sepia spp. | Cd | mg/kg | 0.02 ± 0.008 | 1.0 |
32 | Mantles Loligo spp. | Cd | mg/kg | 0.12 ± 0.008 | 1.0 |
Number of Samples | Sample Types | Parameters | Unit of Measure | Mean ± SD * | Maximum Allowed Limit in Flesh |
---|---|---|---|---|---|
80 | Mantles Sepia spp. | Cd | mg/kg | 0.08 ± 0.008 | 1.0 |
80 | Mantles Loligo spp. | Cd | mg/kg | 0.11 ± 0.008 | 1.0 |
Species | Nr. of Analyzed Samples | Microplastics * | ||
---|---|---|---|---|
Stomach | Gut | |||
Species selected for study by ADRINET | Spaurus aurata | 90 | 6 ± 0.24 | 3 ± 0.3 |
Dicentrarchus labrax | 70 | 4 ± 0.28 | 3 ± 0.7 |
Species | Nr. of Analyzed Samples | Microplastics * | ||
---|---|---|---|---|
Stomach | Gut | |||
Species selected for study by ADRINET | Spaurus aurata | 30 | 4 ± 0.56 | 2 ± 0.29 |
Dicentrarchus labrax | 20 | 3 ± 0.47 | 2 ± 0.16 |
Species | Nr. of Analyzed Samples | Microplastics * | ||
---|---|---|---|---|
Stomach | Gut | |||
Species selected for study by ADRINET | Spaurus aurata | 30 | 3 ± 0.18 | 2 ± 0.23 |
Dicentrarchus labrax | 30 | 4 ± 0.43 | 2 ± 0.12 |
Nr. of Samples | Sample Types | Antibiotics | Results |
---|---|---|---|
60 | Spaurus aurata | Thiamphenicol | Not found |
Streptomycin | not found | ||
Tylosin | not found | ||
Quinolone | Positive | ||
Ceftiofur | not found | ||
Tetracyclines | Positive | ||
60 | Dicentrarchus labrax | Thiamphenicol | not found |
Streptomycin | not found | ||
Tylosin | not found | ||
Quinolone | Positive | ||
Ceftiofur | not found | ||
Tetracyclines | Positive |
Nr. of Samples | Sample Types | Substance (Antibiotics) | Results |
---|---|---|---|
60 | Spaurus aurata | Thiamphenicol | not found |
Streptomycin | not found | ||
Tylosin | not found | ||
Quinolone | not found | ||
Ceftiofur | not found | ||
Tetracyclines | not found | ||
60 | Dicentrarchus labrax | Thiamphenicol | not found |
Streptomycin | not found | ||
Tylosin | not found | ||
Quinolone | not found | ||
Ceftiofur | not found | ||
Tetracyclines | not found |
Nr. of Samples | Sample Types | Substance (Antibiotics) | Results |
---|---|---|---|
60 | Spaurus aurata | Thiamphenicol | not found |
Streptomycin | not found | ||
Tylosin | not found | ||
Quinolone | not found | ||
Ceftiofur | not found | ||
Tetracyclines | not found | ||
60 | Dicentrarchus labrax | Thiamphenicol | not found |
Streptomycin | not found | ||
Tylosin | not found | ||
Quinolone | not found | ||
Ceftiofur | not found | ||
Tetracyclines | not found |
Nr. of Samples | Sample Type | Substance (Antibiotics) | Unit of Measure | Results MD ± SD * | ||
---|---|---|---|---|---|---|
Castro Bay | Vlora Bay | Boka Kotorska Bay | ||||
100 | Spaurus aurata | Flumequiine | ng g−1 | 20.34 ± 0.56 | Not found | Not found |
Tetracycline | ng g−1 | 60.45 ± 0.34 | Not found | Not found | ||
Oxytetracycline | ng g−1 | 60 ± 0.37 | Not found | Not found | ||
Doxycycline | ng g−1 | 87.37 ± 0.52 | Not found | Not found | ||
Chlortetracycline | ng g−1 | 78.20 ± 0.51 | Not found | Not found | ||
100 | Dicentrarchus labrax | Flumequiine | ng g−1 | 24.43 ± 0.12 | Not found | Not found |
Tetracycline: | ng g−1 | 56.72 ± 0.23 | Not found | Not found | ||
Oxytetracycline | ng g−1 | 54 ± 0.21 | Not found | Not found | ||
Doxycycline | ng g−1 | 90.37 ± 0.36 | Not found | Not found | ||
Chlortetracycline | ng g−1 | 81.76 ± 0.18 | Not found | Not found |
Analyte | MRL (ng g−1) | Spiked Levels (ng g−1) | CCα (ng g−1) | Recovery * (%) (n = 18) | Repeatability * | ||
---|---|---|---|---|---|---|---|
Intra-Day (CV; n = 6) | Inter-Day (CV; n = 18) | Matrix Effect % | |||||
25.00 | 100 | 14 | 20 | ||||
Amoxicillin | 50 | 50.00 | 50.20 | 92 | 9 | 16 | 90 |
75.00 | 101 | 8 | 10 | ||||
25.00 | 90 | 14 | 20 | ||||
