Exploiting Agri-Food Waste as Feed for Tenebrio molitor Larvae Rearing: A Review
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
4. Results and Discussion
4.1. Fruit By-Products as Feed Substrate for Tenebrio molitor (TM) Larvae
4.2. Vegetable By-Products as Feed Substrate for Tenebrio molitor (TM) Larvae
4.3. Grain/Cereal By-Products as Feed Substrate for Tenebrio molitor (TM) Larvae
4.4. Legume By-Products as Feed Substrate for Tenebrio molitor (TM) Larvae
4.5. Crop By-products as Feed Substrate for Tenebrio molitor (TM) Larvae
4.6. Fruit Tree By-Products as Feed Substrate for Tenebrio molitor (TM) Larvae
4.7. Εdible Fungi by-Products as Feed Substrate for Tenebrio molitor (TM) Larvae
4.8. Beverage By-Products as Feed Substrate for Tenebrio molitor (TM) Larvae
4.9. Mixed By-Products as Feed Substrate for Tenebrio molitor (TM) Larvae
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olivadese, M.; Dindo, M.L. Edible Insects: A Historical and Cultural Perspective on Entomophagy with a Focus on Western Societies. Insects 2023, 14, 690. [Google Scholar] [CrossRef] [PubMed]
- Liceaga, A.M. Edible Insects, a Valuable Protein Source from Ancient to Modern Times. Adv. Food Nutr. Res. 2022, 101, 129–152. [Google Scholar] [CrossRef] [PubMed]
- Imathiu, S. Benefits and Food Safety Concerns Associated with Consumption of Edible Insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Scaffardi, L.; Formici, G. Novel Foods and Edible Insects in the European Union An Interdisciplinery Analysis; Springer Nature: Berlin, Germany, 2022; ISBN 9783031134944. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2021/1975 of 12 November 2021 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Locusta Migratoria as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union L402 2021, 1975, 10. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2021/882 Authorising the Placing on the Market of Dried Tenebrio molitor Larva as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union L194 2021, 882, 16–20. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2023/58 of 5 January 2023 Authorising the Placing on the Market of the Frozen, Paste, Dried and Powder Forms of Alphitobius diaperinus Larvae (Lesser Mealworm) as a Novel Food and Amending Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union L5 2023, 58, 10–15. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2022/188 of 10 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Acheta domesticus as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union L30 2022, 188, 108–113. [Google Scholar]
- European Commission. Commission Regulation (EU) 2017/893 of 24 May 2017 Amending Annexes I and IV to Regulation (EC) No. 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No. 142/2011 as Regards the Provision on Processed Animal Protein. Off. J. Eur. Union L138 2017, 893, 92–116. [Google Scholar]
- European Commission. Commission Regulation (EU) 2021/1925 of 5 November 2021 amending certain Annexes to Regulation (EU) No 142/2011 as regards the requirements for placing on the market of certain insect products and the adaptation of a containment method. Off. J. Eur. Union L393 2021, 1925, 4–8. [Google Scholar]
- Toviho, O.A.; Imane, M.; Tünde, P.; Péter, B. Effect of Duckweed (Spirodela Polyrhiza)-Supplemented Semolina on the Production Parameters and Nutrient Composition of Yellow Mealworm (Tenebrio molitor). Agriculture 2023, 13, 1386. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyżaniak, M.; Stolarski, M.J.; Czachorowski, S.; Peni, D. Will Yellow Mealworm Become a Source of Safe Proteins for Europe? Agriculture 2020, 10, 233. [Google Scholar] [CrossRef]
- Tzompa-Sosa, D.A.; Moruzzo, R.; Mancini, S.; Schouteten, J.J.; Liu, A.; Li, J.; Sogari, G. Consumers’ Acceptance toward Whole and Processed Mealworms: A Cross-Country Study in Belgium, China, Italy, Mexico, and the US. PLoS ONE 2023, 18, e0279530. [Google Scholar] [CrossRef] [PubMed]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Athanassiou, C.G.; Lalas, S.I. Innovative Applications of Tenebrio molitor Larvae in Food Product Development: A Comprehensive Review. Foods 2023, 12, 4223. [Google Scholar] [CrossRef]
- Adámková, A.; Mlček, J.; Adámek, M.; Borkovcová, M.; Bednářová, M.; Hlobilová, V.; Knížková, I.; Juríková, T. Tenebrio molitor (Coleoptera: Tenebrionidae)-Optimization of Rearing Conditions to Obtain Desired Nutritional Values. J. Insect Sci. 2020, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Jantzen da Silva Lucas, A.; Menegon de Oliveira, L.; da Rocha, M.; Prentice, C. Edible Insects: An Alternative of Nutritional, Functional and Bioactive Compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected Species of Edible Insects as a Source of Nutrient Composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Nowak, V.; Persijn, D.; Rittenschober, D.; Charrondiere, U.R. Review of Food Composition Data for Edible Insects. Food Chem. 2016, 193, 39–46. [Google Scholar] [CrossRef]
