Antioxidant Effects and Potential Mechanisms of Citrus reticulata ‘Chachi’ Components: An Integrated Approach of Network Pharmacology and Metabolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Sample Preparation
2.3. Untargeted Metabolomic Analysis
2.3.1. Metabolite Extraction
2.3.2. Untargeted Metabolomic Analysis via Ultra-High-Performance Liquid Chromatography (UHPLC)–Tandem Mass Spectrometry (MS/MS)
2.4. In Vitro Antioxidant Capacity
2.4.1. Extraction of Phenolic Compounds
2.4.2. Analysis of Total Phenolic Content (TPC)
2.4.3. Targeted Determination of Flavonoids
2.4.4. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity Assay
2.4.5. 2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Radical Scavenging Activity Assay
2.4.6. Ferric Reducing Antioxidant Power (FRAP) Assay
2.5. Network Pharmacology
2.5.1. Prediction of Flavonoid Active Components and Core Targets
2.5.2. Prediction of Core Targets for Oxidative Damage
2.5.3. Construction of Protein–Protein Interaction Network and Key Gene Selection
2.5.4. GO and KEGG Enrichment Analysis
2.6. Data Analysis
3. Results and Analysis
3.1. Identification of Metabolites
3.2. Metabolomic Analysis
3.3. Selection and Identification of Differential Metabolites
3.4. Comparative Analysis of Secondary Differential Metabolites
3.4.1. Flavonoids
3.4.2. Terpenoids
3.4.3. Phenolic Acids and Derivatives
3.4.4. Steroids and Steroid Derivatives
3.4.5. Coumarins and Their Derivatives
3.4.6. Organic Acids, Alkaloids and Other Metabolites
3.5. KEGG Enrichment Analysis of Secondary Differential Metabolites
3.6. Analysis of Flavonoid Compositions in Different Parts of Citrus reticulata ‘Chachi’
3.7. Overview of Total Phenolic Content and Antioxidant Activity in Different Parts of Citrus reticulata ‘Chachi’
3.8. Network Pharmacology Analysis
3.8.1. Flavonoid Active Ingredients and Core Target Prediction
3.8.2. GO and KEGG Enrichment Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, M.; An, K.; Xu, Y.; Chen, Y.; Wu, J.; Yu, Y.; Zou, B.; Xiao, G.; Ti, H. Effects of different temperature and humidity on bioactive flavonoids and antioxidant activity in Pericarpium Citri Reticulata (Citrus reticulata ‘Chachi’). LWT 2018, 93, 167–173. [Google Scholar] [CrossRef]
- Li, X.; Mao, G.; Chen, W.; Wu, P.; Zhang, R.; Zhang, M.; Huang, Y.; Xu, J.; Zeng, J. Integrated untargeted metabolomic and transcriptomic analyses reveal OMT genes controlling polymethoxyflavonoid biosynthesis in the pericarp of Citrus reticulata ‘Chachi’. Sci. Hortic. 2024, 327, 112808. [Google Scholar] [CrossRef]
- Liang, S.; Wen, Z.; Tang, T.; Liu, Y.; Dang, F.; Xie, T.; Wu, H. Study on flavonoid and bioactivity features of the pericarp of Citri Reticulatae ‘chachi’ during storage. Arab. J. Chem. 2022, 15, 103653. [Google Scholar] [CrossRef]
