Comparison of Physical and Compositional Attributes between Commercial Plant-Based and Dairy Yogurts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. pH
2.3. Titratable Acidity
2.4. Color
2.5. Water Activity
2.6. Moisture Content Analysis
2.7. Rheology
2.8. Statistical Data Analysis
3. Results
3.1. Nutritional Composition
3.2. pH and Titratable Acidity
3.3. Color
3.4. Moisture Content and Water Activity
3.5. Rheological Properties
4. Discussion
4.1. Nutritional Composition
4.2. The Differences in the Physicochemical Attributes of Plant-Based and Dairy Yogurts
4.2.1. pH and Titratable Acidity
4.2.2. Color, Moisture Content, and Water Activity
4.3. Rheological Properties
4.4. Limitations and Looking to the Future of Plant-Based Yogurt
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Detzel, A.; Krüger, M.; Busch, M.; Blanco-Gutiérrez, I.; Varela, C.; Manners, R.; Bez, J.; Zannini, E. Life cycle assessment of animal-based foods and plant-based protein-rich alternatives: An environmental perspective. J. Sci. Food Agric. 2022, 102, 5098–5110. [Google Scholar] [CrossRef]
- Gaillac, R.; Marbach, S. The carbon footprint of meat and dairy proteins: A practical perspective to guide low carbon footprint dietary choices. J. Clean. Prod. 2021, 321, 128766. [Google Scholar] [CrossRef]
- Coluccia, B.; Agnusdei, G.P.; De Leo, F.; Vecchio, Y.; La Fata, C.; Miglietta, P.P. Assessing the carbon footprint across the supply chain: Cow milk vs. soy drink. Sci. Total Environ. 2022, 806, 151200. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2639–2656. [Google Scholar] [CrossRef]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef]
- O’Donnell, M.; Voss, S.; Murray, S.; Gertner, D.; Panescu, P.; Cohen, M.; Carter, M.; Ignaszewski, E.; Pierce, B.; Fathman, L. State of the Industry Report—Plant-Based Meat, Seafood, Eggs, and Dairy; The Good Food Institute: Washington, DC, USA, 2022. [Google Scholar]
- Montemurro, M.; Pontonio, E.; Coda, R.; Rizzello, C.G. Plant-based alternatives to yogurt: State-of-the-art and perspectives of new biotechnological challenges. Foods 2021, 10, 316. [Google Scholar] [CrossRef]
- Pandey, S.; Ritz, C.; Perez-Cueto, F.J.A. An Application of the Theory of Planned Behaviour to Predict Intention to Consume Plant-Based Yogurt Alternatives. Foods 2021, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, L.; Kinchla, A.J.; Nolden, A.; McClements, D.J. Standardized methods for testing the quality attributes of plant-based foods: Milk and cream alternatives. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2206–2233. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Weiss, J.; Kinchla, A.J.; Nolden, A.A.; Grossmann, L. Methods for testing the quality attributes of plant-based foods: Meat-and processed-meat analogs. Foods 2021, 10, 260. [Google Scholar] [CrossRef]
- Greis, M.; Sainio, T.; Katina, K.; Kinchla, A.J.; Nolden, A.; Partanen, R.; Seppä, L. Dynamic texture perception in plant-based yogurt alternatives: Identifying temporal drivers of liking by TDS. Food Qual. Prefer. 2020, 86, 104019. [Google Scholar] [CrossRef]
