Valorizing Astringent ‘Rojo Brillante’ Persimmon Through the Development of Persimmon-Based Bars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bars Preparation
2.2. Proximate Composition
2.3. Mechanical Properties
2.4. Optical Properties
2.5. Soluble Tannin Content (STC)
2.6. Total Carotenoid Content (TCC)
2.7. Antioxidant Activity (FRAP and DPPH)
2.8. In Vitro Digestion
2.9. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of the Bars
3.2. Mechanical Properties
3.3. Optical Properties
3.4. Soluble Tannin Content (STC) and Antioxidant Activity
3.5. Total Carotenoid Content (TCC) and Antioxidant Activity
3.6. Effect of In Vitro Digestion on STC, TCC and Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aljaloud, S.; Colleran, H.L.; Ibrahim, S.A. Nutritional Value of Date Fruits and Potential Use in Nutritional Bars for Athletes. Food Nutr. Sci. 2020, 11, 463–480. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Teoh, A.; Massarotto, C.; Wibisono, R.; Wadhwa, S. Comparative Analysis of Fruit-Based Functional Snack Bars. Food Chem. 2010, 119, 1369–1379. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Available online: https://www.mapa.gob.es/es/estadistica/temas/estadistica-digital/powerbi-cultivos.aspx (accessed on 1 October 2024).
- Son, E.J.; Hwang, M.K.; Lee, E.; Seo, S.G.; Kim, J.; Jung, S.K.; Kim, J.R.; Ahn, G.; Lee, K.W.; Joo, H. Persimmon Peel Extract Attenuates PDGF-BB-Induced Human Aortic Smooth Muscle Cell Migration and Invasion through Inhibition of c-Src Activity. Food Chem. 2013, 141, 3309–3316. [Google Scholar] [CrossRef] [PubMed]
- Kamimoto, M.; Nakai, Y.; Tsuji, T.; Shimamoto, T.; Shimamoto, T. Antiviral Effects of Persimmon Extract on Human Norovirus and Its Surrogate, Bacteriophage MS2. Food Sci. 2014, 79, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, Y.; Li, R.; Bi, X.; Liao, X. Effects of High Hydrostatic Pressure and High Temperature Short Time on Antioxidant Activity, Antioxidant Compounds and Color of Mango Nectars. Innov. Food Sci. Emerg. Technol. 2014, 21, 35–43. [Google Scholar] [CrossRef]
- González, C.M.; García, A.L.; Llorca, E.; Hernando, I.; Pedro, A.; Bermejo, A.; Moraga, G.; Quiles, A. Carotenoids in Dehydrated Persimmon: Antioxidant Activity, Structure, and Photoluminescence. LWT 2021, 142, 111007. [Google Scholar] [CrossRef]
- Hosseininejad, S.; Larrea, V.; Moraga, G.; Hernando, I. Evaluation of the Bioactive Compounds, and Physicochemical and Sensory Properties of Gluten-Free Muffins Enriched with Persimmon ‘Rojo Brillante’ Flour. Foods 2022, 11, 3357. [Google Scholar] [CrossRef]
- Tessmer, M.A.; Besada, C.; Hernando, I.; Appezzato-da-Glória, B.; Quiles, A.; Salvador, A. Microstructural Changes While Persimmon Fruits Mature and Ripen. Comparison between Astringent and Non-Astringent Cultivars. Postharvest Biol. Technol. 2016, 120, 52–60. [Google Scholar] [CrossRef]
- Arnal, L.; Del Río, M.A. Removing Astringency by Carbon Dioxide and Nitrogen-Enriched Atmospheres in Persimmon Fruit Cv. “Rojo Brillante”. J. Food Sci. 2003, 68, 1516–1518. [Google Scholar] [CrossRef]
- Salvador, A.; Arnal, L.; Besada, C.; Larrea, V.; Hernando, I.; Pérez-Munuera, I. Reduced Effectiveness of the Treatment for Removing Astringency in Persimmon Fruit When Stored at 15 °C: Physiological and Microstructural Study. Postharvest Biol. Technol. 2008, 49, 340–347. [Google Scholar] [CrossRef]
