Research Progress on Extraction and Detection Technologies of Flavonoid Compounds in Foods
Abstract
:1. Introduction
2. Extraction Technologies of Flavonoids
2.1. Conventional Extraction Technologies
2.2. Advanced Extraction Technologies
2.2.1. Microwave-Assisted Extraction
2.2.2. Ultrasound-Assisted Extraction
2.2.3. Enzyme-Assisted Extraction
2.2.4. Accelerated Solvent Extraction
2.2.5. Supercritical Fluid Extraction
2.2.6. Application of Deep Eutectic Solvents
2.3. Overview of Research Progress on Flavonoid Extraction
3. Detection Technologies of Flavonoids
3.1. Spectrometric Techniques
3.1.1. UV–Vis Spectrophotometry
3.1.2. Fluorescence Spectroscopy
3.1.3. Nuclear Magnetic Resonance
3.1.4. Near-Infrared Spectroscopy
3.2. Chromatographic Techniques
3.2.1. Supercritical Fluid Chromatography
3.2.2. High-Performance Liquid Chromatography
3.2.3. Ultra-Performance Liquid Chromatography
3.3. Mass Spectrometry
3.3.1. Liquid Chromatography–Mass Spectrometry
3.3.2. Extractive Electrospray Ionization–Mass Spectrometry
3.3.3. Direct Analysis in Real-Time Mass Spectrometry
3.4. Immunoassay Techniques
3.4.1. Enzyme-Linked Immunosorbent Assay
3.4.2. Fluorescence-Linked Immunosorbent Assay
3.4.3. Immunochromatographic Assay
3.5. Overview of Research Progress on Flavonoids Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, L.; Deng, Z.; Zhang, J.; Dong, H.; Wang, W.; Xing, B.; Liu, X. Comparison of Flavonoid O-Glycoside, C-Glycoside and Their Aglycones on Antioxidant Capacity and Metabolism during In Vitro Digestion and In Vivo. Foods 2022, 11, 882. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Li, B.; Qiao, M.; Li, J.; Xu, H.; Zhang, L.; Zhang, X. Advances on the in vivo and in vitro glycosylations of flavonoids. Appl. Microbiol. Biotechnol. 2020, 104, 6587–6600. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Capanoglu, E.; Grootaert, C.; Van Camp, J. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review. Int. J. Mol. Sci. 2015, 16, 21555–21574. [Google Scholar] [CrossRef]
- Chen, L.; Cao, H.; Huang, Q.; Xiao, J.; Teng, H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7730–7742. [Google Scholar] [CrossRef] [PubMed]
- Raffa, D.; Maggio, B.; Raimondi, M.V.; Plescia, F.; Daidone, G. Recent discoveries of anticancer flavonoids. Eur. J. Med. Chem. 2017, 142, 213–228. [Google Scholar] [CrossRef]
- Xiang, T.; Jin, W. Mechanism of glycitein in the treatment of colon cancer based on network pharmacology and molecular docking. Lifestyle Genom. 2023, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Afshari Babazad, M.; Zandavar, H. Secondary Metabolites: Alkaloids and Flavonoids in Medicinal Plants. In Herbs and Spices-New Advances; IntechOpen: London, UK, 2023; p. 28. [Google Scholar]
- Deng, Y.; Tu, Y.; Lao, S.; Wu, M.; Yin, H.; Wang, L.; Liao, W. The role and mechanism of citrus flavonoids in cardiovascular diseases prevention and treatment. Crit. Rev. Food Sci. Nutr. 2022, 62, 7591–7614. [Google Scholar] [CrossRef]
- Fan, X.; Fan, Z.; Yang, Z.; Huang, T.; Tong, Y.; Yang, D.; Mao, X.; Yang, M. Flavonoids—Natural gifts to promote health and longevity. Int. J. Mol. Sci. 2022, 23, 2176. [Google Scholar] [CrossRef]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef]
- Parekh, N.; Garg, A.; Choudhary, R.; Gupta, M.; Kaur, G.; Ramniwas, S.; Shahwan, M.; Tuli, H.S.; Sethi, G. The Role of Natural Flavonoids as Telomerase Inhibitors in Suppressing Cancer Growth. Pharmaceuticals 2023, 16, 605. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- D’Amelia, V.; Aversano, R.; Chiaiese, P.; Carputo, D. The antioxidant properties of plant flavonoids: Their exploitation by molecular plant breeding. Phytochem. Rev. 2018, 17, 611–625. [Google Scholar] [CrossRef]
- Oteiza, P.; Fraga, C.G.; Mills, D.; Taft, D. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Asp. Med. 2018, 61, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Meena, N.; Verma, P.; Pande, R.; Kumar, M.; Watts, A.; Gupta, O. Bioavailability and Nutritional Analysis of Flavonoids. In Plant Phenolics in Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1, pp. 135–156. [Google Scholar]
- Li, J.; Niu, H.; Xie, M.; Su, J. Effects of hawthorn flavonoids on atherosclerotic and hyperlipidemia. Chin. J. Clin. Pharmacol. Ther. 2023, 28, 276. [Google Scholar]
- Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of current extraction techniques for flavonoids from plant materials. Processes 2020, 8, 1222. [Google Scholar] [CrossRef]
- Moo-Huchin, V.; Canto-Pinto, J.; Cuevas-Glory, L.; Sauri-Duch, E.; Pérez-Pacheco, E.; Betancur-Ancona, D. Effect of extraction solvent on the phenolic compounds content and antioxidant activity of Ramon nut (Brosimum alicastrum). Chem. Pap. 2019, 73, 1647–1657. [Google Scholar] [CrossRef]
- Boeing, J.S.; Barizão, É.O.; e Silva, B.C.; Montanher, P.F.; de Cinque Almeida, V.; Visentainer, J.V. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: Application of principal component analysis. Chem. Cent. J. 2014, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Khalili, S.; Saeidi Asl, M.R.; Khavarpour, M.; Vahdat, S.M.; Mohammadi, M. Comparative study on the effect of extraction solvent on total phenol, flavonoid content, antioxidant and antimicrobial properties of red onion (Allium cepa). J. Food Meas. Charact. 2022, 16, 3578–3588. [Google Scholar] [CrossRef]
- Alwazeer, D.; Elnasanelkasim, M.A.; Çiğdem, A.; Engin, T.; LeBaron, T.W. Incorporation of Molecular Hydrogen into Solvents Increases the Extraction Efficiency of Phenolics, Flavonoids, Anthocyanins, and Antioxidants: The Case of Lemon Peels. Front. Sustain. Food Syst. 2023, 7, 1223027. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, T.; Li, P.; Liu, R.; Li, Q.; Bi, K. Development of two step liquid–liquid extraction tandem UHPLC–MS/MS method for the simultaneous determination of Ginkgo flavonoids, terpene lactones and nimodipine in rat plasma: Application to the pharmacokinetic study of the combination of Ginkgo biloba dispersible tablets and Nimodipine tablets. J. Chromatogr. B 2016, 1028, 33–41. [Google Scholar]
- Pereira, S.V.; Reis, R.A.; Garbuio, D.C.; Freitas, L.A.P.d. Dynamic maceration of Matricaria chamomilla inflorescences: Optimal conditions for flavonoids and antioxidant activity. Rev. Bras. Farmacogn. 2018, 28, 111–117. [Google Scholar] [CrossRef]
- Ma, Y.; Meng, A.; Liu, P.; Chen, Y.; Yuan, A.; Dai, Y.; Ye, K.; Yang, Y.; Wang, Y.; Li, Z. Reflux extraction optimization and antioxidant activity of phenolic compounds from Pleioblastus amarus (Keng) Shell. Molecules 2022, 27, 362. [Google Scholar] [CrossRef]