- Heidari-Parsa, S.; Imani, S.; Fathipour, Y.; Kheiri, F.; Chamani, M. Determination of Yellow Mealworm (Tenebrio molitor) Nutritional Value as an Animal and Human Food Supplementation. Arthropods 2018, 7, 94–102. [Google Scholar]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Rumbos, C.I.; Athanassiou, C.G.; Lalas, S.I. Enhancing the Nutritional Profile of Tenebrio molitor Using the Leaves of Moringa oleifera. Foods 2023, 12, 2612. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Poelaert, C.; Ernens, M.; Liotta, M.; Blecker, C.; Danthine, S.; Tyteca, E.; Haubruge, É.; Alabi, T.; Bindelle, J.; et al. Effect of Household Cooking Techniques on the Microbiological Load and the Nutritional Quality of Mealworms (Tenebrio molitor L. 1758). Food Res. Int. 2018, 106, 503–508. [Google Scholar] [CrossRef]
- Jajic, I.; Popovic, A.; Urosevic, M.; Krstovic, S.; Petrovic, M.; Guljas, D.; Samardzic, M. Fatty and Amino Acid Profile of Mealworm Larvae (Tenebrio molitor L.). Biotechnol. Anim. Husb. 2020, 36, 167–180. [Google Scholar] [CrossRef]
- Stull, V.J.; Kersten, M.; Bergmans, R.S.; Patz, J.A.; Paskewitz, S. Crude Protein, Amino Acid, and Iron Content of Tenebrio molitor (Coleoptera, Tenebrionidae) Reared on an Agricultural Byproduct from Maize Production: An Exploratory Study. Ann. Entomol. Soc. Am. 2019, 112, 533–543. [Google Scholar] [CrossRef]
- Wu, R.A.; Ding, Q.; Yin, L.; Chi, X.; Sun, N.; He, R.; Luo, L.; Ma, H.; Li, Z. Comparison of the Nutritional Value of Mysore Thorn Borer (Anoplophora chinensis) and Mealworm Larva (Tenebrio molitor): Amino Acid, Fatty Acid, and Element Profiles. Food Chem. 2020, 323, 126818. [Google Scholar] [CrossRef]
- Ao, X.; Yoo, J.S.; Wu, Z.L.; Kim, I.H. Can Dried Mealworm (Tenebrio molitor) Larvae Replace Fish Meal in Weaned Pigs? Livest. Sci. 2020, 239, 104103. [Google Scholar] [CrossRef]
- Yoo, J.S.; Cho, K.H.; Hong, J.S.; Jang, H.S.; Chung, Y.H. Nutrient Ileal Digestibility Evaluation of Dried Tenebrio molitor. Asian-Australas. J. Anim. Sci. 2018, 32, 387. [Google Scholar] [CrossRef] [PubMed]
- Kröncke, N.; Benning, R. Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects 2023, 14, 261. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, T.; Pippinato, L.; Gasco, L. The European Insects Sector and Its Role in the Provision of Green Proteins in Feed Supply. Qual. Access Success 2019, 20, 374–381. [Google Scholar]
- Alves, A.V.; Sanjinez-Argandoña, E.J.; Linzmeier, A.M.; Cardoso, C.A.L.; Macedo, M.L.R. Food Value of Mealworm Grown on Acrocomia aculeata Pulp Flour. PLoS ONE 2016, 11, e0151275. [Google Scholar] [CrossRef] [PubMed]
- Dreassi, E.; Cito, A.; Zanfini, A.; Materozzi, L.; Botta, M.; Francardi, V. Dietary Fatty Acids Influence the Growth and Fatty Acid Composition of the Yellow Mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids 2017, 52, 285–294. [Google Scholar] [CrossRef]
- Gowda, S.G.B.; Sasaki, Y.; Hasegawa, E.; Chiba, H.; Hui, S.P. Lipid Fingerprinting of Yellow Mealworm Tenebrio molitor by Untargeted Liquid Chromatography-Mass Spectrometry. J. Insects Food Feed. 2022, 8, 157–168. [Google Scholar] [CrossRef]
- Stone, A.K.; Tanaka, T.; Nickerson, M.T. Protein Quality and Physicochemical Properties of Commercial Cricket and Mealworm Powders. J. Food Sci. Technol. 2019, 56, 3355–3363. [Google Scholar] [CrossRef] [PubMed]
- Siow, H.S.; Sudesh, K.; Murugan, P.; Ganesan, S. Mealworm (Tenebrio molitor) Oil Characterization and Optimization of the Free Fatty Acid Pretreatment via Acid-Catalyzed Esterification. Fuel 2021, 299, 120905. [Google Scholar] [CrossRef]
- Bragd, U. The Yellow Mealworm Tenebrio molitor, a Potential Source of Food Lipids. Bachelor’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2017. [Google Scholar]
- Ghosh, S.; Lee, S.M.; Jung, C.; Meyer-Rochow, V.B. Nutritional Composition of Five Commercial Edible Insects in South Korea. J. Asia. Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Ravzanaadii, N.; Kim, S.-H.; Choi, W.-H.; Hong, S.-J.; Kim, N.-J. Nutritional Value of Mealworm, Tenebrio molitor as Food Source. Int. J. Ind. Entomol. 2012, 25, 93–98. [Google Scholar] [CrossRef]
- Moruzzo, R.; Riccioli, F.; Espinosa Diaz, S.; Secci, C.; Poli, G.; Mancini, S. Mealworm (Tenebrio molitor): Potential and Challenges to Promote Circular Economy. Animal 2021, 11, 2568. [Google Scholar] [CrossRef]
- Pöllinger-Zierler, B.; Lienhard, A.; Mayer, C.; Berner, S.; Rehorska, R.; Schöpfer, A.; Grasser, M. Tenebrio molitor (Linnaeus, 1758): Microbiological Screening of Feed for a Safe Food Choice. Foods 2023, 12, 2139. [Google Scholar] [CrossRef]
- Shah Assar Ali Totakul Pajaree, M.M.C.A.H.Y.W.M. Nutritional Composition of Various Insects and Potential Uses as Alternative Protein Sources in Animal Diets. Anim. Biosci. 2022, 35, 317–331. [Google Scholar] [CrossRef]
- Noronha, R.; Stewart, M.G. The Effect of Sustainably-Sourced Waste Food Diets on Yellow Mealworm Beetle (Tenebrio molitor) Larvae. Ph.D. Thesis, Langara College, Vancouver, BC, Canada, 2018; pp. 1–13. [Google Scholar]