- González, M.; Hernando, I.; Moraga, G. Influence of Ripening Stage and De-Astringency Treatment on the Production of Dehydrated Persimmon Snacks. J. Sci. Food Agric. 2021, 101, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Castelló, M.; Heredia, A.; Domínguez, E.; Ortolá, M.; Tarrazó, J. Influence of Thermal Treatment and Storage on Astringency and Quality of a Spreadable Product from Persimmon Fruit. Food Chem. 2011, 128, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Parna, O.J.; Bhat, R.; Yeoh, T.K.; Al-Hassan, A.A. Development of Novel Fruit Bars by Utilizing Date Paste. F ood Biosci. 2015, 9, 20–22. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Fidan, H.; Aljaloud, S.O.; Stankov, S. Application of Date (Phoenix dactylifera L.) Fruit in the Composition of a Novel Snack Bar. Foods 2021, 10, 918. [Google Scholar] [CrossRef] [PubMed]
- Leguizamon-Delgado, M.A.; Duque-Cifuentes, A.L.; Quintero-Castaño, V.D. Physico-Chemical and Sensory Evaluation of a Mango-Based Fruit Bar. Dyna 2019, 86, 276–283. [Google Scholar] [CrossRef]
- Kumar, A.L.; Madhumathi, C.; Sadarunnisa, S.; Latha, P. Quality Evaluation and Storage Study of Papaya Guava Fruit Bar. J. Pharmacogn. Phytochem. 2017, 6, 2082–2087. [Google Scholar]
- Polmann, G.; Badia, V.; Danielski, R.; Salvador, S.R.; Block, J.M. Nuts and Nut-Based Products: A Meta-Analysis from Intake Health Benefits and Functional Characteristics from Recovered Constituents. Food Rev. Int. 2023, 39, 5021–5047. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Lin, H.; Lin, Z. Hazelnut and Its By-Products: A Comprehensive Review of Nutrition, Phytochemical Profile, Extraction, Bioactivities and Applications. Food Chem. 2023, 413, 135576. [Google Scholar] [CrossRef]
- Olivos-Lugo, B.; Valdivia-Lo´pez, M.A.; Tecante, A. Thermal and Physicochemical Properties and Nutritional Value of the Protein Fraction of Mexican Chia Seed (Salvia hispanica L.). Food Sci. Technol. Int. 2010, 16, 89–96. [Google Scholar] [CrossRef]
- Kosarsoy Agçeli, G. A New Approach to Nanocomposite Carbohydrate Polymer Films: Levan and Chia Seed Mucilage. Biol. Macromol. 2022, 218, 751–759. [Google Scholar] [CrossRef]
- de Morais, V.N.; Gomes, M.J.C.; Grancieri, M.; de Paula Dias Moreira, L.; Toledo, R.C.L.; Costa, N.M.B.; da Silva, B.P.; Martino, H.S.D. Chia (Salvia hispanica L.) Flour Modulates the Intestinal Microbiota in Wistar Rats Fed a High-Fat and High-Fructose Diet. Food Res. Int. 2023, 172, 113095. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analytical of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990; Available online: https://www.aoac.org/ (accessed on 20 September 2023).
- Bhat, R.; Sridhar, K.R. Nutritional Quality Evaluation of Electron Beam-Irradiated Lotus (Nelumbo nucifera) Seeds. Food Chem. 2008, 107, 174–184. [Google Scholar] [CrossRef]
- Arnal, L.; Del Río, M.A. Effect of Cold Storage and Removal Astringency on Quality of Persimmon Fruit (Diospyros kaki L.) Cv. Rojo Brillante. Food Sci. Technol. Int. 2004, 10, 179–185. [Google Scholar] [CrossRef]
- Nath, P.; Kale, S.J.; Kaur, C.; Chauhan, O.P. Phytonutrient Composition, Antioxidant Activity and Acceptability of Muffins Incorporated with Red Capsicum Pomace Powder. J. Food Sci. Technol. 2018, 55, 2208–2219. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of Antioxidant Power: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Matsumura, Y.; Ito, T.; Yano, H.; Kita, E.; Mikasa, K.; Okada, M.; Furutani, A.; Murono, Y.; Shibata, M.; Nishii, Y.; et al. Antioxidant Potential in Non-Extractable Fractions of Dried Persimmon (Diospyros kaki Thunb.). Food Chem. 2016, 202, 99–103. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static In Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- González, C.M.; Llorca, E.; Quiles, A.; Hernando, I.; Moraga, G. An In Vitro Digestion Study of Tannins and Antioxidant Activity Affected by Drying “Rojo Brillante” Persimmon. LWT 2022, 155, 112961. [Google Scholar] [CrossRef]