- Daud, M.N.H.; Fatanah, D.N.; Abdullah, N.; Ahmad, R. Evaluation of antioxidant potential of Artocarpus heterophyllus L. J33 variety fruit waste from different extraction methods and identification of phenolic constituents by LCMS. Food Chem. 2017, 232, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Poureini, F.; Mohammadi, M.; Najafpour, G.D.; Nikzad, M. Comparative study on the extraction of apigenin from parsley leaves (Petroselinum crispum L.) by ultrasonic and microwave methods. Chem. Pap. 2020, 74, 3857–3871. [Google Scholar] [CrossRef]
- Jin, C.; Wei, X.; Yang, S.; Yao, L.; Gong, G. Microwave-assisted extraction and antioxidant activity of flavonoids from sedum aizoon leaves. Food Sci. Technol. Res. 2017, 23, 111–118. [Google Scholar] [CrossRef]
- Choommongkol, V.; Punturee, K.; Klumphu, P.; Rattanaburi, P.; Meepowpan, P.; Suttiarporn, P. Microwave-Assisted Extraction of Anticancer Flavonoid, 2′, 4′-Dihydroxy-6′-methoxy-3′, 5′-dimethyl Chalcone (DMC), Rich Extract from Syzygium nervosum Fruits. Molecules 2022, 27, 1397. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-N.; Zhang, J.-J.; Li, Y.; Meng, X.; Li, H.-B. Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: Optimization and identification. Molecules 2018, 23, 2498. [Google Scholar] [CrossRef] [PubMed]
- Woumbo, C.Y.; Kuate, D.; Klang, M.J.; Womeni, H.M. Valorization of Glycine max (Soybean) seed waste: Optimization of the microwave-assisted extraction (MAE) and characterization of polyphenols from soybean meal using response surface methodology (RSM). J. Chem. 2021, 2021, 4869909. [Google Scholar] [CrossRef]
- Saifullah, M.; McCullum, R.; Vuong, Q.V. Optimization of microwave-assisted extraction of polyphenols from Lemon Myrtle: Comparison of modern and conventional extraction techniques based on bioactivity and total polyphenols in dry extracts. Processes 2021, 9, 2212. [Google Scholar] [CrossRef]
- Ašperger, D.; Gavranić, M.; Prišlin, B.; Rendulić, N.; Šikuten, I.; Marković, Z.; Babić, B.; Maletić, E.; Kontić, J.K.; Preiner, D. Optimization of microwave-assisted extraction and matrix solid-phase dispersion for the extraction of polyphenolic compounds from grape skin. Separations 2022, 9, 235. [Google Scholar] [CrossRef]
- Wang, G.; Cui, Q.; Yin, L.-J.; Zheng, X.; Gao, M.-Z.; Meng, Y.; Wang, W. Efficient extraction of flavonoids from Flos Sophorae Immaturus by tailored and sustainable deep eutectic solvent as green extraction media. J. Pharm. Biomed. Anal. 2019, 170, 285–294. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, S.-Q.; Li, L.-Y.; Gai, Q.-Y. Deep Eutectic Solvent-Based Microwave-Assisted Extraction for the Extraction of Seven Main Flavonoids from Ribes mandshuricum (Maxim.) Kom. Leaves. Separations 2023, 10, 191. [Google Scholar] [CrossRef]
- Zhang, Y.; Bian, S.; Hu, J.; Liu, G.; Peng, S.; Chen, H.; Jiang, Z.; Wang, T.; Ye, Q.; Zhu, H. Natural Deep Eutectic Solvent-Based Microwave-Assisted Extraction of Total Flavonoid Compounds from Spent Sweet Potato (Ipomoea batatas L.) Leaves: Optimization and Antioxidant and Bacteriostatic Activity. Molecules 2022, 27, 5985. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Qu, Z.; Lan, Y.; Zhao, S.; Ma, X.; Wan, Q.; Jing, P.; Li, P. Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes. Food Chem. 2016, 197, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Almusallam, I.A.; Ahmed, I.A.M.; Babiker, E.E.; Al Juhaimi, F.Y.; Fadimu, G.J.; Osman, M.A.; Al Maiman, S.A.; Ghafoor, K.; Alqah, H.A. Optimization of ultrasound-assisted extraction of bioactive properties from date palm (Phoenix dactylifera L.) spikelets using response surface methodology. LWT 2021, 140, 110816. [Google Scholar] [CrossRef]
- Mai, Y.-H.; Zhuang, Q.-G.; Li, Q.-H.; Du, K.; Wu, D.-T.; Li, H.-B.; Xia, Y.; Zhu, F.; Gan, R.-Y. Ultrasound-assisted extraction, identification, and quantification of antioxidants from ‘Jinfeng’kiwifruit. Foods 2022, 11, 827. [Google Scholar] [CrossRef] [PubMed]
- Aliaño-González, M.J.; Barea-Sepúlveda, M.; Espada-Bellido, E.; Ferreiro-González, M.; López-Castillo, J.G.; Palma, M.; Barbero, G.F.; Carrera, C. Ultrasound-assisted extraction of total phenolic compounds and antioxidant activity in mushrooms. Agronomy 2022, 12, 1812. [Google Scholar] [CrossRef]
- Liao, J.; Guo, Z.; Yu, G. Process intensification and kinetic studies of ultrasound-assisted extraction of flavonoids from peanut shells. Ultrason. Sonochemistry 2021, 76, 105661. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Zymonė, K.; Viškelis, J.; Janulis, V. Optimisation of the extraction of flavonoids from apples using response surface methodology. Ital. J. Food Sci. 2018, 30. [Google Scholar] [CrossRef]
- Vo, T.P.; Le, N.P.T.; Mai, T.P.; Nguyen, D.Q. Optimization of the ultrasonic-assisted extraction process to obtain total phenolic and flavonoid compounds from watermelon (Citrullus lanatus) rind. Curr. Res. Food Sci. 2022, 5, 2013–2021. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, V.K.; Chakraborty, S.; Dash, K.K.; Singh, R.; Béla, K. Ultrasound-assisted extraction of phytochemicals from green coconut shell: Optimization by integrated artificial neural network and particle swarm technique. Heliyon 2023, 9, e22438. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Ćurko, N.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 2019, 203, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.P.; Pham, N.D.; Pham, T.V.; Nguyen, H.Y.; Vo, L.T.V.; Tran, T.N.H.; Tran, T.N.; Nguyen, D.Q. Green extraction of total phenolic and flavonoid contents from mangosteen (Garcinia mangostana L) rind using natural deep eutectic solvents. Heliyon 2023, 9, e14884. [Google Scholar] [CrossRef] [PubMed]
- Qadir, R.; Anwar, F.; Naseem, K.; Tahir, M.H.; Alhumade, H. Enzyme-Assisted Extraction of Phenolics from Capparis spinosa Fruit: Modeling and Optimization of the Process by RSM and ANN. ACS Omega 2022, 7, 33031–33038. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, N.; Marrez, D.A.; Ali, M.A.; El-Maksoud, A.A.A.; Cheng, W.; Abedelmaksoud, T.G. Phenolic profiling and in-vitro bioactivities of corn (Zea mays L.) tassel extracts by combining enzyme-assisted extraction. Foods 2022, 11, 2145. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Fidelis, M.; Haapakoski, M.; dos Santos Lima, A.; Viil, J.; Hellström, J.; Rätsep, R.; Kaldmäe, H.; Bleive, U.; Azevedo, L.; et al. Enzyme-assisted extraction of anthocyanins and other phenolic compounds from blackcurrant (Ribes nigrum L.) press cake: From processing to bioactivities. Food Chem. 2022, 391, 133240. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; He, W.; Lu, M.; Yuan, B.; Zeng, M.; Tao, G.; Qin, F.; Chen, J.; Guan, Y.; He, Z. Enzyme-assisted ultrasonic-microwave synergistic extraction and UPLC-QTOF-MS analysis of flavonoids from Chinese water chestnut peels. Ind. Crops Prod. 2018, 117, 179–186. [Google Scholar] [CrossRef]