- Zervas, G.; Tsiplakou, E. An Assessment of GHG Emissions from Small Ruminants in Comparison with GHG Emissions from Large Ruminants and Monogastric Livestock. Atmos. Environ. 2012, 49, 13–23. [Google Scholar] [CrossRef]
- Shields, S.; Orme-Evans, G. The Impacts of Climate Change Mitigation Strategies on Animal Welfare. Animal 2015, 5, 361–394. [Google Scholar] [CrossRef]
- Syahrulawal, L.; Torske, M.O.; Sapkota, R.; Næss, G.; Khanal, P. Improving the Nutritional Values of Yellow Mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) Larvae as an Animal Feed Ingredient: A Review. J. Anim. Sci. Biotechnol. 2023, 14, 146. [Google Scholar] [CrossRef]
- Vauterin, A.; Steiner, B.; Sillman, J.; Kahiluoto, H. The Potential of Insect Protein to Reduce Food-Based Carbon Footprints in Europe: The Case of Broiler Meat Production. J. Clean. Prod. 2021, 320, 128799. [Google Scholar] [CrossRef]
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The Ruminal Microbiome Associated with Methane Emissions from Ruminant Livestock. J. Anim. Sci. Biotechnol. 2017, 8, 7. [Google Scholar] [CrossRef]
- Andreadis, S.S.; Panteli, N.; Mastoraki, M.; Rizou, E.; Stefanou, V.; Tzentilasvili, S.; Sarrou, E.; Chatzifotis, S.; Krigas, N.; Antonopoulou, E. Towards Functional Insect Feeds: Agri-Food by-Products Enriched with Post-Distillation Residues of Medicinal Aromatic Plants in Tenebrio molitor (Coleoptera: Tenebrionidae) Breeding. Antioxidants 2022, 11, 68. [Google Scholar] [CrossRef]
- Kröncke, N.; Benning, R. Self-Selection of Feeding Substrates by Tenebrio molitor Larvae of Different Ages to Determine Optimal Macronutrient Intake and the Influence on Larval Growth and Protein Content. Insects 2022, 13, 657. [Google Scholar] [CrossRef]
- Rumbos, C.; Oonincx, D.; Karapanagiotidis, I.; Vrontaki, M.; Gourgouta, M.; Asimaki, A.; Mente, E.; Athanassiou, C. Agricultural By-Products from Greece as Feed for Yellow Mealworm Larvae: Circular Economy at a Local Level. J. Insects Food Feed 2022, 8, 9–22. [Google Scholar] [CrossRef]
- Amicarelli, V.; Lagioia, G.; Bux, C. Global Warming Potential of Food Waste through the Life Cycle Assessment: An Analytical Review. Environ. Impact Assess. Rev. 2021, 91, 106677. [Google Scholar] [CrossRef]
- Pfaltzgraff, L.A.; De Bruyn, M.; Cooper, E.C.; Budarin, V.; Clark, J.H. Food Waste Biomass: A Resource for High-Value Chemicals. Green Chem. 2013, 15, 307–314. [Google Scholar] [CrossRef]
- Seberini, A. Economic, Social and Environmental World Impacts of Food Waste on Society and Zero Waste as a Global Approach to Their Elimination. SHS Web Conf. 2020, 74, 03010. [Google Scholar] [CrossRef]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, S.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- European Union. Eu Voluntary Review on the Implementation of the 2030 Agenda for Sustainable Development 2023; European Union: Maastricht, The Netherlands, 2023; ISBN 9789268042144. [Google Scholar]
- Ribeiro, N.; Abelho, M.; Costa, R. A Review of the Scientific Literature for Optimal Conditions for Mass Rearing Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 2018, 53, 434–454. [Google Scholar] [CrossRef]
- Cribb, B.W.; Rice, S.J.; Leemon, D.M. Aiming for the Management of the Small Hive Beetle, Aethina Tumida, Using Relative Humidity and Diatomaceous Earth. Apidologie 2013, 44, 241–253. [Google Scholar] [CrossRef]
- Burakowski, B. Laboratory Methods for Rearing Soil Beetles (Coleoptera); Museum and Institute of Zoology PAS: Warszawa, Poland, 1993; Volume 46, ISBN 8385192123. [Google Scholar]
- Koo, H.-Y.; Kim, S.-G.; Oh, H.-K.; Kim, J.-E.; Choi, D.-S.; Kim, D.-I.; Kim, I. Temperature-Dependent Development Model of Larvae of Mealworm Beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae). Korean J. Appl. Entomol. 2013, 52, 387–394. [Google Scholar] [CrossRef]
- Eberle, S.; Schaden, L.-M.; Tintner, J.; Stauffer, C.; Schebeck, M. Effect of Temperature and Photoperiod on Development, Survival, and Growth Rate of Mealworms, Tenebrio molitor. Insects 2022, 13, 321. [Google Scholar] [CrossRef] [PubMed]
- Grau, T.; Vilcinskas, A.; Joop, G. Sustainable Farming of the Mealworm Tenebrio molitor for the Production of Food and Feed. Z. Naturforschung C 2017, 72, 337–449. [Google Scholar] [CrossRef] [PubMed]
- Ruschioni, S.; Loreto, N.; Foligni, R.; Mannozzi, C.; Raffaelli, N.; Zamporlini, F.; Pasquini, M.; Roncolini, A.; Cardinali, F.; Osimani, A.; et al. Addition of Olive Pomace to Feeding Substrate Affects Growth Performance and Nutritional Value of Mealworm (Tenebrio molitor L.) Larvae. Foods 2020, 9, 317. [Google Scholar] [CrossRef]
- Ribeiro, N. Tenebrio molitor for Food or Feed: Rearing Conditions and the Effect of Pesticides on Its Performance. Ph.D. Thesis, Agrarian School of Coimbra, Coimbra, Portugal, 2017. Available online: https://comum.rcaap.pt/handle/10400.26/18083 (accessed on 23 March 2024).