- Lucas-González, R.; Viuda-Martos, M.; Pérez Álvarez, J.A.; Fernández-López, J. Changes in Bioaccessibility, Polyphenol Profile and Antioxidant Potential of Flours Obtained from Persimmon Fruit (Diospyros kaki) Co-Products during In Vitro Gastrointestinal Digestion. Food Chem. 2018, 256, 252–258. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Agahari, R.P.; Khurdiya, D.S.; Lata; Kaur, C.; Kapoor, H. Antioxidant Activity and Quality of Soy Enriched Apple Bar. Food Pro. Preserv. 2004, 28, 145–159. [Google Scholar] [CrossRef]
- Lucas-González, R.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. Antioxidant Potential and Quality Characteristics of Mediterranean Fruit-Based Extruded Snacks. Int. J. Food Sci. Technol. 2016, 51, 2674–2681. [Google Scholar] [CrossRef]
- Danalache, F.; Carvalho, C.Y.; Brito, L.; Mata, P.; Moldao-Martin, M.; Alves, V.D. Effect of Thermal and High Hydrostatic Pressure Treatments on Mango Bars Shelf-Life under Refrigeration. J. Food Eng. 2017, 212, 113–120. [Google Scholar] [CrossRef]
- Ahmad, S.; Vashney, A.; Srivasta, P. Quality Attributes of Fruit Bar Made from Papaya and Tomato by Incorporating Hydrocolloids S. Int. J. Food Prop. 2007, 8, 88–99. [Google Scholar] [CrossRef]
- Verma, R.; Bisen, B.P. Studies on Sensory Evaluation of Guava and Papaya Mixed Fruit Bar during Storage. Pharmacogn. Phytochem. 2020, 9, 1052–1056. [Google Scholar]
- González, C.M.; Gil, R.; Moraga, G.; Salvador, A. Natural Drying of Astringent and Non-Astringent Persimmon “Rojo Brillante”. Drying Kinetics and Physico-Chemical Properties. Foods 2021, 10, 647. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, J.; Bi, J.; Li, X.; Xin, G. The Roles of Soluble Poly and Insoluble Tannin in the Enzymatic Browning during Storage of Dried Persimmon. Food Chem. 2022, 366, 130632. [Google Scholar] [CrossRef]
- Safdar, M.N.; Kausar, T.; Nadeem, M.; Murtaza, M.; Sohail, S.; Mumtaz, A.; Siddiqui, N.; Jabbar, S.; Afzal, S. Extraction of Phenolic Compounds from (Mangifera indica L.) and Kinnow (Citrus reticulate L.) Peels for the Development of Functional Fruit Bars. Food Sci. Technol. 2021, 42, e09321. [Google Scholar] [CrossRef]
- Persic, M.; Mikulic-petkovsek, M.; Slatnar, A.; Solar, A.; Veberic, R. Changes in Phenolic pro Fi Les of Red-Colored Pellicle Walnut and Hazelnut Kernel during Ripening. Food Chem. 2018, 252, 349–355. [Google Scholar] [CrossRef]
- Porras-loaiza, P.; Jim, T.J.-M.; Sosa-morales, M.E.; Palou, E.; Lopez-Malo, A. Original Article Physical Properties, Chemical Characterization and Fatty Acid Composition of Mexican Chia (Salvia hispanica L.) Seeds. Int. J. Food Sci. Technol. 2014, 49, 571–577. [Google Scholar] [CrossRef]
- Bodoira, R.M.; Penci, M.C.; Ribotta, P.D.; Martínez, M.L. Chia (Salvia hispanica L.) Oil Stability: Study of the Effect of Natural Antioxidants. LWT 2017, 75, 107–113. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G.; Jankowska, A. Antioxidant Properties, Profile of Polyphenolic Compounds and Tocopherol Content in Various Walnut (Juglans regia L.) Varieties. Eur. Food Res. Technol. 2019, 245, 607–616. [Google Scholar] [CrossRef]