- Gupta, M.K.; Torrico, D.D.; Ong, L.; Gras, S.L.; Dunshea, F.R.; Cottrell, J.J. Plant and Dairy-Based Yogurts: A Comparison of Consumer Sensory Acceptability Linked to Textural Analysis. Foods 2022, 11, 463. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, S.R.; Cardello, A.V.; Jin, D.; Ryan, G.S.; Giacalone, D. Consumer perception of plant-based yoghurt: Sensory drivers of liking and emotional, holistic and conceptual associations. Food Res. Int. 2023, 167, 112666. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, D.; Younas, T.; Bhusal, R.P.; Devkota, L.; Henry, C.J.; Dhital, S. Design rules of plant-based yoghurt-mimic: Formulation, functionality, sensory profile and nutritional value. Food Hydrocoll. 2023, 12, 108786. [Google Scholar] [CrossRef]
- Lee, W.-J.; Lucey, J. Impact of gelation conditions and structural breakdown on the physical and sensory properties of stirred yogurts. J. Dairy Sci. 2006, 89, 2374–2385. [Google Scholar] [CrossRef]
- Ercili-Cura, D.; Miyamoto, A.; Paananen, A.; Yoshii, H.; Poutanen, K.; Partanen, R. Adsorption of oat proteins to air–water interface in relation to their colloidal state. Food Hydrocoll. 2015, 44, 183–190. [Google Scholar] [CrossRef]
- Fajardo-Lira, C.; García-Garibay, M.; Wacher-Rodarte, C.; Farrés, A.; Marshall, V.M. Influence of water activity on the fermentation of yogurt made with extracellular polysaccharide-producing or non-producing starters. Int. Dairy J. 1997, 7, 279–281. [Google Scholar] [CrossRef]
- Grasso, N.; Alonso-Miravalles, L.; O’Mahony, J.A. Composition, Physicochemical and Sensorial Properties of Commercial Plant-Based Yogurts. Foods 2020, 9, 252. [Google Scholar] [CrossRef]
- O’Neil, J.M.; Kleyn, D.H.; Hare, L.B. Consistency and compositional characteristics of commercial yogurts. J. Dairy Sci. 1979, 62, 1032–1036. [Google Scholar] [CrossRef]
- Wang, X.; Kong, X.; Zhang, C.; Hua, Y.; Chen, Y.; Li, X. Comparison of physicochemical properties and volatile flavor compounds of plant-based yoghurt and dairy yoghurt. Food Res. Int. 2023, 164, 112375. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Li, N.; Tong, L.; Fan, B.; Wang, L.; Wang, F.; Liu, L. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt. LWT 2021, 152, 112390. [Google Scholar] [CrossRef]
- Brückner-Gühmann, M.; Banovic, M.; Drusch, S. Towards an increased plant protein intake: Rheological properties, sensory perception and consumer acceptability of lactic acid fermented, oat-based gels. Food Hydrocoll. 2019, 96, 201–208. [Google Scholar] [CrossRef]
- Pachekrepapol, U.; Kokhuenkhan, Y.; Ongsawat, J. Formulation of yogurt-like product from coconut milk and evaluation of physicochemical, rheological, and sensory properties. Int. J. Gastron. Food Sci. 2021, 25, 100393. [Google Scholar] [CrossRef]
- Mathias, T.D.S.; de Carvalho Junior, I.C.; de Carvalho, C.W.P.; Sérvulo, E.F.C. Rheological characterization of coffee-flavored yogurt with different types of thickener. Alim. Nutr. 2011, 22, 521–529. [Google Scholar]