- Van Hung, P.; Yen Nhi, N.H.; Ting, L.Y.; Lan Phi, N.T. Chemical composition and biological activities of extracts from pomelo peel by-products under enzyme and ultrasound-assisted extractions. J. Chem. 2020, 2020, 1043251. [Google Scholar] [CrossRef]
- Tripodo, G.; Ibáñez, E.; Cifuentes, A.; Gilbert-López, B.; Fanali, C. Optimization of pressurized liquid extraction by response surface methodology of Goji berry (Lycium barbarum L.) phenolic bioactive compounds. Electrophoresis 2018, 39, 1673–1682. [Google Scholar] [CrossRef]
- Nandasiri, R.; Eskin, N.M.; Thiyam-Höllander, U. Antioxidative polyphenols of canola meal extracted by high pressure: Impact of temperature and solvents. J. Food Sci. 2019, 84, 3117–3128. [Google Scholar] [CrossRef]
- Bebek Markovinović, A.; Milošević, S.; Teslić, N.; Pavlić, B.; Putnik, P.; Brčić Karačonji, I.; Jurica, K.; Lasić, D.; Bursać Kovačević, D. Development of a Pressurized Green Liquid Extraction Procedure to Recover Antioxidant Bioactive Compounds from Strawberry Tree Fruit (Arbutus unedo L.). Plants 2023, 12, 2006. [Google Scholar] [CrossRef] [PubMed]
- Supasatyankul, B.; Saisriyoot, M.; Klinkesorn, U.; Rattanaporn, K.; Sae-Tan, S. Extraction of phenolic and flavonoid compounds from mung bean (Vigna radiata L.) seed coat by pressurized liquid extraction. Molecules 2022, 27, 2085. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Liu, P.; Yan, Y.; Huang, Y.; Bai, B.; Hou, X.; Zhang, L. Supercritical CO2 fluid extraction of flavonoid compounds from Xinjiang jujube (Ziziphus jujuba Mill.) leaves and associated biological activities and flavonoid compositions. Ind. Crops Prod. 2019, 139, 111508. [Google Scholar] [CrossRef]
- Pellicanò, T.M.; Sicari, V.; Loizzo, M.R.; Leporini, M.; Falco, T.; Poiana, M. Optimizing the supercritical fluid extraction process of bioactive compounds from processed tomato skin by-products. Food Sci. Technol. 2019, 40, 692–697. [Google Scholar] [CrossRef]
- Buelvas-Puello, L.M.; Franco-Arnedo, G.; Martínez-Correa, H.A.; Ballesteros-Vivas, D.; Sánchez-Camargo, A.d.P.; Miranda-Lasprilla, D.; Narváez-Cuenca, C.-E.; Parada-Alfonso, F. Supercritical fluid extraction of phenolic compounds from mango (Mangifera indica L.) seed kernels and their application as an antioxidant in an edible oil. Molecules 2021, 26, 7516. [Google Scholar] [CrossRef] [PubMed]
- Kamaruddin, M.S.H.; Chong, G.H.; Umanan, F.; Suleiman, N. Enhancement of 6-gingerol extraction from Bentong ginger using supercritical carbon dioxide. J. CO2 Util. 2023, 72, 102505. [Google Scholar] [CrossRef]
- Kaur, S.; Ubeyitogullari, A. Extraction of phenolic compounds from rice husk via ethanol-water-modified supercritical carbon dioxide. Heliyon 2023, 9, e14196. [Google Scholar] [CrossRef] [PubMed]
- Azwanida, N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants 2015, 4, 2167-0412. [Google Scholar]
- Sonar, M.P.; Rathod, V.K. Microwave assisted extraction (MAE) used as a tool for rapid extraction of Marmelosin from Aegle marmelos and evaluations of total phenolic and flavonoids content, antioxidant and anti-inflammatory activity. Chem. Data Collect. 2020, 30, 100545. [Google Scholar] [CrossRef]
- Ihsanpuro, S.I.; Gunawan, S.; Ibrahim, R.; Aparamarta, H.W. Extract with high 1, 1-diphenyl-2-picrylhydrazyl (DPPH) inhibitory capability from pericarp and seed of mangosteen (Garcinia mangostana L.) using microwave-assisted extraction (MAE) two-phase solvent technique. Arab. J. Chem. 2022, 15, 104310. [Google Scholar] [CrossRef]
- Kumar, M.; Dahuja, A.; Sachdev, A.; Kaur, C.; Varghese, E.; Saha, S.; Sairam, K. Evaluation of enzyme and microwave-assisted conditions on extraction of anthocyanins and total phenolics from black soybean (Glycine max L.) seed coat. Int. J. Biol. Macromol. 2019, 135, 1070–1081. [Google Scholar] [CrossRef]
- Yeong, Y.L.; Pang, S.F.; Putranto, A.; Gimbun, J. Optimisation of microwave-assisted extraction (MAE) of anthraquinone and flavonoids from Senna alata (L.) Roxb. Nat. Prod. Res. 2022, 36, 3756–3760. [Google Scholar] [CrossRef]
- Plazzotta, S.; Ibarz, R.; Manzocco, L.; Martín-Belloso, O. Optimizing the antioxidant biocompound recovery from peach waste extraction assisted by ultrasounds or microwaves. Ultrason. Sonochemistry 2020, 63, 104954. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Optimization of microwave-assisted extraction of flavonoids and antioxidants from Vernonia amygdalina leaf using response surface methodology. Food Bioprod. Process. 2018, 107, 36–48. [Google Scholar] [CrossRef]
- Kumar, M.; Dahuja, A.; Sachdev, A.; Kaur, C.; Varghese, E.; Saha, S.; Sairam, K. Valorisation of black carrot pomace: Microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box–Behnken design. J. Food Sci. Technol. 2019, 56, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochemistry 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, N.; Kershi, M.; Butnariub, M. antioxidant activity and anthocyanin content in flower of Mirabilis jalab L. collected from Yemen. World Appl. Sci. J. 2014, 29, 247–251. [Google Scholar]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT-Food Sci. Technol. 2015, 64, 1114–1122. [Google Scholar] [CrossRef]
- Giordano, M.; Pinela, J.; Dias, M.I.; Calhelha, R.C.; Stojković, D.; Soković, M.; Tavares, D.; Cánepa, A.L.; Ferreira, I.C.; Caleja, C. Ultrasound-assisted extraction of flavonoids from kiwi peel: Process optimization and bioactivity assessment. Appl. Sci. 2021, 11, 6416. [Google Scholar] [CrossRef]
- Park, N.; Cho, S.-D.; Chang, M.-S.; Kim, G.-H. Optimization of the ultrasound-assisted extraction of flavonoids and the antioxidant activity of Ruby S apple peel using the response surface method. Food Sci. Biotechnol. 2022, 31, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Marathe, S.J.; Jadhav, S.B.; Bankar, S.B.; Singhal, R.S. Enzyme-assisted extraction of bioactives. In Food Bioactives: Extraction and Biotechnology Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 171–201. [Google Scholar]
- Krakowska, A.; Rafińska, K.; Walczak, J.; Buszewski, B. Enzyme-assisted optimized supercritical fluid extraction to improve Medicago sativa polyphenolics isolation. Ind. Crops Prod. 2018, 124, 931–940. [Google Scholar] [CrossRef]