- Chen, L.; Xiao, G.; Xu, Y.; Cheang, W.S.; Wu, J.; Yu, Y.; Wen, J.; Fu, M. Effects of aging on the bioactive flavonoids and fungal diversity of Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’). LWT 2024, 200, 116135. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.; Xiao, Y.; Zou, J.; Chen, H.; Chen, L.; Wang, F.; Hu, Y.; Liu, Y. Insights into metabolic characteristics and biological activity changes in Zangju (Citrus reticulata cv. Manau Gan) peel at different maturity stages through UPLC–MS/MS-based metabolomics. Food Chem. X 2024, 21, 101197. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, G. An insight into the role of citrus bioactives in modulation of colon cancer. J. Funct. Foods 2015, 13, 239–261. [Google Scholar] [CrossRef]
- Russo, M.; Bonaccorsi, I.L.; Arigò, A.; Cacciola, F.; Gara, L.D.; Dugo, P.; Mondello, L. Blood orange (Citrus sinensis) as a rich source of nutraceuticals: Investigation of bioactive compounds in different parts of the fruit by HPLC-PDA/MS. Nat. Prod. Res. 2021, 35, 4606–4610. [Google Scholar] [CrossRef]
- Chen, X.-M.; Tait, A.R.; Kitts, D.D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem. 2017, 218, 15–21. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, H.; Hao, S.; Pan, D.; Wang, G.; Yu, W. Evaluation of phenolic composition and antioxidant properties of different varieties of Chinese citrus. Food Chem. 2021, 364, 130413. [Google Scholar] [CrossRef]
- Choi, M.-Y.; Chai, C.; Park, J.H.; Lim, J.; Lee, J.; Kwon, S.W. Effects of storage period and heat treatment on phenolic compound composition in dried Citrus peels (Chenpi) and discrimination of Chenpi with different storage periods through targeted metabolomic study using HPLC-DAD analysis. J. Pharm. Biomed. Anal. 2011, 54, 638–645. [Google Scholar] [CrossRef]
- Fu, M.; Xu, Y.; Chen, Y.; Wu, J.; Yu, Y.; Zou, B.; An, K.; Xiao, G. Evaluation of bioactive flavonoids and antioxidant activity in Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’) during storage. Food Chem. 2017, 230, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Zhang, Q.; Wang, X.; Xu, X.; Wang, Y.; Wei, L.; Li, N.; Liu, H.; Hu, L.; Zhao, N.; et al. Targeted and untargeted metabolomics reveals meat quality in grazing yak during different phenology periods on the Qinghai-Tibetan Plateau. Food Chem. 2024, 447, 138855. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Jiang, Z.; Tao, M.; Wen, M.; Xiao, Z.; Zhang, L.; Zha, M.; Chen, J.; Liu, Z.; Zhang, L. Targeted and nontargeted metabolomics analysis for determining the effect of storage time on the metabolites and taste quality of keemun black tea. Food Chem. 2021, 359, 129950. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Q.; Dai, Z.-S.; Gao, Y.; Wang, F.; Chen, J.-X.; Feng, Z.-H.; Yin, J.-F.; Zeng, L.; Xu, Y.-Q. Untargeted metabolomics coupled with chemometrics for flavor analysis of Dahongpao oolong tea beverages under different storage conditions. LWT 2023, 185, 115128. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Wang, M.; Liu, Y.; Chen, L.; Wang, F.; Chen, H. Integrated metabolomics and network pharmacology revealed the key active ingredients for the treatment of ulcerative colitis in the Citrus reticulata ‘Dahongpao’ peel. J. Pharm. Biomed. Anal. 2024, 239, 115887. [Google Scholar] [CrossRef]