Ampicillin | 50 | 50.00 | 50.55 | 98 | 13 | 14 | 93 |
75.00 | 100 | 9 | 9 | ||||
150.00 | 95 | 14 | 17 | ||||
Cloxacillin | 300 | 300.00 | 301.42 | 97 | 11 | 13 | 92 |
450.00 | 98 | 9 | 10 | ||||
150.00 | 93 | 13 | 18 | ||||
Dicloxacillin | 300 | 300.00 | 301.16 | 97 | 12 | 17 | 91 |
450.00 | 99 | 11 | 11 | ||||
25.00 | 90 | 14 | 19 | ||||
Penicillin G | 50 | 50.00 | 50.30 | 92 | 13 | 17 | 95 |
75.00 | 93 | 13 | 14 | ||||
1.25 | 90 | 14 | 20 | ||||
Penicillin V | / | 2.50 | 2.50 ** | 90 | 14 | 18 | 92 |
3.75 | 92 | 12 | 13 | ||||
150.00 | 92 | 13 | 17 | ||||
Oxacillin | 300 | 300.00 | 300.16 | 95 | 11 | 15 | 94 |
450.00 | 95 | 9 | 11 | ||||
2.50 | 102 | 14 | 20 | ||||
Nafcillin | / | 5.00 | 5.00 ** | 97 | 13 | 20 | 94 |
7.50 | 101 | 13 | 18 | ||||
50.00 | 95 | 14 | 16 | ||||
Ciprofloxacin | 100 | 100.00 | 101.37 | 105 | 14 | 16 | 101 |
150.00 | 98 | 11 | 12 | ||||
50.00 | 100 | 8 | 15 | ||||
Enrofloxacin | 100 | 100.00 | 101.20 | 100 | 8 | 15 | 103 |
150.00 | 100 | 7 | 8 | ||||
50.00 | 97 | 14 | 20 | ||||
Danofloxacin | 100 | 100.00 | 100.35 | 103 | 13 | 20 | 105 |
150.00 | 98 | 13 | 18 | ||||
0.70 | 103 | 14 | 20 | ||||
Marbofloxacin | / | 1.50 | 1.58 ** | 97 | 14 | 15 | 107 |
2.25 | 101 | 8 | 10 | ||||
300.00 | 99 | 13 | 17 | ||||
Flumequine | 600 | 600.00 | 601.60 | 99 | 11 | 15 | 100 |
900.00 | 91 | 9 | 11 | ||||
50.00 | 92 | 7 | 11 | ||||
Chlortetracycline | 100 | 100.00 | 100.62 | 103 | 5 | 11 | 102 |
150.00 | 98 | 7 | 10 | ||||
50.00 | 104 | 14 | 20 | ||||
Doxycycline | 100 | 100.00 | 100.30 | 96 | 13 | 20 | 112 |
150.00 | 101 | 12 | 13 | ||||
50.00 | 102 | 10 | 16 | ||||
Oxytetracycline | 100 | 100.00 | 101.00 | 98 | 8 | 15 | 104 |
150.00 | 101 | 9 | 9 | ||||
50.00 | 99 | 14 | 20 | ||||
Tetracycline | 100 | 100.00 | 101.10 | 113 | 10 | 12 | 103 |
150.00 | 96 | 9 | 10 | ||||
50.00 | 96 | 14 | 20 | ||||
Sulphathiazole | 100 | 100.00 | 101.55 | 96 | 10 | 17 | 102 |
150.00 | 99 | 9 | 11 | ||||
50.00 | 101 | 8 | 11 | ||||
Sulphadimidine | 100 | 100.00 | 100.73 | 99 | 7 | 9 | 101 |
150.00 | 100 | 7 | 7 | ||||
50.00 | 102 | 11 | 18 | ||||
Sulphadiazine | 100 | 100.00 | 100.80 | 102 | 9 | 15 | 105 |
150.00 | 104 | 9 | 11 | ||||
50.00 | 97 | 12 | 19 | ||||
Sulphadimethoxine | 100 | 100.00 | 101.23 | 99 | 11 | 13 | 108 |
150.00 | 93 | 10 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonerba, E.; Shehu, F.; Pandiscia, A.; Lorusso, P.; Manfredi, A.; Huter, A.; Tantillo, G.M.; Panseri, S.; Nobile, M.; Terio, V. The EU Interreg Project “ADRINET”: Assessment of Well-Known and Emerging Pollutants in Seafood and Their Potential Effects for Food Safety. Foods 2024, 13, 1235. https://doi.org/10.3390/foods13081235
Bonerba E, Shehu F, Pandiscia A, Lorusso P, Manfredi A, Huter A, Tantillo GM, Panseri S, Nobile M, Terio V. The EU Interreg Project “ADRINET”: Assessment of Well-Known and Emerging Pollutants in Seafood and Their Potential Effects for Food Safety. Foods. 2024; 13(8):1235. https://doi.org/10.3390/foods13081235
Chicago/Turabian StyleBonerba, Elisabetta, Fatmira Shehu, Annamaria Pandiscia, Patrizio Lorusso, Alessio Manfredi, Aleksandra Huter, Giuseppina M. Tantillo, Sara Panseri, Maria Nobile, and Valentina Terio. 2024. "The EU Interreg Project “ADRINET”: Assessment of Well-Known and Emerging Pollutants in Seafood and Their Potential Effects for Food Safety" Foods 13, no. 8: 1235. https://doi.org/10.3390/foods13081235
APA StyleBonerba, E., Shehu, F., Pandiscia, A., Lorusso, P., Manfredi, A., Huter, A., Tantillo, G. M., Panseri, S., Nobile, M., & Terio, V. (2024). The EU Interreg Project “ADRINET”: Assessment of Well-Known and Emerging Pollutants in Seafood and Their Potential Effects for Food Safety. Foods, 13(8), 1235. https://doi.org/10.3390/foods13081235