- Van Thanh, H.; Phi, N.T.L.; Khoi, N.T.; Hoan, N.X.; van Hung, P. Green extraction and biological activity of phenolic extracts from cashew nut testa using a combination of enzyme and ultrasound-assisted treatments. J. Sci. Food Agric. 2023, 103, 5626–5633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Poojary, M.M.; Choudhary, A.; Rai, D.K.; Tiwari, B.K. Comparison of selected clean and green extraction technologies for biomolecules from apple pomace. Electrophoresis 2018, 39, 1934–1945. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.P.D.F.; Pasquel-Reátegui, J.L.; Barbero, G.F.; Martínez, J. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: A comparison with conventional methods. Food Res. Int. 2015, 77, 675–683. [Google Scholar] [CrossRef]
- Herrero, M.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E. Supercritical fluid extraction: Recent advances and applications. J. Chromatogr. A 2010, 1217, 2495–2511. [Google Scholar] [CrossRef] [PubMed]
- Vinitha, U.; Sathasivam, R.; Muthuraman, M.S.; Park, S.U. Intensification of supercritical fluid in the extraction of flavonoids: A comprehensive review. Physiol. Mol. Plant Pathol. 2022, 118, 101815. [Google Scholar] [CrossRef]
- Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 2019, 297, 124970. [Google Scholar] [CrossRef]
- Vo, T.P.; Pham, T.V.; Weina, K.; Tran, T.N.H.; Vo, L.T.V.; Nguyen, P.T.; Bui, T.L.H.; Phan, T.H.; Nguyen, D.Q. Green extraction of phenolics and flavonoids from black mulberry fruit using natural deep eutectic solvents: Optimization and surface morphology. BMC Chem. 2023, 17, 119. [Google Scholar] [CrossRef]
- Zou, L.; Li, H.; Ding, X.; Liu, Z.; He, D.; Kowah, J.A.; Wang, L.; Yuan, M.; Liu, X. A Review of The Application of Spectroscopy to Flavonoids from Medicine and Food Homology Materials. Molecules 2022, 27, 7766. [Google Scholar] [CrossRef]
- Paula, V.B.; Estevinho, L.M.; Dias, L.G. Quantification of three phenolic classes and total phenolic content of propolis extracts using a single UV-vis spectrum. J. Apic. Res. 2017, 56, 569–580. [Google Scholar] [CrossRef]
- Soylak, M.; Ozdemir, B.; Yilmaz, E. An environmentally friendly and novel amine-based liquid phase microextraction of quercetin in food samples prior to its determination by UV–vis spectrophotometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 243, 118806. [Google Scholar] [CrossRef] [PubMed]
- Khakimov, B.; Mongi, R.J.; Sørensen, K.M.; Ndabikunze, B.K.; Chove, B.E.; Engelsen, S.B. A comprehensive and comparative GC–MS metabolomics study of non-volatiles in Tanzanian grown mango, pineapple, jackfruit, baobab and tamarind fruits. Food Chem. 2016, 213, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Kreps, F.; Tobolková, B.; Ciesarová, Z.; Potočňáková, M.; Janotková, L.; Schubertova, S.; Ház, A.; Schmidt, S.; Jablonsky, M. Total content of polyphenols, flavonoids, rutin, and antioxidant activity of sea buckthorn juice. BioResources 2021, 16, 4743. [Google Scholar] [CrossRef]
- Hu, B.; Hu, H.; Pu, C.; Wei, Z.; Wang, Q.; Kuang, H. Three new flavonoid glycosides from the aerial parts of Allium sativum L. and their anti-platelet aggregation assessment. Nat. Prod. Res. 2022, 36, 5940–5949. [Google Scholar] [CrossRef]
- Du, C.; Ma, C.; Gu, J.; Li, L.; Zhu, C.; Chen, L.; Wang, T.; Chen, G. Rapid Determination of catechin content in black tea by fluorescence spectroscopy. J. Spectrosc. 2020, 2020, 2479612. [Google Scholar] [CrossRef]
- Turturică, M.; Stănciuc, N.; Bahrim, G.; Râpeanu, G. Investigations on sweet cherry phenolic degradation during thermal treatment based on fluorescence spectroscopy and inactivation kinetics. Food Bioprocess Technol. 2016, 9, 1706–1715. [Google Scholar] [CrossRef]
- Shan, J.; Wang, X.; Russel, M.; Zhao, J. Rapid determination of flavonoids in green tea by synchronous fluorescence spectra coupled with chemometrics. Spectrosc. Lett. 2017, 50, 501–506. [Google Scholar] [CrossRef]
- Wang, Z.-F.; You, Y.-L.; Li, F.-F.; Kong, W.-R.; Wang, S.-Q. Research progress of NMR in natural product quantification. Molecules 2021, 26, 6308. [Google Scholar] [CrossRef]
- Li, X.; Hu, K. Quantitative NMR studies of multiple compound mixtures. Annu. Rep. NMR Spectrosc. 2017, 90, 85–143. [Google Scholar]
- Emwas, A.-H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M. NMR spectroscopy for metabolomics research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Lund, J.A.; Brown, P.N.; Shipley, P.R. Quantification of North American and European Crataegus flavonoids by nuclear magnetic resonance spectrometry. Fitoterapia 2020, 143, 104537. [Google Scholar] [CrossRef]
- Bationo, R.K.; Dabiré, C.M.; Hema, A.; Nébié, R.H.C.; Palé, E.; Nacro, M. HPTLC/HPLC-mass spectrometry identification and NMR characterization of major flavonoids of wild lemongrass (Cymbopogon giganteus) collected in Burkina Faso. Heliyon 2022, 8, e10103. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, V.G.; Primikyri, A.; Sakka, M.; Gerothanassis, I.P. Simultaneous determination of artemisinin and its analogs and flavonoids in Artemisia annua crude extracts with the use of NMR spectroscopy. Magn. Reson. Chem. 2020, 58, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Adrjan, B.; Li, J.; Hu, B.; Roszak, S. NMR studies of daidzein and puerarin: Active anti-oxidants in traditional Chinese medicine. J. Mol. Model. 2019, 25, 202. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, Z.-Y.; Liu, P.; Huang, J.; Algradi, A.M.; Pan, J.; Guan, W.; Zhou, Y.-Y.; Yang, B.-Y.; Kuang, H.-X. New flavonoids from the aerial part of Bupleurum chinense DC. Fitoterapia 2020, 147, 104739. [Google Scholar] [CrossRef]
- Huck, C.W. Advances of infrared spectroscopy in natural product research. Phytochem. Lett. 2015, 11, 384–393. [Google Scholar] [CrossRef]
- Van Maarschalkerweerd, M.; Husted, S. Recent developments in fast spectroscopy for plant mineral analysis. Front. Plant Sci. 2015, 6, 169. [Google Scholar] [CrossRef]
- Betances-Salcedo, E.; Revilla, I.; Vivar-Quintana, A.M.; González-Martín, M.I. Flavonoid and antioxidant capacity of propolis prediction using near infrared spectroscopy. Sensors 2017, 17, 1647. [Google Scholar] [CrossRef]
- Escuredo, O.; Seijo-Rodríguez, A.; González-Martín, M.I.; Rodríguez-Flores, M.S.; Seijo, M.C. Potential of near infrared spectroscopy for predicting the physicochemical properties on potato flesh. Microchem. J. 2018, 141, 451–457. [Google Scholar] [CrossRef]
- Ye, T.; Zheng, Y.; Guan, Y.; Sun, Y.; Chen, C. Rapid determination of chemical components and antioxidant activity of the fruit of Crataegus pinnatifida Bunge by NIRS and chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 289, 122215. [Google Scholar] [CrossRef] [PubMed]