- Peng, Z.-X.; Gu, H.-W.; Pan, Y.; Wang, Y.; Yan, J.; Long, W.; Fu, H.; She, Y. Revealing the key antioxidant compounds and potential action mechanisms of Chinese Cabernet Sauvignon red wines by integrating UHPLC-QTOF-MS-based untargeted metabolomics, network pharmacology and molecular docking approaches. Food Chem. 2024, 460, 140540. [Google Scholar] [CrossRef]
- Yu, W.; Li, X.; Sun, Q.; Yi, S.; Zhang, G.; Chen, L.; Li, Z.; Li, J.; Luo, L. Metabolomics and network pharmacology reveal the mechanism of Castanopsis honey against Streptococcus pyogenes. Food Chem. 2024, 441, 138388. [Google Scholar] [CrossRef]
- Ćetković, G.; Savatović, S.; Čanadanović-Brunet, J.; Djilas, S.; Vulić, J.; Mandić, A.; Četojević-Simin, D. Valorisation of phenolic composition, antioxidant and cell growth activities of tomato waste. Food Chem. 2012, 133, 938–945. [Google Scholar] [CrossRef]
- Meng, A.; Gao, P.; Xu, P.; Jia, X.; He, J.; Wang, Y.; Chen, Q.; Zhang, Y.; Qiu, Y.; Huang, M.; et al. Effects of gamma irradiation on the nutritional quality and physicochemical properties of Morchella angusticeps. Food Biosci. 2023, 56, 103214. [Google Scholar] [CrossRef]
- Wang, X.; Su, Z.; Li, X.; Chen, J.; Li, G.; Shan, Y.; Pan, Z.; Fu, F. Targeted/untargeted metabolomics and antioxidant properties distinguish Citrus reticulata ‘Chachi’ from Citrus reticulata Blanco. Food Chem. 2024, 462, 140806. [Google Scholar] [CrossRef]
- Bland, J.H.; Grandison, A.S.; Fagan, C.C. Effect of blending Jersey and Holstein-Friesian milk on Cheddar cheese processing, composition, and quality. J. Dairy Sci. 2015, 98, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Liang, L.; Xie, Q.; Qiu, Y.; Jiang, S.; Yang, Y.; Zhu, L.; Fu, Y.; Chen, S.; Wang, W.; et al. Differential analysis of phytochemistry and antioxidant activity in five citrus by-products based on chromatography, mass spectrometry, and spectrum-effect relationships. Food Chem. X 2023, 20, 101010. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xi, C.; Liu, D.; Ren, X.; Fan, J.; Tangthianchaichana, J.; Lu, Y.; Wu, H. Chemical components with antibacterial properties found in sanchen powder from traditional Tibetan medicine. J. Ethnopharmacol. 2024, 326, 117981. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Hu, O.; Fu, H.; Ouyang, L.; Gong, X.; Meng, P.; Wang, Z.; Dai, M.; Guo, X.; Wang, Y. UPLC–Q-TOF/MS-based untargeted metabolomics coupled with chemometrics approach for Tieguanyin tea with seasonal and year variations. Food Chem. 2019, 283, 73–82. [Google Scholar] [CrossRef]
- Jiang, Z.; Han, Z.; Wen, M.; Ho, C.-T.; Wu, Y.; Wang, Y.; Xu, N.; Xie, Z.; Zhang, J.; Zhang, L.; et al. Comprehensive comparison on the chemical metabolites and taste evaluation of tea after roasting using untargeted and pseudotargeted metabolomics. Food Sci. Hum. Wellness 2022, 11, 606–617. [Google Scholar] [CrossRef]