- D’Andrea, A.E.; Kinchla, A.J.; Nolden, A.A. A comparison of the nutritional profile and nutrient density of commercially available plant-based and dairy yogurts in the United States. Front. Nutr. 2023, 10, 1195045. [Google Scholar] [CrossRef] [PubMed]
- Boeck, T.; Sahin, A.W.; Zannini, E.; Arendt, E.K. Nutritional properties and health aspects of pulses and their use in plant-based yogurt alternatives. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3858–3880. [Google Scholar] [CrossRef]
- Tso, R.; Forde, C.G. Unintended consequences: Nutritional impact and potential pitfalls of switching from animal-to plant-based foods. Nutrients 2021, 13, 2527. [Google Scholar] [CrossRef]
- Nolden, A.A.; Forde, C.G. The nutritional quality of plant-based foods. Sustainability 2023, 15, 3324. [Google Scholar] [CrossRef]
- Sridhar, K.; Bouhallab, S.; Croguennec, T.; Renard, D.; Lechevalier, V. Recent trends in design of healthier plant-based alternatives: Nutritional profile, gastrointestinal digestion, and consumer perception. Crit. Rev. Food Sci. Nutr. 2023, 63, 10483–10498. [Google Scholar] [CrossRef]
- Clegg, M.E.; Ribes, A.T.; Reynolds, R.; Kliem, K.; Stergiadis, S. A comparative assessment of the nutritional composition of dairy and plant-based dairy alternatives available for sale in the UK and the implications for consumers’ dietary intakes. Food Res. Int. 2021, 148, 110586. [Google Scholar] [CrossRef]
- Craig, W.J.; Brothers, C.J. Nutritional content and health profile of non-dairy plant-based yogurt alternatives. Nutrients 2021, 13, 4069. [Google Scholar] [CrossRef]
- Soumya, M.; Suresh, A.; Parameswaran, R.; Nampoothiri, K.M. Physico-chemical and organoleptic evaluation of probiotic plant-milk yogurt-type beverages as a functional alternative to dairy yogurts. Biocatal. Agric. Biotechnol. 2024, 57, 103060. [Google Scholar]
- Qureshi, A.; Salariya, A.; Rashid, A.; Parveen, R. Preparation and nutritional evaluation of oat fiber based yogurt. Pak. J. Biochem. Mol. Biol 2012, 45, 64–67. [Google Scholar]
- Greis, M.; Nolden, A.A.; Kinchla, A.J.; Puputti, S.; Seppa, L.; Sandell, M. What if plant-based yogurts were like dairy yogurts? Texture perception and liking of plant-based yogurts among US and Finnish consumers. Food Qual. Prefer. 2023, 107, 104848. [Google Scholar] [CrossRef]
- Katidi, A.; Xypolitaki, K.; Vlassopoulos, A.; Kapsokefalou, M. Nutritional quality of plant-based meat and dairy imitation products and comparison with animal-based counterparts. Nutrients 2023, 15, 401. [Google Scholar] [CrossRef]
- Van der Weele, C.; Feindt, P.; van der Goot, A.J.; van Mierlo, B.; van Boekel, M. Meat alternatives: An integrative comparison. Trends Food Sci. Technol. 2019, 88, 505–512. [Google Scholar] [CrossRef]
- Cole, E.; Goeler-Slough, N.; Cox, A.; Nolden, A. Examination of the nutritional composition of alternative beef burgers available in the United States. Int. J. Food Sci. Nutr. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J.; Mangels, A.R.; Brothers, C.J. Nutritional profiles of non-dairy plant-based cheese alternatives. Nutrients 2022, 14, 1247. [Google Scholar] [CrossRef] [PubMed]