- Johnsen, N.S.; Andersen, J.L.; Offenberg, J. The Effect of Relative Humidity on the Survival and Growth Rate of the Yellow Mealworm Larvae (Tenebrio molitor, Linnaeus 1758). J. Insects Food Feed 2021, 7, 311–318. [Google Scholar] [CrossRef]
- Murray, D.R.P. The Importance of Water in the Normal Growth of Larvae of Tenebrio molitor. Entomol. Exp. Appl. 2011, 11, 149–168. [Google Scholar] [CrossRef]
- Deruytter, D.; Coudron, C.L.; Claeys, J. The Influence of Wet Feed Distribution on the Density, Growth Rate and Growth Variability of Tenebrio molitor. J. Insects Food Feed. 2021, 7, 141–149. [Google Scholar] [CrossRef]
- Kröncke, N.; Benning, R. Determination of Moisture and Protein Content in Living Mealworm Larvae (Tenebrio molitor L.) Using Near-Infrared Reflectance Spectroscopy (NIRS). Insects 2022, 13, 560. [Google Scholar] [CrossRef]
- Urs, K.C.D.; Hopkins, T.L. Effect of Moisture on Growth Rate and Development of Two Strains of Tenebrio molitor L. (Coleoptera, Tenebrionidae). J. Stored Prod. Res. 1973, 8, 291–297. [Google Scholar] [CrossRef]
- Thrastardottir, R.; Olafsdottir, H.T.; Thorarinsdottir, R.I. Yellow Mealworm and Black Soldier Fly Larvae for Feed and Food Production in Europe, with Emphasis on Iceland. Foods 2021, 10, 2744. [Google Scholar] [CrossRef] [PubMed]
- Montalbán, A.; Sánchez, C.J.; Hernández, F.; Schiavone, A.; Madrid, J.; Martínez-Miró, S. Effects of Agro-Industrial Byproduct-Based Diets on the Growth Performance, Digestibility, Nutritional and Microbiota Composition of Mealworm (Tenebrio molitor L.). Insects 2022, 13, 323. [Google Scholar] [CrossRef] [PubMed]
- Riekkinen, K.; Väkeväinen, K.; Korhonen, J. The Effect of Substrate on the Nutrient Content and Fatty Acid Composition of Edible Insects. Insects 2022, 13, 590. [Google Scholar] [CrossRef] [PubMed]
- Langston, K.; Selaledi, L.; Yusuf, A. Evaluation of Alternative Substrates for Rearing the Yellow Mealworm Tenebrio molitor (L). Int. J. Trop. Insect Sci. 2023, 43, 1523–1530. [Google Scholar] [CrossRef]
- Klasing, K.C.; Thacker, P.; Lopez, M.A.; Calvert, C.C. Increasing the Calcium Content of Mealworms (Tenebrio molitor) to Improve Their Nutritional Value for Bone Mineralization of Growing Chicks. J. Zoo Wildl. Med. 2000, 31, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Lalas, S.; Athanasiadis, V.; Karageorgou, I.; Batra, G.; Nanos, G.D.; Makris, D.P. Nutritional Characterization of Leaves and Herbal Tea of Moringa oleifera Cultivated in Greece. J. Herbs Spices Med. Plants 2017, 23, 320–333. [Google Scholar] [CrossRef]
- Moyo, B.; Oyedemi, S.; Masika, P.J.; Muchenje, V. Polyphenolic Content and Antioxidant Properties of Moringa oleifera Leaf Extracts and Enzymatic Activity of Liver from Goats Supplemented with Moringa oleifera Leaves/Sunflower Seed Cake. Meat Sci. 2012, 91, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Pakade, V.; Cukrowska, E.; Chimuka, L. Metal and Flavonol Contents of Moringa oleifera Grown in South Africa. S. Afr. J. Sci. 2013, 109, 1–7. [Google Scholar] [CrossRef]
- Saini, R.K.; Shetty, N.P.; Giridhar, P. Carotenoid Content in Vegetative and Reproductive Parts of Commercially Grown Moringa oleifera Lam. Cultivars from India by LC-APCI-MS. Eur. Food Res. Technol. 2014, 238, 971–978. [Google Scholar] [CrossRef]
- Morales-Ramos, J.; Rojas, M. Effect of Larval Density on Food Utilization Efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2015, 108, 2259–2267. [Google Scholar] [CrossRef]
- Dossey, A.T. Insects as Sustainable Food Ingredients; Academic Press: Cambridge, MA, USA, 2016; ISBN 9780128028568. [Google Scholar]
- Kocsis, T.; Kotroczó, Z.; Juhos, K.; Ferschl, B.; Rozmann, V.; Brückner, A.; Biró, B. Opposite Tendency between Yield and Taste of Organic Tomato by Increasing Biochar Doses in a Slightly Humous Arenosol. Agron. Res. 2022, 20, 200–214. [Google Scholar] [CrossRef]
- Naureen, Z.; Dhuli, K.; Donato, K.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Bertelli, M. Foods of the Mediterranean Diet: Tomato, Olives, Chili Pepper, Wheat Flour and Wheat Germ. J. Prev. Med. Hyg. 2022, 63, E4–E11. [Google Scholar] [CrossRef] [PubMed]
- El Mashad, H.M.; Zhao, L.; Zhang, R.; Pan, Z. Tomato. In Integrated Processing Technologies for Food and Agricultural By-Products; Pan, Z., Zhang, R., Zicari, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 107–131. ISBN 978-0-12-814138-0. [Google Scholar]
- Zim, J.; Sarehane, M.; Bouharroud, R. The Mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) as a Potential Candidate to Valorize Crop Residues. E3S Web Conf. 2022, 337, 04007. [Google Scholar] [CrossRef]