- Zareef, M.; Arslan, M.; Hassan, M.M.; Ali, S.; Ouyang, Q.; Li, H.; Wu, X.; Hashim, M.M.; Javaria, S.; Chen, Q. Application of benchtop NIR spectroscopy coupled with multivariate analysis for rapid prediction of antioxidant properties of walnut (Juglans regia). Food Chem. 2021, 359, 129928. [Google Scholar] [CrossRef]
- Ze, L.; Hualin, X.; Lin, C.; Jianhua, H. An Improved Weighted Partial Least Squares Method Coupled 377 with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and 378 Anti-Oxidant Activity of Pu-Erh Tea. Molecules 2018, 23, 379. [Google Scholar]
- Rouxinol, M.I.; Martins, M.R.; Murta, G.C.; Mota Barroso, J.; Rato, A.E. Quality Assessment of Red Wine Grapes through NIR Spectroscopy. Agronomy 2022, 12, 637. [Google Scholar] [CrossRef]
- Amanah, H.Z.; Tunny, S.S.; Masithoh, R.E.; Choung, M.-G.; Kim, K.-H.; Kim, M.S.; Baek, I.; Lee, W.H.; Cho, B.-K. Nondestructive Prediction of Isoflavones and Oligosaccharides in Intact Soybean Seed Using Fourier Transform Near-Infrared (FT-NIR) and Fourier Transform Infrared (FT-IR) Spectroscopic Techniques. Foods 2022, 11, 232. [Google Scholar] [CrossRef]
- Kutsanedzie, F.Y.; Chen, Q.; Hassan, M.M.; Yang, M.; Sun, H.; Rahman, M.H. Near infrared system coupled chemometric algorithms for enumeration of total fungi count in cocoa beans neat solution. Food Chem. 2018, 240, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Haruna, S.A.; Li, H.; Wei, W.; Geng, W.; Luo, X.; Zareef, M.; Adade, S.Y.-S.S.; Ivane, N.M.A.; Isa, A.; Chen, Q. Simultaneous quantification of total flavonoids and phenolic content in raw peanut seeds via NIR spectroscopy coupled with integrated algorithms. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 285, 121854. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Liu, F.; He, Y.; Xiao, Y. Rapid and non-destructive measurement of spinach pigments content during storage using hyperspectral imaging with chemometrics. Measurement 2017, 97, 149–155. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Yuan, Y.; Zhao, Y.; Nie, J.; Nan, T.; Huang, L.; Yang, J. Nutrient content prediction and geographical origin identification of red raspberry fruits by combining hyperspectral imaging with chemometrics. Front. Nutr. 2022, 9, 980095. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, W.; Zhou, L.; Cheng, H.; Ye, X.; He, Y. Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging. Food Chem. 2020, 319, 126536. [Google Scholar] [CrossRef]
- Gros, Q.; Duval, J.; West, C.; Lesellier, E. On-line supercritical fluid extraction-supercritical fluid chromatography (SFE-SFC) at a glance: A coupling story. TrAC Trends Anal. Chem. 2021, 144, 116433. [Google Scholar] [CrossRef]
- Tarafder, A. Metamorphosis of supercritical fluid chromatography to SFC: An overview. TrAC Trends Anal. Chem. 2016, 81, 3–10. [Google Scholar] [CrossRef]
- Jiang, Z.-M.; Liu, W.-J.; Wang, H.-Y.; Xiao, P.-T.; Zhou, P.; Bi, Z.-M.; Liu, E.-H. Development and validation of a supercritical fluid chromatography method for fast analysis of six flavonoids in Citri Reticulatae Pericarpium. J. Chromatogr. B 2019, 1133, 121845. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Wahab, M.F.; Talebi, M.; Armstrong, D.W. Replacing methanol with azeotropic ethanol as the co-solvent for improved chiral separations with supercritical fluid chromatography (SFC). Green Chem. 2020, 22, 1249–1257. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, Y.; Tang, G.; Li, M.; Zhang, T.; Fillet, M.; Crommen, J.; Jiang, Z. Development and validation of a fast SFC method for the analysis of flavonoids in plant extracts. J. Pharm. Biomed. Anal. 2017, 140, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Q.; Li, Z.Y.; Li, X.K.; Tan, L.F. Development and validation of ultra-high performance supercritical fluid chromatography method for quantitative determination of four target flavonoids components in citrus samples. Acta Chromatogr. 2023, 35, 115–122. [Google Scholar] [CrossRef]
- Bhardwaj, S.K.; Dwivedia, K.; Agarwala, D. A review: HPLC method development and validation. Int. J. Anal. Bioanal. Chem. 2015, 5, 76–81. [Google Scholar]
- Azevedo-Meleiro, C.H.; Rodriguez-Amaya, D.B. Confirmation of the identity of the carotenoids of tropical fruits by HPLC-DAD and HPLC-MS. J. Food Compos. Anal. 2004, 17, 385–396. [Google Scholar] [CrossRef]
- Mesquita, E.; Monteiro, M. Simultaneous HPLC determination of flavonoids and phenolic acids profile in Pêra-Rio orange juice. Food Res. Int. 2018, 106, 54–63. [Google Scholar] [CrossRef]
- Jang, D.; Jung, Y.S.; Kim, M.-S.; Oh, S.E.; Nam, T.G.; Kim, D.-O. Developing and validating a method for separating flavonoid isomers in common buckwheat sprouts using HPLC-PDA. Foods 2019, 8, 549. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Yu, P.; Wang, M.; Qiu, F. Phytochemical analysis and geographic assessment of flavonoids, coumarins and sesquiterpenes in Artemisia annua L. based on HPLC-DAD quantification and LC-ESI-QTOF-MS/MS confirmation. Food Chem. 2020, 312, 126070. [Google Scholar] [CrossRef]
- Hyeon, H.; Hyun, H.B.; Kim, S.C.; Go, B.; Yoon, S.-A.; Jung, Y.-H.; Ham, Y.-M. Simultaneous Quantification Method of Flavonoids in Jeju Native Citrus from Different Harvest Times Using a High-Performance Liquid Chromatography–Diode Array Detector (HPLC–DAD). Separations 2023, 10, 567. [Google Scholar] [CrossRef]
- Yuan, X.; He, C.; Xue, X.; Liang, Z.; Chen, Y. Optimisation study on the flavonoid extraction process from Abrus precatorius leaves and the comparison of total flavonoid content by HPLC and UV. J. Holist. Integr. Pharm. 2023, 4, 119–126. [Google Scholar] [CrossRef]
- Kim, J.; Kim, R.H.; Hwang, K.T. Flavonoids in different parts of common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (F. tataricum) during growth. J. Food Compos. Anal. 2023, 120, 105362. [Google Scholar] [CrossRef]
- Rue, E.A.; Rush, M.D.; van Breemen, R.B. Procyanidins: A comprehensive review encompassing structure elucidation via mass spectrometry. Phytochem. Rev. 2018, 17, 1–16. [Google Scholar] [CrossRef]
- Bussy, U.; May, B.R.; Olanrewaju, Y.; Hewitt, G.; Anderson, N.; Crozier, A.; Ottaviani, J.I.; Kwik-Uribe, C. Reliable, accessible and transferable method for the quantification of flavanols and procyanidins in foodstuffs and dietary supplements. Food Funct. 2020, 11, 131–138. [Google Scholar] [CrossRef]
- Vidal-Casanella, O.; Arias-Alpizar, K.; Núñez, O.; Saurina, J. Extraction and Characterization of Flavanol-Rich Nutraceuticals Based on High-Performance Liquid Chromatography. Separations 2022, 9, 87. [Google Scholar] [CrossRef]
- Vidal-Casanella, O.; Arias-Alpizar, K.; Nuñez, O.; Saurina, J. Hydrophilic Interaction Liquid Chromatography to Characterize Nutraceuticals and Food Supplements Based on Flavanols and Related Compounds. Separations 2021, 8, 17. [Google Scholar] [CrossRef]