- Bian, X.; Xie, X.; Cai, J.; Zhao, Y.; Miao, W.; Chen, X.; Xiao, Y.; Li, N.; Wu, J.-L. Dynamic changes of phenolic acids and antioxidant activity of Citri Reticulatae Pericarpium during aging processes. Food Chem. 2022, 373, 131399. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, G.; Amador-Luna, V.M.; Benešová, K.; Pernica, M.; Parada-Alfonso, F.; Ibáñez, E. Biorefinery approach with green solvents for the valorization of Citrus reticulata leaves to obtain antioxidant and anticholinergic extracts. Food Chem. 2024, 456, 140034. [Google Scholar] [CrossRef]
- Ku, C.-M.; Lin, J.-Y. Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes. Food Chem. 2013, 141, 1104–1113. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, J.; Zhang, X.; Zhao, D.; Ma, Y.; Li, D.; Ho, C.-T.; Huang, Q. Aged citrus peel (chenpi) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice. Food Funct. 2020, 11, 2667–2678. [Google Scholar] [CrossRef]
- Tao, S.; Shen, Z.; Chen, J.; Shan, Z.; Huang, B.; Zhang, X.; Zheng, L.; Liu, J.; You, T.; Zhao, F.; et al. Red Light-Mediated Photoredox Catalysis Triggers Nitric Oxide Release for Treatment of Cutibacterium Acne Induced Intervertebral Disc Degeneration. ACS Nano 2022, 16, 20376–20388. [Google Scholar] [CrossRef]
- Wang, N.; Yu, K.-K.; Li, K.; Li, M.-J.; Wei, X.; Yu, X.-Q. Plant-Inspired Multifunctional Fluorescent Hydrogel: A Highly Stretchable and Recoverable Self-Healing Platform with Water-Controlled Adhesiveness for Highly Effective Antibacterial Application and Data Encryption-Decryption. ACS Appl. Mater. Interfaces 2020, 12, 57686–57694. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Trevethan, M.; Wang, S.; Zhao, L. Beneficial effects of citrus flavanones naringin and naringenin and their food sources on lipid metabolism: An update on bioavailability, pharmacokinetics, and mechanisms. J. Nutr. Biochem. 2022, 104, 108967. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Meng, D.; Zhang, P.; Wang, X.; Du, G.; Brennan, C.; Li, S.; Ho, C.-T.; Zhao, H. Antioxidant Protection of Nobiletin, 5-Demethylnobiletin, Tangeretin, and 5-Demethyltangeretin from Citrus Peel in Saccharomyces cerevisiae. J. Agric. Food Chem. 2018, 66, 3155–3160. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.; Liu, Y.; Li, H.; Xia, Y.; Guo, H.; Geng, F.; Zhuang, Q.; Li, H.; Wu, D. Natural sources, refined extraction, biosynthesis, metabolism, and bioactivities of dietary polymethoxyflavones (PMFs). Food Sci. Hum. Wellness 2024, 13, 27–49. [Google Scholar] [CrossRef]
- Borge, G.I.A.; Sandberg, E.; Øyaas, J.; Abrahamsen, R.K. Variation of terpenes in milk and cultured cream from Norwegian alpine rangeland-fed and in-door fed cows. Food Chem. 2016, 199, 195–202. [Google Scholar] [CrossRef]
- Bound, D.J.; Murthy, P.S.; Srinivas, P. Synthesis and antibacterial properties of 2,3-dideoxyglucosides of terpene alcohols and phenols. Food Chem. 2015, 185, 192–199. [Google Scholar] [CrossRef]
- Chung, H.-J.; Park, E.-J.; Pyee, Y.; Xu, G.H.; Lee, S.-H.; Kim, Y.S.; Lee, S.K. 25-Methoxyhispidol A, a novel triterpenoid of Poncirus trifoliata, inhibits cell growth via the modulation of EGFR/c-Src signaling pathway in MDA-MB-231 human breast cancer cells. Food Chem. Toxicol. 2011, 49, 2942–2946. [Google Scholar] [CrossRef]