- Baldacchino, F.; Spagnoletta, A.; Lamaj, F.; Vitale, M.; Verrastro, V. First Optimization of Tomato Pomace in Diets for Tenebrio molitor (L.) (Coleoptera: Tenebrionidae). Insects 2023, 14, 854. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Chen, S.; Li, H.; Paengkoum, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; et al. Sustainable Valorization of Tomato Pomace (Lycopersicon esculentum) in Animal Nutrition: A Review. Animal 2022, 12, 3294. [Google Scholar] [CrossRef]
- Khan, U.M.; Sevindik, M.; Zarrabi, A.; Nami, M.; Ozdemir, B.; Kaplan, D.N.; Selamoglu, Z.; Hasan, M.; Kumar, M.; Alshehri, M.M.; et al. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxid. Med. Cell. Longev. 2021, 2021, 2713511. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.; Mohan, L.; Bharadvaja, N. Disease Prevention and Treatment Using β-Carotene: The Ultimate Provitamin A. Rev. Bras. Farmacogn. 2022, 32, 491–501. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Sinha, M.; Baral, E.R.; Koteswararao, R.; Dhyani, A.; Hwan Cho, M.; Cho, S. Bio-Sorbents, Industrially Important Chemicals and Novel Materials from Citrus Processing Waste as a Sustainable and Renewable Bioresource: A Review. J. Adv. Res. 2020, 23, 61–82. [Google Scholar] [CrossRef]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Adamaki-Sotiraki, C.; Rumbos, C.I.; Athanassiou, C.G.; Lalas, S.I. Waste Orange Peels as a Feed Additive for the Enhancement of the Nutritional Value of Tenebrio molitor. Foods 2023, 12, 783. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I. Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste. Sustainability 2022, 14, 13926. [Google Scholar] [CrossRef]
- Loh, J.Y. Effects of Food Wastes on Yellow Mealworm Tenebriomolitor Larval Nutritional Profiles and Growth Performances. Examines Mar. Biol. Oceanogr. 2018, 2, 173–178. [Google Scholar] [CrossRef]
- Du, X.; Ramirez, J. Watermelon Rind and Flesh Volatile Profiles and Cultivar Difference. Horticulturae 2022, 8, 99. [Google Scholar] [CrossRef]
- Mamiru, D.; Gonfa, G. Extraction and Characterization of Pectin from Watermelon Rind Using Acetic Acid. Heliyon 2023, 9, e13525. [Google Scholar] [CrossRef] [PubMed]
- Arivuchudar, R. Nutritional and Sensory Characterization of Watermelon Rind Powder Incorporated Crackers. Biosci. Biotechnol. Res. Asia 2023, 20, 263–269. [Google Scholar] [CrossRef]
- Gladvin, G.; Gummadi, S.; Swathi, V.; Santhisri, K. Mineral and Vitamin Compositions Contents in Watermelon Peel (Rind). Int. J. Curr. Microbiol. Appl. Sci. 2017, 5, 129–133. [Google Scholar]
- Voora, V.; Larrea, C.; Bermudez, S. Global Market Report: Bananas; International Institute for Sustainable Development (IISD): Winnipeg, MB, Canada, 2020. [Google Scholar]
- Alzate Acevedo, S.; Díaz Carrillo, Á.J.; Flórez-López, E.; Grande-Tovar, C.D. Recovery of Banana Waste-Loss from Production and Processing: A Contribution to a Circular Economy. Molecules 2021, 26, 5282. [Google Scholar] [CrossRef] [PubMed]
- Voora, V.; Bermúdez, S.; Farrell, J.J.; Larrea, C.; Luna, E. Global Market Report: Banana Prices and Sustainability; International Institute for Sustainable Development (IISD): Winnipeg, MB, Canada, 2023. [Google Scholar]
- Hikal, W.M.; Said-Al Ahl, H.A.H.; Bratovcic, A.; Tkachenko, K.G.; Sharifi-Rad, J.; Kačániová, M.; Elhourri, M.; Atanassova, M. Banana Peels: A Waste Treasure for Human Being. Evid. Based. Complement. Alternat. Med. 2022, 2022, 7616452. [Google Scholar] [CrossRef] [PubMed]
- Mohd Zaini, H.; Roslan, J.; Saallah, S.; Munsu, E.; Sulaiman, N.S.; Pindi, W. Banana Peels as a Bioactive Ingredient and Its Potential Application in the Food Industry. J. Funct. Foods 2022, 92, 105054. [Google Scholar] [CrossRef]
- Zaheer, K.; Akhtar, M.H. Potato Production, Usage, and Nutrition--A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 711–721. [Google Scholar] [CrossRef]
- Agarwal, S.; Fulgoni, V.L. 3rd Intake of Potatoes Is Associated with Higher Diet Quality, and Improved Nutrient Intake and Adequacy among US Adolescents: NHANES 2001–2018 Analysis. Nutrients 2021, 13, 2614. [Google Scholar] [CrossRef]
- Goffart, J.-P.; Haverkort, A.; Storey, M.; Haase, N.; Martin, M.; Lebrun, P.; Ryckmans, D.; Florins, D.; Demeulemeester, K. Potato Production in Northwestern Europe (Germany, France, the Netherlands, United Kingdom, Belgium): Characteristics, Issues, Challenges and Opportunities. Potato Res. 2022, 65, 503–547. [Google Scholar] [CrossRef] [PubMed]
- Cherubin, M.; Oliveira, D.; Feigl, B.; Pimentel, L.; Lisboa, I.; Gmach, M.R.; Varanda, L.; Calvente Morais, M.; Satiro, L.; Popin, G.; et al. Crop Residue Harvest for Bioenergy Production and Its Implications on Soil Functioning and Plant Growth: A Review. Sci. Agric. 2018, 75, 255–272. [Google Scholar] [CrossRef]