- Taleuzzaman, M.; Ali, S.; Gilani, S.; Imam, S.; Hafeez, A. Ultra performance liquid chromatography (UPLC)-a review. Austin J. Anal. Pharm. Chem. 2015, 2, 1056. [Google Scholar]
- Kumar, A.; Saini, G.; Nair, A.; Sharma, R. UPLC: A preeminent technique in pharmaceutical analysis. Acta Pol. Pharm. 2012, 69, 371–380. [Google Scholar]
- Zhao, Z.; He, S.; Hu, Y.; Yang, Y.; Jiao, B.; Fang, Q.; Zhou, Z. Fruit flavonoid variation between and within four cultivated Citrus species evaluated by UPLC-PDA system. Sci. Hortic. 2017, 224, 93–101. [Google Scholar] [CrossRef]
- Goulas, V.; Manganaris, G.A. Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chem. 2012, 131, 39–47. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, G.; Zhang, G.; Wei, X.; Shen, M.; Liu, L.; Ding, X.; Liu, Y. A targeted analysis of flavonoids in asparagus using the UPLC-MS technique. Czech J. Food Sci. 2020, 38, 77–83. [Google Scholar] [CrossRef]
- Otify, A.M.; Ibrahim, R.M.; Abib, B.; Laub, A.; Wessjohann, L.A.; Jiang, Y.; Farag, M.A. Unveiling metabolome heterogeneity and new chemicals in 7 tomato varieties via multiplex approach of UHPLC-MS/MS, GC–MS, and UV–Vis in relation to antioxidant effects as analyzed using molecular networking and chemometrics. Food Chem. 2023, 417, 135866. [Google Scholar] [CrossRef] [PubMed]
- Marcillo-Parra, V.; Anaguano, M.; Molina, M.; Tupuna-Yerovi, D.S.; Ruales, J. Characterization and quantification of bioactive compounds and antioxidant activity in three different varieties of mango (Mangifera indica L.) peel from the Ecuadorian region using HPLC-UV/VIS and UPLC-PDA. NFS J. 2021, 23, 1–7. [Google Scholar] [CrossRef]
- Stobiecki, M.; Kachlicki, P.; Wojakowska, A.; Marczak, Ł. Application of LC/MS systems to structural characterization of flavonoid glycoconjugates. Phytochem. Lett. 2015, 11, 358–367. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Wei, F.-Y.; Wei, Z.-F.; Zhang, L.; Luo, M.; Zhang, Y.-H.; Zu, Y.-G.; Fu, Y.-J. Homogenate-assisted negative-pressure cavitation extraction for determination of organic acids and flavonoids in honeysuckle (Lonicera japonica Thunb.) by LC–MS/MS. Sep. Purif. Technol. 2014, 135, 80–87. [Google Scholar] [CrossRef]
- Li, J.; Yang, P.; Yang, Q.; Gong, X.; Ma, H.; Dang, K.; Chen, G.; Gao, X.; Feng, B. Analysis of flavonoid metabolites in buckwheat leaves using UPLC-ESI-MS/MS. Molecules 2019, 24, 1310. [Google Scholar] [CrossRef] [PubMed]
- Mou, J.; Zhang, Z.; Qiu, H.; Lu, Y.; Zhu, X.; Fan, Z.; Zhang, Q.; Ye, J.; Fernie, A.R.; Cheng, Y. Multiomics-based dissection of citrus flavonoid metabolism using a Citrus reticulata × Poncirus trifoliata population. Hortic. Res. 2021, 8, 56. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Q.; Zheng, Y.; Zhang, Y.; Liu, B.; Shi, W.; Zeng, Z. Kaempferitrin: A Flavonoid Marker to Distinguish Camellia oleifera Honey. Nutrients 2023, 15, 435. [Google Scholar] [CrossRef] [PubMed]
- Takats, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 2004, 306, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Venter, A.; Cooks, R.G. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem. Commun. 2006, 19, 2042–2044. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gu, H.; Yan, F.; Wang, N.; Wei, Y.; Xu, J.; Chen, H. Direct characterization of bulk samples by internal extractive electrospray ionization mass spectrometry. Sci. Rep. 2013, 3, 2495. [Google Scholar] [CrossRef] [PubMed]
- Cody, R.B.; Laramée, J.A.; Durst, H.D. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 2005, 77, 2297–2302. [Google Scholar] [CrossRef]
- Gu, H.; Xu, N.; Chen, H. Direct analysis of biological samples using extractive electrospray ionization mass spectrometry (EESI-MS). Anal. Bioanal. Chem. 2012, 403, 2145–2153. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, A.; Wang, S.; Hao, Y.; Cui, M.; Liu, L.; Luo, L. Metabolic response of Citrus limon to Asian citrus psyllid infestation revealed by EESI-MS and HPLC. Anal. Biochem. 2020, 609, 113973. [Google Scholar] [CrossRef]
- Xue, A.; Liu, Y.; Li, H.; Cui, M.; Huang, X.; Wang, W.; Wu, D.; Guo, X.; Hao, Y.; Luo, L. Early detection of Huanglongbing with EESI-MS indicates a role of phenylpropanoid pathway in citrus. Anal. Biochem. 2022, 639, 114511. [Google Scholar] [CrossRef]
- Gao, Y.; Xue, A.; Li, X.; Huang, X.; Ning, F.; Zhang, X.; Liu, T.; Chen, H.; Luo, L. Analysis of chemical composition of nectars and honeys from Citrus by extractive electrospray ionization high resolution mass spectrometry. LWT 2020, 131, 109748. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Fallik, E. Light quality manipulation improves vegetable quality at harvest and postharvest: A review. Environ. Exp. Bot. 2017, 139, 79–90. [Google Scholar] [CrossRef]
- Wu, D.; Ming, H.; Wu, W.; Yu, W.; Zhang, G.; Gu, J.; Cui, M.; Huang, X.; Ning, F.; Luo, L. In situ neutral desorption-extractive electrospray ionization mass spectrometry reveals red-blue light promoted the accumulation of amino acids and polyphenols in Anoectochilus roxburghii. J. Food Compos. Anal. 2024, 125, 105761. [Google Scholar] [CrossRef]
- Bridoux, M.C.; Machuron-Mandard, X. Capabilities and limitations of direct analysis in real time orbitrap mass spectrometry and tandem mass spectrometry for the analysis of synthetic and natural polymers. Rapid Commun. Mass Spectrom. 2013, 27, 2057–2070. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Huang, L.; Liu, L.; Guo, Y.; Ma, L.; Liu, S. Rapid identification of traditional Chinese herbal medicine by direct analysis in real time (DART) mass spectrometry. Anal. Chim. Acta 2014, 845, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Huang, Z.; Watanabe, C.; Wang, L. Combined direct analysis in real-time mass spectrometry (DART-MS) with analytical pyrolysis for characterization of Chinese crude propolis. J. Anal. Appl. Pyrolysis 2019, 137, 227–236. [Google Scholar] [CrossRef]
- Rýdlová, L.; Prchalová, J.; Škorpilová, T.; Rohlík, B.-A.; Čížková, H.; Rajchl, A. Evaluation of cocoa products quality and authenticity by DART/TOF-MS. Int. J. Mass Spectrom. 2020, 454, 116358. [Google Scholar] [CrossRef]
- Lin, X.; Wu, H.; Huang, G.; Wu, Q.; Yao, Z.-P. Rapid authentication of red wine by MALDI-MS combined with DART-MS. Anal. Chim. Acta 2023, 1283, 341966. [Google Scholar] [CrossRef]
- Yan, X.; Zhao, Y.; Zhang, Y.; Qu, H. Monoclonal Antibodies and Immunoassay for Medical Plant-Derived Natural Products: A Review. Molecules 2017, 22, 355. [Google Scholar] [CrossRef]