- Cao, X.; Shi, K.; Xu, Y.; Zhang, P.; Zhang, H.; Pan, S. Integrated metabolomics and network pharmacology to reveal antioxidant mechanisms and potential pharmacological ingredients of citrus herbs. Food Res. Int. 2023, 174, 113514. [Google Scholar] [CrossRef]
- Dai, L.-T.; Yang, L.; Wang, Z.-P.; Guo, J.-C.; Ma, Q.-Y.; Xie, Q.-Y.; Dai, H.-F.; Yu, Z.-F.; Zhao, Y.-X. Persteroid, a new steroid from the marine-derived fungus Penicillium sp. ZYX-Z-143. Nat. Prod. Res. 2024, 1–8. [Google Scholar] [CrossRef]
- Kong, Y.; Fu, Y.-J.; Zu, Y.-G.; Chang, F.-R.; Chen, Y.-H.; Liu, X.-L.; Stelten, J.; Schiebel, H.-M. Cajanuslactone, a new coumarin with anti-bacterial activity from pigeon pea [Cajanus cajan (L.) Millsp.] leaves. Food Chem. 2010, 121, 1150–1155. [Google Scholar] [CrossRef]
- Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; Arora, S. Umbelliferone—An antioxidant isolated from Acacia nilotica (L.) Willd. Ex. Del. Food Chem. 2010, 120, 825–830. [Google Scholar] [CrossRef]
- Ahn, J.H.; Park, Y.; Jo, Y.H.; Kim, S.B.; Yeon, S.W.; Kim, J.G.; Turk, A.; Song, J.Y.; Kim, Y.; Hwang, B.Y.; et al. Organic acid conjugated phenolic compounds of hardy kiwifruit (Actinidia arguta) and their NF-κB inhibitory activity. Food Chem. 2020, 308, 125666. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.A.; Lee, J.H.; Zhang, R.; Piao, M.J.; Chung, H.S.; Hyun, J.W. Oryzadine, a new alkaloid of Oryza sativa cv. Heugjinjubyeo, attenuates oxidative stress-induced cell damage via a radical scavenging effect. Food Chem. 2010, 119, 1135–1142. [Google Scholar] [CrossRef]
- Khan, M.K.; Zill-E-Huma; Dangles, O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal. 2014, 33, 85–104. [Google Scholar] [CrossRef]
- Xu, L.; Yang, Z.; Li, P.; Zhou, Y. Modulating effect of Hesperidin on experimental murine colitis induced by dextran sulfate sodium. Phytomedicine 2009, 16, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Hu, W.; Zhou, M.; Lin, F.; Xu, A. Caffeic acid derivative WSY6 protects melanocytes from oxidative stress by reducing ROS production and MAPK activation. Heliyon 2024, 10, e24843. [Google Scholar] [CrossRef] [PubMed]
- Guazelli, C.F.S.; Fattori, V.; Ferraz, C.R.; Borghi, S.M.; Casagrande, R.; Baracat, M.M.; Verri, W.A. Antioxidant and anti-inflammatory effects of hesperidin methyl chalcone in experimental ulcerative colitis. Chem.-Biol. Interact. 2021, 333, 109315. [Google Scholar] [CrossRef]
- Nakajima, H.; Itakura, M.; Kubo, T.; Kaneshige, A.; Harada, N.; Izawa, T.; Azuma, Y.-T.; Kuwamura, M.; Yamaji, R.; Takeuchi, T. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death. J. Biol. Chem. 2017, 292, 4727–4742. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Chu, S.-J.; Tang, S.-E.; Pao, H.-P.; Huang, K.-L.; Liao, W.-I. Monomethyl fumarate attenuates lung Ischemia/Reperfusion injury by disrupting the GAPDH/Siah1 signaling cascade. Int. Immunopharmacol. 2024, 137, 112488. [Google Scholar] [CrossRef]
- Liu, W.; Li, J.; Xu, S.; Wang, Y.; Li, J.; Wang, S.; Fu, L.; Jiang, M.; Bai, G. Phillyrin and its metabolites exert antipyretic effects by targeting the NAD+ binding domain of GAPDH, MDH2 and IDH2. Phytomedicine 2024, 134, 155955. [Google Scholar] [CrossRef]