- Fresán, U.; Rippin, H. Nutritional quality of plant-based cheese available in Spanish supermarkets: How do they compare to dairy cheese? Nutrients 2021, 13, 3291. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef] [PubMed]
- Samtiya, M.; Aluko, R.E.; Puniya, A.K.; Dhewa, T. Enhancing micronutrients bioavailability through fermentation of plant-based foods: A concise review. Fermentation 2021, 7, 63. [Google Scholar] [CrossRef]
- Soukoulis, C.; Panagiotidis, P.; Koureli, R.; Tzia, C. Industrial yogurt manufacture: Monitoring of fermentation process and improvement of final product quality. J. Dairy Sci. 2007, 90, 2641–2654. [Google Scholar] [CrossRef]
- Greis, M.; Sainio, T.; Katina, K.; Nolden, A.A.; Kinchla, A.J.; Seppä, L.; Partanen, R. Physicochemical properties and mouthfeel in commercial plant-based yogurts. Foods 2022, 11, 941. [Google Scholar] [CrossRef]
- Awasthi, Y.; Singh, N. A comparative study on assessment of physiochemical properties of blended plant based yoghurt alongside commercial dairy yoghurt. Foods 2020, 9, 252. [Google Scholar]
- Lucatto, J.N.; da Silva-Buzanello, R.A.; de Mendonça, S.N.T.G.; Lazarotto, T.C.; Sanchez, J.L.; Bona, E.; Drunkler, D.A. Performance of different microbial cultures in potentially probiotic and prebiotic yoghurts from cow and goat milks. Int. J. Dairy Technol. 2020, 73, 144–156. [Google Scholar] [CrossRef]
- Lee, W.J.; Lucey, J.A. Formation and Physical Properties of Yogurt. Asian-Australas. J. Anim. Sci. 2010, 23, 1127–1136. [Google Scholar] [CrossRef]
- Kosterina, V.; Yakovleva, A.; Koniaeva, V.; Iakovchenko, N. Development of formulation and technology of non-dairy soy-coconut yogurt. Agron. Res. 2020, 18, 1727–1737. [Google Scholar]
- Bhanu, D.; Lydia, O.; Sandra, E.K.; Peter, J.S.; Sally, L.G. Physicochemical and rheological properties of commercial almond-based yoghurt alternatives to dairy and soy yoghurts. Future Foods 2022, 6, 100185. [Google Scholar]
- Wu, J.; Cheng, J.; Adhikari, B.; Xue, F. Physicochemical properties of soybean protein isolate-based gel produced through probiotic fermentation. Future Foods 2023, 8, 100242. [Google Scholar] [CrossRef]
- Canon, F.; Maillard, M.-B.; Famelart, M.-H.; Thierry, A.; Gagnaire, V. Mixed dairy and plant-based yogurt alternatives: Improving their physical and sensorial properties through formulation and lactic acid bacteria cocultures. Curr. Res. Food Sci. 2022, 5, 665–676. [Google Scholar] [CrossRef]
- Genet, B.M.; Sedó Molina, G.E.; Wätjen, A.P.; Barone, G.; Albersten, K.; Ahrné, L.M.; Hansen, E.B.; Bang-Berthelsen, C.H. Hybrid Cheeses—Supplementation of Cheese with Plant-Based Ingredients for a Tasty, Nutritious and Sustainable Food Transition. Fermentation 2023, 9, 667. [Google Scholar] [CrossRef]
- Banovic, M.; Barone, A.M.; Asioli, D.; Grasso, S. Enabling sustainable plant-forward transition: European consumer attitudes and intention to buy hybrid products. Food Qual. Prefer. 2022, 96, 104440. [Google Scholar] [CrossRef]