- Qu, H.; Wang, X.; Qu, B.; Kong, H.; Zhang, Y.; Shan, W.; Cheng, J.; Wang, Q.; Zhao, Y. Sandwich enzyme-linked immunosorbent assay for naringin. Anal. Chim. Acta 2016, 903, 149–155. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yusakul, G.; Pongkitwitoon, B.; Paudel, M.K.; Tanaka, H.; Morimoto, S. Simultaneous determination of soy isoflavone glycosides, daidzin and genistin by monoclonal antibody-based highly sensitive indirect competitive enzyme-linked immunosorbent assay. Food Chem. 2015, 169, 127–133. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Zhao, Q.; He, Y.; Li, Z.; Chen, A.; Wang, C.; Wang, B.; Jiao, B.; Cui, Y. A sensitive and practical ELISA for analyzing naringenin in pummelo and herb samples. Food Chem. 2021, 362, 130223. [Google Scholar] [CrossRef]
- Sakamoto, S.; Taura, F.; Pongkitwitoon, B.; Putalun, W.; Tsuchihashi, R.; Kinjo, J.; Tanaka, H.; Morimoto, S. Development of sensitivity-improved fluorescence-linked immunosorbent assay using a fluorescent single-domain antibody against the bioactive naphthoquinone, plumbagin. Anal. Bioanal. Chem. 2010, 396, 2955–2963. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Uchiyama, H.; Yusakul, G.; Kyokong, N.; Pongkitwitoon, B.; Putalun, W.; Tanaka, H.; Morimoto, S. Open sandwich fluorescence-linked immunosorbent assay for detection of soy isoflavone glycosides. Food Chem. 2021, 361, 129829. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Cheng, J.; Qu, B.; Sai, J.; Kong, H.; Qu, H.; Zhao, Y.; Wang, Q. Development of a Fluorescence-Linked Immunosorbent Assay for Baicalin. J. Fluoresc. 2015, 25, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Uehara, M.; Lapcík, O.C.; Hampl, R.; Al-Maharik, N.; Mäkelä, T.; Wähälä, K.; Mikola, H.; Adlercreutz, H. Rapid analysis of phytoestrogens in human urine by time-resolved fluoroimmunoassay. J. Steroid Biochem. Mol. Biol. 2000, 72, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Paudel, M.K.; Putalun, W.; Sritularak, B.; Morinaga, O.; Shoyama, Y.; Tanaka, H.; Morimoto, S. Development of a combined technique using a rapid one-step immunochromatographic assay and indirect competitive ELISA for the rapid detection of baicalin. Anal. Chim. Acta 2011, 701, 189–193. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yusakul, G.; Pongkitwitoon, B.; Tanaka, H.; Morimoto, S. Colloidal gold-based indirect competitive immunochromatographic assay for rapid detection of bioactive isoflavone glycosides daidzin and genistin in soy products. Food Chem. 2016, 194, 191–195. [Google Scholar] [CrossRef]
- Qu, H.; Zhang, Y.; Qu, B.; Kong, H.; Qin, G.; Liu, S.; Cheng, J.; Wang, Q.; Zhao, Y. Rapid lateral-flow immunoassay for the quantum dot-based detection of puerarin. Biosens. Bioelectron. 2016, 81, 358–362. [Google Scholar] [CrossRef]
Extraction Method | Substrate | Optimal Extraction Conditions | Yield | Extraction Efficiency | Ref | ||||
---|---|---|---|---|---|---|---|---|---|
Solvent | Time | Solid-to-Solvent Ratio | Temperature | Others | |||||
MAE | Parsley leaves | ethanol 80% | 2 min | 1:20 | - | particle size: 0.105 mm microwave power: 180 W | Apigenin (7.90 ± 0.14 mg/g) | 42.68% | [26] |
MAE | Sedum aizoon leaves | ethanol 80.6% | 20 min | 1:20, | 57 °C | - | Flavonoids (20.01 ± 0.3 mg/g) | - | [27] |
MAE | Syzygium nervosum Fruits | ethanol | 38 min | 1: 35 | - | microwave power: 350 W | 2,4-Dihydroxy-6-metoxy-3,5-dimethyl chalcone (1409 ± 24 μg/g) | - | [28] |
MAE | Melastoma sanguineum Fruit | ethanol 31.33% | 45 min | 1: 32.21 | - | microwave power: 500 W | TPC (39.02 ± 0.73 mg GAE/g DW) | - | [29] |
MAE | Soybean meal | ethanol 50% | 0.16 min | 1:60 | - | microwave power: 120W | TPC (13.09 mg GAE/g) TFC (7.39 mg CE/g) | - | [30] |
MAE | Lemon myrtle | aqueous acetone 50% | 6 min | 6:100 | - | microwave power: 630 W | Flavonoids (384.57 ± 2.74 mg CE/g DW) Proanthocyanidins (336.54 ± 7.09 mg CE/g DW) | - | [31] |
MAE | Grape skin | ethanol 60% | 5 min | - | 40 °C | microwave power: 600 W | Total anthocyanins (12,545.19 mg/kg) | - | [32] |
DES-MAE | Flos sophorae immaturus | DES: choline chloride/1,4-butanediol (molar ratio 1:2), water content: 25% | 20 min | 1:26 | 62 °C | microwave power: 600 W | Rutin (116.78 mg/g) Nicotiflorin (15.01 mg/g) Narcissin (23.85 mg/g) Quercetin (27.59 mg/g) Kaempferol (3.09 mg/g) Isorhamnetin (3.33 mg/g) | - | [33] |
DES-MAE | Ribes mandshuricum leaves | DES: choline chloride/lactic acid (mass ratio 1:2), water content: 25%, | 10 min | 1:27 | 54 °C | - | Trifolin (4.78 mg/g DW) Isoquercetin (2.57 mg/g DW) Rutin (1.25 mg/g DW) Astragalin (1.15 mg/g DW) Quercetin (0.34 mg/g DW) Hyperoside (0.32 mg/g DW) Kaempferol (0.093 mg/g DW) | - | [34] |
NADES-MAE | Sweet potato leaves | DES: Choline chloride/Malic acid 1:1 | 21 min | 1:70 | 54 °C | microwave power: 470 W | TFC (40.21 ± 0.23 mg RE/g) | - | [35] |
UAE | Purple sweet potatoes | ethanol 90% | 60 min | - | 60 °C | ultrasonic power: 200 W | Anthocyanins (214.92 ± 11.59 mg/100 g DW) | - | [36] |
UAE | Date palm spikelets | ethanol 70% | 21.6 min | - | 40.8 °C | ultrasonic power: 110 W frequency: 40 kHz | Rutin (114.6 ± 2.29 mg/g) Quercetin (12.0 ± 0.58 mg/g) Kaempferol (0.3 ± 0.01 mg/g) | - | [37] |
UAE | Kiwifruit | ethanol 68% | 30 min | 1:20 | 40 °C | ultrasonic power: 420 W | TFC (5.10 ± 0.09 mg CE/g DW) | - | [38] |
UAE | Mushrooms | MeOH 93.6% | 5 min | - | 60 °C | amplitude 16.86%, cycles 0.71 s−1. | - | - | [39] |
UAE | Peanut shells | ethanol 70% | - | 1:40 | 55 °C | particle size: 0.285 mm, ultrasonic power: 120 W, frequency: 45 kHz | 9.26 mg/g | - | [40] |
UAE | Parsley leaves | ethanol 80% | 30 min | 1:25 | 40 °C | particle size: 0.25 mm ultrasonic power: 90%, frequency: 80 kHz | Apigenin (9.48 ± 0.11) | 51.22% | [26] |
UAE | Apples | ethanol 70% | 26.90 min | - | 44.61 °C | ultrasonic power: 480 W | Rutin (6.58 mg/g) | - | [41] |
UAE | Watermelon rind | acetone 70.71% | 10.65 min | 1:30.50 | 29.78 °C | ultrasonic power: 300 W | TPC (6.31 ± 0.14 mg GAE/g db) TFC (3.16 ± 0.08 mg Rutin/g db) | - | [42] |
UAE | Green coconut shells | - | 15 min | 1:24 | 33 °C | - | TPC (40.99 GAE/g) TFC (36.13 QE/g) Total Tannin content (176.73 TAE/g) | - | [43] |
DES-UAE | Grape skin | DES: choline chloride-based DES containing oxalic acid with 25% of water | 50 min | 65 °C | - | - | - | [44] | |
DES-UAE | Lycium barbarum L. fruits | DES: 1:2 mixture of choline chloride and p-toluene sulfonic acid | 90 min | 1:20 | 25 °C | - | Myricetin (57.2 mg/g) Morin (12.7 mg/g) Rutin (9.1 mg/g) | - | [45] |
NADES-UAE | Mangosteen rind | NADES: 1:2 mixture of 1,2-Propanediol and Lactic acid with 30.3% of water | 9.1 min | 1:76.7 | 57.5 °C | - | TPC (118.2 ± 3.8 mg GAE/g db) TFC (59.3 ± 2.1 mg RE/g db) | - | [46] |