- Wang, J.; Yu, X.; Cao, X.; Tan, L.; Jia, B.; Chen, R.; Li, J. GAPDH: A common housekeeping gene with an oncogenic role in pan-cancer. Comput. Struct. Biotechnol. J. 2023, 21, 4056–4069. [Google Scholar] [CrossRef]
- Afrin, S.; Giampieri, F.; Cianciosi, D.; Pistollato, F.; Ansary, J.; Pacetti, M.; Amici, A.; Reboredo-Rodríguez, P.; Simal-Gandara, J.; Quiles, J.L.; et al. Strawberry tree honey as a new potential functional food. Part 1: Strawberry tree honey reduces colon cancer cell proliferation and colony formation ability, inhibits cell cycle and promotes apoptosis by regulating EGFR and MAPKs signaling pathways. J. Funct. Foods 2019, 57, 439–452. [Google Scholar] [CrossRef]
- Javadi, S.; Zhiani, M.; Mousavi, M.A.; Fathi, M. Crosstalk between Epidermal Growth Factor Receptors (EGFR) and integrins in resistance to EGFR tyrosine kinase inhibitors (TKIs) in solid tumors. Eur. J. Cell Biol. 2020, 99, 151083. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Dai, J.; Fai, L.Y.; Yao, H.; Son, Y.-O.; Wang, L.; Pratheeshkumar, P.; Kondo, K.; Shi, X.; Zhang, Z. Constitutive Activation of Epidermal Growth Factor Receptor Promotes Tumorigenesis of Cr(VI)-transformed Cells through Decreased Reactive Oxygen Species and Apoptosis Resistance Development. J. Biol. Chem. 2015, 290, 2213–2224. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xie, J.; Xu, W.; Zhang, L.; Lin, H.; Huang, W. LPS-induced PTGS2 manipulates the inflammatory response through trophoblast invasion in preeclampsia via NF-κB pathway. Reprod. Biol. 2022, 22, 100696. [Google Scholar] [CrossRef]
- Lee, H.; Kang, C.; Jung, E.; Kim, J.-S.; Kim, E. Antimetastatic activity of polyphenol-rich extract of Ecklonia cava through the inhibition of the Akt pathway in A549 human lung cancer cells. Food Chem. 2011, 127, 1229–1236. [Google Scholar] [CrossRef]
- Wong, K.H.; Li, G.Q.; Li, K.M.; Razmovski-Naumovski, V.; Chan, K. Optimisation of Pueraria isoflavonoids by response surface methodology using ultrasonic-assisted extraction. Food Chem. 2017, 231, 231–237. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Hao, C.; Yunjia, Y.; Qin, L.; He, M.; Mao, W. Antiviral activity against enterovirus 71 of sulfated rhamnan isolated from the green alga Monostroma latissimum. Carbohydr. Polym. 2018, 200, 43–53. [Google Scholar] [CrossRef]
- Chen, M.-F.; Liou, S.-S.; Kao, S.-T.; Liu, I.-M. Erianin protects against high glucose-induced oxidative injury in renal tubular epithelial cells. Food Chem. Toxicol. 2019, 126, 97–105. [Google Scholar] [CrossRef]
Code | Citrus Part | Species | Source |
---|---|---|---|
CP | Citrus peel stored for 3 years | Citrus Reticulata ‘Chachi’ | Jiangmen, Guangdong, China |
PWS | Citrus pulp with seeds | Citrus Reticulata ‘Chachi’ | Jiangmen, Guangdong, China |
PU | Citrus pulp without seeds | Citrus Reticulata ‘Chachi’ | Jiangmen, Guangdong, China |
SE | Seeds | Citrus Reticulata ‘Chachi’ | Jiangmen, Guangdong, China |
Flavonoids | λ (nm) | Retention Time (min) | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|