- Chauhan, A.; Islam, F.; Imran, A.; Ikram, A.; Zahoor, T.; Khurshid, S.; Shah, M.A. A Review on Waste Valorization, Biotechnological Utilization, and Management of Potato. Food Sci. Nutr. 2023, 11, 5773–5785. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Kozukue, N.; Kim, H.-J.; Choi, S.-H.; Mizuno, M. Glycoalkaloid, Phenolic, and Flavonoid Content and Antioxidative Activities of Conventional Nonorganic and Organic Potato Peel Powders from Commercial Gold, Red, and Russet Potatoes. J. Food Compos. Anal. 2017, 62, 69–75. [Google Scholar] [CrossRef]
- Zeko-Pivač, A.; Tišma, M.; Žnidaršič-Plazl, P.; Kulisic, B.; Sakellaris, G.; Hao, J.; Planinić, M. The Potential of Brewer’s Spent Grain in the Circular Bioeconomy: State of the Art and Future Perspectives. Front. Bioeng. Biotechnol. 2022, 10, 870744. [Google Scholar] [CrossRef] [PubMed]
- Colpo, I.; Rabenschlag, D.R.; de Lima, M.S.; Martins, M.E.S.; Sellitto, M.A. Economic and Financial Feasibility of a Biorefinery for Conversion of Brewers’ Spent Grain into a Special Flour. J. Open Innov. Technol. Mark. Complex. 2022, 8, 79. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Spent Grain: A Functional Ingredient for Food Applications. Foods 2023, 12, 1533. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.; Fratini, F.; Turchi, B.; Mattioli, S.; Dal Bosco, A.; Tuccinardi, T.; Nozic, S.; Paci, G. Former Foodstuff Products in Tenebrio molitor Rearing: Effects on Growth, Chemical Composition, Microbiological Load, and Antioxidant Status. Animals 2019, 9, 484. [Google Scholar] [CrossRef] [PubMed]
- Özogul, F.; Özogul, Y.; Kuley, E. Simple Extraction and Rapid HPLC Method for Tocopherol Analysis in Marine and Gresh-Water Fish Species. Food Sci. Technol. Res. 2011, 17, 595–598. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on Iron and Its Importance for Human Health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Vogt, A.C.S.; Arsiwala, T.; Mohsen, M.; Vogel, M.; Manolova, V.; Bachmann, M.F. On Iron Metabolism and Its Regulation. Int. J. Mol. Sci. 2021, 22, 4591. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ Spent Grain: Generation, Characteristics and Potential Applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, H.G.; Yoon, H.J.; Lee, K.Y.; Kim, N.J. Nutritional Analysis of Alternative Feed Ingredients and Their Effects on the Larval Growth of Tenebrio molitor (Coleoptera: Tenebrionidae). Entomol. Res. 2017, 47, 194–202. [Google Scholar] [CrossRef]
- Madhu, C.; Krishna, K.M.; Reddy, K.R.; Lakshmi, P.J.; Kelari, E. kumar Estimation of Crude Fibre Content from Natural Food Stuffs and Its Laxative Activity Induced in Rats. Int. J. Pharma Res. Health Sci. 2017, 5, 1703–1706. [Google Scholar] [CrossRef]
- Melis, R.; Braca, A.; Sanna, R.; Spada, S.; Mulas, G.; Fadda, M.L.; Sassu, M.M.; Serra, G.; Anedda, R. Metabolic Response of Yellow Mealworm Larvae to Two Alternative Rearing Substrates. Metabolomics 2019, 15, 113. [Google Scholar] [CrossRef]
- Dighriri, I.M.; Alsubaie, A.M.; Hakami, F.M.; Hamithi, D.M.; Alshekh, M.M.; Khobrani, F.A.; Dalak, F.E.; Hakami, A.A.; Alsueaadi, E.H.; Alsaawi, L.S.; et al. Effects of Omega-3 Polyunsaturated Fatty Acids on Brain Functions: A Systematic Review. Cureus 2022, 14, e30091. [Google Scholar] [CrossRef] [PubMed]
- El Deen, S.N.; Spranghers, T.; Baldacchino, F.; Deruytter, D. The Effects of the Particle Size of Four Different Feeds on the Larval Growth of Tenebrio molitor (Coleoptera: Tenebrionidae). Eur. J. Entomol. 2022, 119, 242–249. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Karapanagiotidis, I.T.; Mente, E.; Psofakis, P.; Athanassiou, C.G. Evaluation of Various Commodities for the Development of the Yellow Mealworm, Tenebrio molitor. Sci. Rep. 2020, 10, 11224. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Bliamplias, D.; Gourgouta, M.; Michail, V.; Athanassiou, C.G. Rearing Tenebrio molitor and Alphitobius diaperinus Larvae on Seed Cleaning Process Byproducts. Insects 2021, 12, 293. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyżaniak, M.; Stolarski, M.J. Bioconversion Potential of Agro-Industrial Byproducts by Tenebrio molitor—Long-Term Results. Insects 2022, 13, 810. [Google Scholar] [CrossRef]
- Han, C.S.; Dingemanse, N.J. You Are What You Eat: Diet Shapes Body Composition, Personality and Behavioural Stability. BMC Evol. Biol. 2017, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Lucas, M.M.; Stoddard, F.L.; Annicchiarico, P.; Frías, J.; Martínez-Villaluenga, C.; Sussmann, D.; Duranti, M.; Seger, A.; Zander, P.M.; Pueyo, J.J. The Future of Lupin as a Protein Crop in Europe. Front. Plant Sci. 2015, 6, 705. [Google Scholar] [CrossRef]