EAE | Capparis spnosa fruit | commercial enzyme mixture composed of β-glucanase, xylanase, cellulase, α-amylase, and protease, enzyme concentration: 6.5% | 60 min | - | 50 °C | pH: 7.5 | TPC (24.76 GAE/g) TFC (24.56 mg CE/g) | - | [47] |
EAE | Corn tassel | 1:1 mixture of cellulase and protease | - | 50 °C | pH: 5.0 | TPC (10.70 mg/g) | - | [48] | |
EAE | Blackcurrant press cake | β-glucanase | - | 1:10 | 50 °C | pH: 5.5 | TPC (−1142 mg/100 g) | - | [49] |
EAUMSE | Chinese water chestnut peels | 2:1 mixture of cellulase and pectinase, enzyme concentration: 1.5%, hydrolysis temperature: 50 °C, hydrolysis time: 2 h, extraction solvent: ethanol and 0.1 mol/L NaH2PO4 buffer (2:1, v/v) mixture | 60 s | - | - | pH: 5.0 ultrasound power: 50 W, microwave power: 200 W | Luteolin (249 mg/100 g DW) Eriodictyol (97 mg/100 g DW) 6-methylluteolin (74 mg/100 g DW) Fisetin (46 mg/100 g DW) | - | [50] |
E-UAE | Pomelo peel | enzyme concentration: 2% | 60 min | 1:40 | 50 °C | ultrasonic energy: 40 kHz | TPC (1.76 ± 0.06 mg RE/g) (1.15 ± 0.04 mg RE/g) (2.29 ± 0.05 mg RE/g) | - | [51] |
ASE | Purple sweet potatoes | 80% (v/v) aqueous ethanol containing 0.1% (v/v) HCl | 15 min | 90 °C | the number of cycles: 2 | Anthocyanins (252.34 ± 10.59 mg/100 g DW) | - | [36] | |
ASE | Goji berry | ethanol 86% | 20 min | 180 °C | pressure: 10 MPa (1500 psi) | TF (3.02 mg/g) | - | [52] | |
ASE | Canola meal | ethanol 70% | - | - | 180 °C | - | TPC (24.71 ± 2.77 mg SAE/g DM) | - | [53] |
ASE | Strawberry tree fruit | ethanol 96% | 10 min | - | 120 °C | the number of cycles: 2 | - | - | [54] |
ASE | Mung bean seed coat | ethanol 50% | - | - | - | pressure: 1300 psi | TPC (55.27 ± 1.14 mg GAE/g) TFC (934.04 ± 0.72 mg CE/g) | - | [55] |
SFE-CO2 | Xinjiang jujube | - | 113.42 min | - | 52.52 °C | pressure: 27.12 MPa cosolvent flow rate: 0.44 mL/min | 29.05 ± 0.38 mg/g | - | [56] |
SFE-CO2 | Tomato skin | - | 80 min | - | 60 °C | CO2 flow rate: 2 mL/min pressure: 550 bar | Lycopen (0.86 ± 0.06 mg/100 g DW) β-Caroten (1.5 ± 0.4 mg/100 g DW) | - | [57] |
SFE-CO2 | Mango seed kernels | ethanol 15.0% | - | - | 60 °C | pressure: 21.0 MPa | TPC (19.4 mg-eq AG g−1 extract), TFC (3.8 mg-eq Q g−1) | - | [58] |
SFE-CO2 | Bentong ginger | - | - | - | 40 °C | pressure: 25.0 MPa particle size: 300 µm | 6-gingerol content (171.26 mg/g) TPC (17.84 GAE mg/g) TFC (74.46 QE mg/g) | - | [59] |
SFE-CO2 | Rice husk | 25% ethanol-water (50%, v/v) cosolvent mixture | - | - | 60 °C | pressure: 30 MPa | TPC (1.29 mg GAE/g) TFC (0.40 mg CE/g) | - | [60] |
Detection Techniques | Advantages | Disadvantages | Flavonoid Compounds | |
---|---|---|---|---|
Spectrometric techniques | UV–Vis | Rapid analysis, low cost, simple operation | The interference of other components in the complex matrix will affect the accuracy of detection, and only the information of specific groups in the molecule can be detected, but the information of all compounds cannot be obtained | Quercetin Rutin Luteolin |
FS | High sensitivity, good selectivity, simple operation, and fast detection | The number of naturally fluorescing flavonoids is limited, fluorescence quenching effect, and scattering light interference problems | Catechin Anthocyanins Quercetin kaempferol | |
NMR | Fast, non-destructive, high stability and reproducibility, simple sample preparation, can provide rich structural information, qualitative and quantitative ability is excellent | Lack of sensitivity, high cost, specific compounds cannot be isolated, complex samples may have signal overlap problems | Naringenin Hyperoside Rutin Diosmetin Luteolin Calycosin | |
NIR | Fast, non-destructive, no need to pre-treat the sample, no damage to the tested sample, real-time online detection can be achieved, combined with hyperspectral imaging technology, spectral and spatial information of samples can be obtained at the same time, and the accuracy of detection can be further improved | Need to be combined with chemometrics to establish the model of the sample data quantity is large, high-cost modeling | Anthocyanin Chrysin Galangin Hyperoside Isoquercitrin | |
Chromatographic techniques | SFC | High separation efficiency, short extraction time, less consumption of organic solvents, and controllable extraction conditions | Require expensive special material container to maintain high-voltage operating conditions | Apigenin Baicalin Luteolin Naringenin |
HPLC UPLC | Low detection limit, high sensitivity, high analysis efficiency, and wide analysis range | High detection cost, long detection time, complex operation, and high solvent consumption | Quercetin Kaempferol Isorhamnetin Rutin Naringin Hesperidin Nobiletin Tangeretin | |
Mass spectrometry | LC-MS | Efficient separation performance and high sensitivity | High detection cost and expensive equipment | Luteoloside Rutin Hyperoside Quercetin |
EESI-MS DART-MS | No sample pretreatment is required, and analyte information can be obtained in seconds. Without complex sample metabolite separation processes, more comprehensive metabolic information can be obtained | Need to consider the interference of matrix ions in the sample, equipment is expensive, difficult to achieve large-scale industrial application | Naringin Apigenin Quercetin Myricetin Kaempferol Rutin Epicatechin Hesperetin | |
Immunoassay technique | ELISA FLISA TRFIA ICA | No need for expensive equipment or professional operators, simple operation, high sensitivity, and low analysis cost | High specific antibody preparation is difficult, the specificity of the assay, only one compound can be detected | Daidzin Genistein Glycitein Naringenin Hesperetin Isoxanthohumol Apigenin-C-glycoside Luteolin glycosides |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Zhang, X.; Wang, S.; Gao, X.; Zhang, X. Research Progress on Extraction and Detection Technologies of Flavonoid Compounds in Foods. Foods 2024, 13, 628. https://doi.org/10.3390/foods13040628
Li W, Zhang X, Wang S, Gao X, Zhang X. Research Progress on Extraction and Detection Technologies of Flavonoid Compounds in Foods. Foods. 2024; 13(4):628. https://doi.org/10.3390/foods13040628
Chicago/Turabian StyleLi, Wen, Xiaoping Zhang, Shuanglong Wang, Xiaofei Gao, and Xinglei Zhang. 2024. "Research Progress on Extraction and Detection Technologies of Flavonoid Compounds in Foods" Foods 13, no. 4: 628. https://doi.org/10.3390/foods13040628
APA StyleLi, W., Zhang, X., Wang, S., Gao, X., & Zhang, X. (2024). Research Progress on Extraction and Detection Technologies of Flavonoid Compounds in Foods. Foods, 13(4), 628. https://doi.org/10.3390/foods13040628