- Song, J.; Wei, Q.; Wang, X.; Li, D.; Liu, C.; Zhang, M. Degradation of Carotenoids in Dehydrated Pumpkins as a Ff Ected by Di Ff Erent Storage Conditions. Food Res. Int. 2018, 107, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Vondráková, Z.; Trávníčková, A.; Malbeck, J.; Haisel, D.; Černý, R.; Cvikrová, M. The Effect of Storage Conditions on the Carotenoid and Phenolic Acid Contents of Selected Apple Cultivars. Eur. Food Res. Technol. 2020, 246, 1783–1794. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G. Impact of the Degree of Maturity of Walnuts (Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules 2019, 24, 2936. [Google Scholar] [CrossRef]
- Ortega, N.; Macià, A.; Romero, M.; Reguant, J.; Motilva, M. Matrix Composition Effect on the Digestibility of Carob Flour Phenols by an In-Vitro Digestion Model. Food Chem. 2011, 124, 65–71. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Pasli, A.A.; Ozcelik, B.; Van Camp, J.; Capanoglu, E. Colour Retention, Anthocyanin Stability and Antioxidant Capacity in Black Carrot (Daucus carota) Jams and Marmalades: Effect of Processing, Storage Conditions and in Vitro Gastrointestinal Digestion. J. Funct. Foods 2015, 13, 1–10. [Google Scholar] [CrossRef]
- Desmarchelier, C.; Borel, P. Overview of Carotenoid Bioavailability Determinants: From Dietary Factors to Host Genetic Variations. Trends Food Sci. Technol. 2017, 69, 270–280. [Google Scholar] [CrossRef]
Macronutrients | (g/100 g) |
---|---|
Moisture | 28.83 ± 1.24 |
Fat | 22.80 ± 0.83 |
Carbohydrate | 39.37 ± 1.41 |
-Sugar | 26.60 ± 1.27 |
-Fiber | 5.80 ± 0.38 |
Protein | 7.40 ± 0.63 |
Ash | 1.60 ± 0.09 |
t (weeks) | F(N) | L* | C* | h* | ΔE* |
---|---|---|---|---|---|
0 | 7.82 a ± 0.72 | 37.24 a ± 1.26 | 24.63 a ± 1.68 | 75.29 a ± 0.66 | - |
1 | 10.27 b ± 0.74 | 32.27 b ± 0.97 | 14.84 b ± 0.66 | 68.30 b ± 1.41 | 11.23 |
2 | 12.32 c ± 1.05 | 28.46 c ± 1.09 | 12.02 c ± 1.24 | 64.93 c ± 1.63 | 15.79 |
3 | 12.98 c ± 0.70 | 30.4 c ± 1.57 | 12.9 c ± 0.93 | 67.07 b ± 3.19 | 13.83 |
4 | 10.55 b ± 0.65 | 29.85 c ± 1.03 | 11.68 c ± 0.52 | 63.55 c ± 2.74 | 15.31 |
t (Weeks) | STC (mg GAE/100 g) | FRAP (µmol Trolox /g) | DPPH (Inhibition %) |
---|---|---|---|
0 | 78.41 a ± 1.67 | 11.12 a ± 0.28 | 90.44 a ± 1.43 |
1 | 70.55 b ± 3.22 | 8.46 b ± 0.55 | 64.79 b ± 2.56 |
2 | 57.01 c ± 6.89 | 6.84 c ± 0.47 | 44.85 c ± 1.33 |
3 | 50.61 c ± 6.05 | 6.24 c ± 0.53 | 43.91 c ± 4.24 |
4 | 37.25 d ± 2.46 | 6.54 c ± 0.45 | 35.02 d ± 2.46 |
t (Weeks) | TCC (mg β-Carotene/100 g) | DPPH (Inhibition %) |
---|---|---|
0 | 77.87 a ± 2.67 | 32.60 a ± 5.68 |
1 | 75.78 a ± 11.26 | 33.61 a ± 5.54 |
2 | 73.72 a ± 3.34 | 51.81 b ± 7.21 |
3 | 72.79 a ± 7.43 | 40.38 a ± 3.44 |
4 | 69.33 a ± 4.31 | 33.61 a ± 5.54 |
After In Vitro Digestion | |
---|---|
STC (mg GAE/100 g) | 141.21 ± 4.11 |
FRAP-s (µmol Trolox/g) | 15.74 ± 1.03 |
DPPH-s (inhibition %) | 38.32 ± 3.36 |
RI% STC | 180.08 |
TCC (mg β-carotene/100 g) | 7.69 ± 0.74 |
DPPH-c (inhibition%) | 44.23 ± 13.95 |
RI% TCC | 9.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseininejad, S.; Moraga, G.; Hernando, I. Valorizing Astringent ‘Rojo Brillante’ Persimmon Through the Development of Persimmon-Based Bars. Foods 2024, 13, 3748. https://doi.org/10.3390/foods13233748
Hosseininejad S, Moraga G, Hernando I. Valorizing Astringent ‘Rojo Brillante’ Persimmon Through the Development of Persimmon-Based Bars. Foods. 2024; 13(23):3748. https://doi.org/10.3390/foods13233748
Chicago/Turabian StyleHosseininejad, Sepideh, Gemma Moraga, and Isabel Hernando. 2024. "Valorizing Astringent ‘Rojo Brillante’ Persimmon Through the Development of Persimmon-Based Bars" Foods 13, no. 23: 3748. https://doi.org/10.3390/foods13233748
APA StyleHosseininejad, S., Moraga, G., & Hernando, I. (2024). Valorizing Astringent ‘Rojo Brillante’ Persimmon Through the Development of Persimmon-Based Bars. Foods, 13(23), 3748. https://doi.org/10.3390/foods13233748