- Anania, G.; Pupo D’Andrea, M.R. Olive Oil in the Mediterranean Area: Production, Consumption and Trade. Ciheam Watch Lett. 2011, 16, 1–6. [Google Scholar]
- Türkekul, B.; Günden, C.; Abay, C.; Miran, B. Competitiveness of Mediterranean Countries in the Olive Oil Market. New Medit 2010, 9, 41–46. [Google Scholar]
- Food and Agriculture Organization (FAO). EU Olive Oil Farms Report; European Commision: Brussels, Belgium, 2012. [Google Scholar]
- Cecchi, L.; Bellumori, M.; Cipriani, C.; Mocali, A.; Innocenti, M.; Mulinacci, N.; Giovannelli, L. A Two-Phase Olive Mill by-Product (Pâté) as a Convenient Source of Phenolic Compounds: Content, Stability, and Antiaging Properties in Cultured Human Fibroblasts. J. Funct. Foods 2018, 40, 751–759. [Google Scholar] [CrossRef]
- Berbel, J.; Posadillo, A. Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil by-Products. Sustainability 2018, 10, 237. [Google Scholar] [CrossRef]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive Mill Wastes: Biochemical Characterizations and Valorization Strategies. Process Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Borja, R.; Raposo, F.; Rincón, B. Treatment Technologies of Liquid and Solid Wastes from Two-Phase Olive Oil Mills. Grasas Aceites 2006, 57, 32–46. [Google Scholar] [CrossRef]
- Ruiz, E.; Romero-García, J.M.; Romero, I.; Manzanares, P.; Negro, M.J.; Castro, E. Olive-Derived Biomass as a Source of Energy and Chemicals. Biofuels Bioprod. Biorefin. 2017, 11, 1077–1094. [Google Scholar] [CrossRef]
- Sana, S.; Mahmud, N.; Rana, S.; Sajon, S.; Nishi, Z. Mushroom: Enroll Plants in Natural Bioactive Compounds in Biological Research Including Their Pharmacological Properties. Int. J. Biol. Med. Res. 2017, 8, 6170–6176. [Google Scholar]
- Li, T.-H.; Che, P.-F.; Zhang, C.-R.; Zhang, B.; Ali, A.; Zang, L.-S. Recycling of Spent Mushroom Substrate: Utilization as Feed Material for the Larvae of the Yellow Mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). PLoS ONE 2020, 15, e0237259. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, H.; Li, J.; Wang, Y. Research Progress on Elements of Wild Edible Mushrooms. J. Fungi 2022, 8, 964. [Google Scholar] [CrossRef] [PubMed]
- Chatzimitakos, T.; Athanasiadis, V.; Kotsou, K.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I. Optimized Isolation Procedure for the Extraction of Bioactive Compounds from Spent Coffee Grounds. Appl. Sci. 2023, 13, 2819. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Carneiro, L.M.; Silva, J.P.A.; Roberto, I.C.; Teixeira, J.A. A Study on Chemical Constituents and Sugars Extraction from Spent Coffee Grounds. Carbohydr. Polym. 2011, 83, 368–374. [Google Scholar] [CrossRef]
- Franca, A.S.; Oliveira, L.S. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022, 11, 2064. [Google Scholar] [CrossRef] [PubMed]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Athanassiou, C.G.; Lalas, S.I. Utilization of Spent Coffee Grounds as a Feed Additive for Enhancing the Nutritional Value of Tenebrio molitor Larvae. Sustainability 2023, 15, 16224. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van Broekhoven, S.; van Huis, A.; van Loon, J.J.A. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed]
- Riudavets, J.; Castañé, C.; Agusti, N.; del Arco, L.; Diaz, I.; Castellari, M. Development and Biomass Composition of Ephestia kuehniella (Lepidoptera: Pyralidae), Tenebrio molitor (Coleoptera: Tenebrionidae), and Hermetia illucens (Diptera: Stratiomyidae) Reared on Different Byproducts of the Agri-Food Industry. J. Insect Sci. 2020, 20, 17. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, J.M.; Zhou, Y.L.; Almeida, A.; Finn, R.D.; Danchin, A.; He, L.S. Phylogenomics of Expanding Uncultured Environmental Tenericutes Provides Insights into Their Pathogenicity and Evolutionary Relationship with Bacilli. BMC Genom. 2020, 21, 408. [Google Scholar] [CrossRef] [PubMed]
- Harsányi, E.; Juhász, C.; Kovács, E.; Huzsvai, L.; Pintér, R.; Fekete, G.; Varga, Z.I.; Aleksza, L.; Gyuricza, C. Evaluation of Organic Wastes as Substrates for Rearing Zophobas morio, Tenebrio molitor, and Acheta domesticus Larvae as Alternative Feed Supplements. Insects 2020, 11, 604. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyżaniak, M.; Aljewicz, M.; Stolarski, M.J. Influence of Different Diets on Growth and Nutritional Composition of Yellow Mealworm. Foods 2022, 11, 3075. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, C.; Rubilar, M.; Jara, C.; Verdugo, M.; Sineiro, J.; Shene, C. Flaxseed and Flaxseed Cake as a Source of Compounds for Food Industry. J. Soil Sci. Plant Nutr. 2010, 10, 454–463. [Google Scholar] [CrossRef]
By-Products | Diets | Protein Content (%) | Ref. |
---|---|---|---|
Fruits | Wheat bran 100% (control) | ~50.00 | [84] |