Narirutin | 283 | 20.07 | 2.75 | 8.33 |
Hesperidin | 283 | 22.50 | 46.24 | 140.14 |
Neohesperidin | 283 | 24.09 | 0.06 | 0.18 |
Rutin | 283 | 25.32 | 4.65 | 80.68 |
Diosmin | 330 | 31.25 | 3.46 | 10.48 |
Didymin | 283 | 32.98 | 0.67 | 2.03 |
Hesperetin | 283 | 36.04 | 0.11 | 0.33 |
Diosmetin | 330 | 39.87 | 0.19 | 0.56 |
Sinensetin | 330 | 41.23 | 0.46 | 1.39 |
Nobiletin | 330 | 43.43 | 0.46 | 1.40 |
Tangeretin | 330 | 45.40 | 0.08 | 0.24 |
PU | PWS | CP | SE | |
---|---|---|---|---|
TPC (mg GAE/g DW) | 4.52 ± 0.51 b | 4.26 ± 0.27 b | 6.8 ± 0.13 a | 2.16 ± 0.42 c |
Narirutin (μg/g DW) | 864.92 ± 8.33 a | 746.06 ± 3.45 b | 290.27 ± 0.73 d | 410.04 ± 21.10 c |
Hesperidin (μg/g DW) | 7601.97 ± 140.13 a | 7543.86 ± 24.93 a | 5754.18 ± 350.74 b | 1617.39 ± 20.6 c |
Neohesperidin (μg/g DW) | NA b | NA b | 26.43 ± 0.18 a | NA b |
Rutin (μg/g DW) | NA c | 115.15 ± 14.10 b | NA c | 416.88 ± 18.01 a |
Diosmin (μg/g DW) | 219.20 ± 10.48 b | 140.58 ± 0.32 c | 631.24 ± 10.80 a | 127.20 ± 20.59 c |
Didymin (μg/g DW) | 359.66 ± 2.03 a | 287.54 ± 13.08 b | 105.17 ± 54.20 c | 157.76 ± 4.86 c |
Hesperetin (μg/g DW) | NA b | NA b | 57.87 ± 11.21 a | NA b |
Diosmetin (μg/g DW) | NA b | NA b | 47.84 ± 0.25 a | NA b |
Sinensetin (μg/g DW) | NA b | NA b | 189.74 ± 1.40 a | NA b |
Nobiletin (μg/g DW) | 11.17 ± 0.56 c | 12.25 ± 0.28 c | 3585.99 ± 26.70 a | 43.33 ± 0.72 b |
Tangeretin (μg/g DW) | 17.99 ± 1.39 c | 23.90 ± 0.30 c | 2393.86 ± 20.61 a | 47.65 ± 3.82 b |
ABTS (µmol Trolox/g DW) | 1.00 ± 0.004 b | 0.97 ± 0.002 c | 1.02 ± 0.001 a | 0.91 ± 0.002 d |
DPPH (µmol Trolox/g DW) | 0.5 ± 0.004 b | 0.47 ± 0.001 c | 0.56 ± 0.002 a | 0.23 ± 0.006 d |
FRAP (µmol Trolox/g DW) | 0.64 ± 0.004 b | 0.53 ± 0.003 c | 1.12 ± 0.003 a | 0.42 ± 0.005 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Sun, T.; Jiang, S.; Xiao, Z.; Shan, Y.; Li, T.; Pan, Z.; Li, Q.; Fu, F. Antioxidant Effects and Potential Mechanisms of Citrus reticulata ‘Chachi’ Components: An Integrated Approach of Network Pharmacology and Metabolomics. Foods 2024, 13, 4018. https://doi.org/10.3390/foods13244018
Xiao J, Sun T, Jiang S, Xiao Z, Shan Y, Li T, Pan Z, Li Q, Fu F. Antioxidant Effects and Potential Mechanisms of Citrus reticulata ‘Chachi’ Components: An Integrated Approach of Network Pharmacology and Metabolomics. Foods. 2024; 13(24):4018. https://doi.org/10.3390/foods13244018
Chicago/Turabian StyleXiao, Jiahao, Tian Sun, Shengyu Jiang, Zhiqiang Xiao, Yang Shan, Tao Li, Zhaoping Pan, Qili Li, and Fuhua Fu. 2024. "Antioxidant Effects and Potential Mechanisms of Citrus reticulata ‘Chachi’ Components: An Integrated Approach of Network Pharmacology and Metabolomics" Foods 13, no. 24: 4018. https://doi.org/10.3390/foods13244018
APA StyleXiao, J., Sun, T., Jiang, S., Xiao, Z., Shan, Y., Li, T., Pan, Z., Li, Q., & Fu, F. (2024). Antioxidant Effects and Potential Mechanisms of Citrus reticulata ‘Chachi’ Components: An Integrated Approach of Network Pharmacology and Metabolomics. Foods, 13(24), 4018. https://doi.org/10.3390/foods13244018