- Grasso, S.; Rondoni, A.; Bari, R.; Smith, R.; Mansilla, N. Effect of information on consumers’ sensory evaluation of beef, plant-based and hybrid beef burgers. Food Qual. Prefer. 2022, 96, 104417. [Google Scholar] [CrossRef]
Base (n) | Energy (Kcal) | Fat (g) | Protein (g) | Carbohydrates (g) |
---|---|---|---|---|
Dairy | 86.0 ± 19.0 a | 3.9 ± 0.7 a | 3.6 ± 0.6 a | 9.0 ± 3.8 a |
Soy * | 93.3 ab | 2.3 a | 4.0 a | 14.0 a |
Oat | 97.4 ± 13.0 ab | 3.5 ± 2.5 a | 3.0 ± 1.5 a | 12.8 ± 0.1 a |
Almond | 101.6 ± 17.5 b | 5.5 ± 1.6 a | 2.3 ± 0.8 a | 11.5 ± 2.3 a |
Cashew | 83.3 ± 14.1 ab | 4.3 ± 0.4 a | 2.0 ± 0.0 ab | 9.3 ± 4.7 a |
Coconut | 76.8 ± 33.9 ab | 4.0 ± 2.0 a | 0.2 ± 0.3 b | 9.5 ± 5.2 a |
Base (n) | pH | Lactic Acid % |
---|---|---|
Dairy | 4.2 ± 0.2 ab | 0.9 ± 0.2 a |
Soy | 4.8 ± 0.0 a | 0.8 ± 0.0 ab |
Almond | 4.6 ± 0.2 a | 0.5 ± 0.1 ab |
Coconut | 4.2 ± 0.1 ab | 0.3 ± 0.0 b |
Cashew | 3.9 ± 0.2 b | 0.7 ± 0.1 ab |
Oat | 3.7 ± 0.2 b | 0.3 ± 0.1 b |
Base | L* | a* | b* | Whiteness Index |
---|---|---|---|---|
Dairy | 91.9 ± 1.5 a | −1.1 ± 0.3 a | 10.8 ± 0.9 ab | 86.5 ± 0.9 a |
Soy | 87.2 ± 0.1 ab | −0.5 ± 0.1 ab | 17.3 ± 0.1 bc | 78.5 ± 0.1 b |
Cashew | 86.0 ± 0.7 ab | 0.2 ± 0.1 ab | 10.9 ± 0.7 abc | 82.3 ± 0.5 c |
Coconut | 85.8 ± 3.0 b | −0.1 ± 0.6 ab | 7.5 ± 3.8 a | 83.9 ± 2.5 abc |
Oat | 78.2 ± 0.3 b | 1.6 ± 1.0 b | 17.0 ± 1.8 c | 72.3 ± 1.0 |
Almond | 78.4 ± 3.8 b | 0.9 ± 1.1 b | 10.1 ± 2.0 abc | 76.1 ± 2.3 b |
Base | n | K | R2 | ƞapp25 | HLA |
---|---|---|---|---|---|
Dairy | 0.07 ± 0.1 | 70.6 ± 39.5 | 0.38 ± 0.4 | 3.3 ± 1.4 | 6821.1 ± 73.9 a |
Coconut | 0.26 ± 0.1 | 25.9 ± 9.8 | 0.94 ± 0.0 | 2.7 ± 1.9 | 3428.3 ± 99.3 b |
Almond | 0.18 ± 0.0 | 39.0 ± 14.6 | 0.86 ± 0.0 | 2.8 ± 0.9 | 3416.4 ± 78.3 c |
Cashew | 0.25 ± 0.1 | 38.6 ± 24.0 | 0.81 ± 0.1 | 2.9 ± 0.7 | 2966.5 ± 92.0 d |
Oat | 0.37 ± 0.1 | 17.4 ± 15.0 | 0.94 ± 0.0 | 1.6 ± 0.8 | 2853.3 ± 56.5 e |
Soy | 0.21 ± 0.0 | 33.3 ± 1.3 | 0.98 ± 0.0 | 2.6 ± 0.0 | 2051.7 ± 83.1 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marlapati, L.; Basha, R.F.S.; Navarre, A.; Kinchla, A.J.; Nolden, A.A. Comparison of Physical and Compositional Attributes between Commercial Plant-Based and Dairy Yogurts. Foods 2024, 13, 984. https://doi.org/10.3390/foods13070984
Marlapati L, Basha RFS, Navarre A, Kinchla AJ, Nolden AA. Comparison of Physical and Compositional Attributes between Commercial Plant-Based and Dairy Yogurts. Foods. 2024; 13(7):984. https://doi.org/10.3390/foods13070984
Chicago/Turabian StyleMarlapati, Likhitha, Rabia F. S. Basha, Amelia Navarre, Amanda J. Kinchla, and Alissa A. Nolden. 2024. "Comparison of Physical and Compositional Attributes between Commercial Plant-Based and Dairy Yogurts" Foods 13, no. 7: 984. https://doi.org/10.3390/foods13070984
APA StyleMarlapati, L., Basha, R. F. S., Navarre, A., Kinchla, A. J., & Nolden, A. A. (2024). Comparison of Physical and Compositional Attributes between Commercial Plant-Based and Dairy Yogurts. Foods, 13(7), 984. https://doi.org/10.3390/foods13070984