Wheat bran 73% and tomato pomace 27% | 47.30 | ||
Wheat bran 59% and tomato pomace 41% | 49.20 | ||
Tomato pomace 100% | 42.00 | ||
Bread 100% (control) | 41.51 | [91] | |
Watermelon rinds 100% | 43.38 | ||
Banana peels 100% | 38.53 | ||
Wheat bran 100% (control) | 32.25 | [89] | |
Wheat bran 90% and orange albedo 10% | 36.50 | ||
Wheat bran 82.5% and orange albedo 17.5% | 40.18 | ||
Wheat bran 75% and orange albedo 25% | 44.20 | ||
Vegetables | Wheat bran 100% | 51.20 | [47] |
Wheat bran mixed with 10% essential oil of residues from medical plant (RMP) | 52.10 | ||
Wheat bran mixed with 20% RMP | 50.60 | ||
Potato peels 100% | 59.50 | ||
Potato peels mixed with 10% RMP | 44.10 | ||
Potato peels mixed with 20% RMP | 43.60 | ||
Grains | Brewer’s spent grains 100% | 17.36 | [110] |
Brewer’s spent grains 50% and 50% biscuits | 17.65 | ||
Wheat bran 50% oats 45% and brewer’s yeast 5% (control) | 19.33 | [24] | |
Organic maize stover dry (chopped) (100%) | 15.17 | ||
Wheat bran 100% (control) | 29.31 | [115] | |
Brewer’s spent grain 100% | 18.56 | ||
Distillers dried grain 100% | 29.31 | ||
Wheat bran 50% and brewer’s spent grain 50% | 14.43 | ||
Wheat bran 50% and distillers dried grain 50% | 22.30 | ||
Wheat bran 100% (control) | 19.57 | [117] | |
Brewer’s spent grain | 22.45 | ||
Wheat bran 100% (control) | 51.20 | [47] | |
Wheat bran mixed with 10% RMP | 52.10 | ||
Wheat bran mixed with 20% RMP | 50.60 | ||
Rice bran 100% | 53.40 | ||
Rice bran mixed with 10% RMP | 47.70 | ||
Rice bran mixed with 20% RMP | 47.50 | ||
Corn cob 100% | 50.70 | ||
Corn cob mixed with 10% RMP | 51.30 | ||
Corn cob mixed with 20% RMP | 44.40 | ||
Fruit tree | Organic wheat flour 100% | 37.78 | [62] |
Organic wheat middlings 100% | 50.14 | ||
Wheat middlings 75% and organic olive pomace 25% | 47.58 | ||
Wheat middlings 50% and organic olive pomace 50% | 39.39 | ||
Wheat middlings 25% and organic olive pomace 75% | 38.05 | ||
Wheat bran 100% (control) | 51.20 | [47] | |
Wheat bran mixed with 10% RMP | 52.10 | ||
Wheat bran mixed with 20% RMP | 50.60 | ||
Olive oil plant residues 100% | 57.50 | ||
Olive oil plant residues mixed with 10% RMP | 56.00 | ||
Olive oil plant residues mixed with 20% RMP | 42.80 | ||
Beverages | Wheat bran 100% (control) | 32.59 | [139] |
Wheat bran mixed with 10% Spent coffee grounds | 47.34 | ||
Wheat bran mixed with 10% Spent coffee grounds | 42.65 | ||
Mixed | Spent grains 60% beer yeast 20% and cookie 20% | 53.60 | [140] |
Beer yeast 50% potato steam peelings 30% and beet molasse 20% | 53.50 | ||
Potato steam peelings 30%, beet molasses 20%, and bread 50% | 47.50 | ||
Wheat bran 50%, oats 45%, and brewer’s yeast 5% (control) | 19.33 | [24] | |
Organic corn meal 30%, organic soy flour 30%, and dry stover (chopped) 40% | 19.93 | ||
Whole flour wheat, wheat bran, and pet food (3.3:2.5:1) (control) | 48.20 | [141] | |
Brewer’s spent grain (dried) mixed with brewer’s spent yeast (dried) and apricot (3.5:1:5) | 43.60 | ||
Courgette (Cucurbita pepo) remains 30%, tigernut (Cyperus scelentus) pulp 5%, brewer’s spent grains 10%, bread remains 40%, brewer’s yeast 10%, and rice straw 5% | 49.07 | [70] | |
Courgette remains 25%, tigernut pulp 5%, brewer’s spent grains 25%, bread remains 20%, brewer’s yeast 20%, and rice straw 5% | 52.46 | ||
Conventional chicken feed 100% (control) | 47.18 g/kg | [143] | |
Onions 10%, potatoes 25%, sweet potatoes 25%, carrots 30%, and cucumbers 10% mixed with conventional chicken feed (9:1) | 46.30 g/kg | ||
Wheat bran 100% (control) | 47.90 | [144] | |
Wheat bran 70% and rye bran 30% | 49.30 | ||
Wheat bran 70% and rapeseed meal 30% | 52.50 | ||
Wheat bran 70% and rapeseed cake 30% | 50.90 | ||
Wheat bran 70% and flax cake 30% | 53.40 | ||
Wheat bran 70% and Silybum marianum cake 30% | 52.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Lalas, S.I. Exploiting Agri-Food Waste as Feed for Tenebrio molitor Larvae Rearing: A Review. Foods 2024, 13, 1027. https://doi.org/10.3390/foods13071027
Kotsou K, Chatzimitakos T, Athanasiadis V, Bozinou E, Lalas SI. Exploiting Agri-Food Waste as Feed for Tenebrio molitor Larvae Rearing: A Review. Foods. 2024; 13(7):1027. https://doi.org/10.3390/foods13071027
Chicago/Turabian StyleKotsou, Konstantina, Theodoros Chatzimitakos, Vassilis Athanasiadis, Eleni Bozinou, and Stavros I. Lalas. 2024. "Exploiting Agri-Food Waste as Feed for Tenebrio molitor Larvae Rearing: A Review" Foods 13, no. 7: 1027. https://doi.org/10.3390/foods13071027
APA StyleKotsou, K., Chatzimitakos, T., Athanasiadis, V., Bozinou, E., & Lalas, S. I. (2024). Exploiting Agri-Food Waste as Feed for Tenebrio molitor Larvae Rearing: A Review. Foods, 13(7), 1027. https://doi.org/10.3390/foods13071027