State of Food and Nutritional Security of Urban Households in Grand Lome: Approach by Measuring Household Indicators
Abstract
1. Introduction
- ▪
- Identify the factors influencing food and nutritional security in Grand Lome;
- ▪
- Assess household food security indicators in Grand Lome;
- ▪
- Analyzing indicators of the nutritional status of children under 5 years old in Grand Lome.
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Data Collection, Processing, and Analysis Tools
2.2. Determining Sample Size and Drawing the Sample
2.2.1. Calculate the Optimal Sample Size
- -
- A 95% confidence level (in this case, z = 1.96);
- -
- The recent prevalence of households with a poor and borderline food consumption score (DSID-CILSS survey, September 2022) is 25% for Agoé-Nyivé and 30% for the prefecture of Golfe;
- -
- A cluster effect (k) of 1.5; a value similar to those of other surveys of this type carried out in Togo and which is quite close to the default value (2) most often recommended in classic surveys;
- -
- A desired minimum accuracy (d) of 8.5%;
- -
- A TNR of around 2% similar to that of other surveys of this type carried out recently in Togo.
- -
- Necessary readjustments have been made to certain parameters (minimum precision instead of 5%, non-response rate 2% instead of 0%), taking into account available resources;
- -
- Due to the non-proportional distribution of the sample among the different strata or areas of interest for this survey and taking into account the different response rates to the survey by stratum, sampling weights are necessary in all analyses to ensure that the sample is representative of Grand Lome.
2.2.2. Sample Drawing
2.3. Data Collection, Processing, and Analysis
- -
- An effective system of close supervision of field agents’ work;
- -
- Rigorous monitoring/control of the quality of the raw data collected and transmitted daily to the Kobo server. By centralizing the data collected on the Kobo server, it was possible to carry out analyses in near-real time and to carry out daily checks on the consistency and quality of the questionnaires/interview guides filled in—all the while assessing the performance of the agents in the field, as well as the overall progress of the data collection work in line with the provisional schedule of activities.
2.4. Construction of Indicators
2.4.1. Food Consumption Score (FCS)
SCA | Food Consumption Score |
xi | Food consumption frequencies = number of days that the food was consumed in the last 7 days (for the same food group, this number cannot exceed 7) |
have | Weight of each food group |
Source: CILSS, 2019. |
2.4.2. Household Dietary Diversity Score (HDDS)
- Calculation of the household dietary diversity score (HDDS)
- -
- Group all food products into specific groups if necessary;
- -
- For each group, create a new binomial variable that is equal to 1 if the household/individual consumed the given product group and 0 if not;
- -
- Add up the values of the different groups to obtain the HDDS;
- -
- The new variable should range from 0 to the maximum number of 12 product groups collected.
2.4.3. Share of Food Expenditure
2.4.4. Dietary Coping Strategies Index (rCSI)
2.4.5. Livelihood-Based Adaptation Strategies Index (LBASI)
- ➢
- Indicator estimation approach—ISAME
2.4.6. Anthropometric Indices
- ➢
- Classification of the severity of acute malnutrition
- -
- Moderate acute malnutrition (MAM): <−2 z-score and >=−3 z-score, without edema;
- -
- Severe acute malnutrition (SAM): <−3 z-score and/or edema;
- -
- Global acute malnutrition (GAM): <−2 z-score and/or edema is the sum of the two degrees of acute malnutrition in the population: MAM and MAS = MAG.
3. Results
3.1. Factors Influencing Food and Nutrition Security
3.1.1. Main Shocks Suffered by Households
3.1.2. Income Drop for the Majority of Households in Grand Lome
3.2. Measurement of Household Food Security Indicators
3.2.1. Main Food Groups Consumed by Households and Their Origin
3.2.2. Acceptable Food Consumption Score in Grand Lome
3.2.3. Low Dietary Diversity of Households in Grand Lome
3.2.4. Share of Food Expenditure
- ▪
- Below < 50%, the households concerned are food secure;
- ▪
- Equal to 50% and less than 75%, the households concerned are classified as moderately food insecure;
- ▪
- Greater than or equal to 75%, the households concerned are classified as severely food insecure.
3.2.5. Implementation of Adaptation Strategies by Households in the Face of Food Insecurity
Reduced Food Strategy Index (rCSI) of Households in Grand Lome
Implementation of Livelihood-Based Adaptation Strategies (ISAME) by Households in Grand Lome
3.3. Nutritional Status of Children under 5 Years of Age That Is Generally Acceptable in Grand Lome
4. Discussion
4.1. Factors Influencing Household Food and Nutritional Security in Grand Lome
4.2. Measuring Household Food Security in Grand Lome
- Coping strategies developed by households
4.3. Impact on the Nutritional Status of Children Aged 6 to 59 Months
- Study limitations
- ♦
- In relation to the data collection period: Although this study has produced some interesting results, it is necessary to bear in mind that some results may be influenced by seasonal factors linked to the data collection period. The data were collected in a post-harvest period (a period of abundance of food products). The situation could be worse during the lean season (June to August) when food prices take a turn for the worse;
- ♦
- With regard to the degree of precision: The results of the data collected from households are precise enough (8.5%) to provide estimates for the prefectures and Greater Lomé. However, the results cannot be estimated at a national level, given the relatively small sample size (310 households);
- ♦
- With regard to data collection: It is true that professional interviewers were recruited for data collection and that they had a good understanding of the French version of the questionnaire, as well as a good command of the local languages spoken in their areas of assignment. In addition, they had been given training, including sessions simulating data collection tools in local languages, in order to reduce any bias inherent in misinterpreting questions or concepts. However, it is possible that some mistakes were made when translating the questionnaire into local languages, as it was in French and had to be administered most of the time in local languages.
5. Conclusions
- -
- Contribute to facilitating access to food products by urban households, especially the most vulnerable, by pooling efforts in order to implement joint solutions to the widespread rise in food prices, the high cost of living and the major food and nutritional crisis facing the region and particularly Greater Lomé through access to stable jobs such as salaried employment, facilities in the creation of small- and medium-sized enterprises, and the subsidization of basic food product prices;
- -
- Promote local dishes by proposing culinary recipes that will help improve household consumption and food diversity. This can be achieved by improving the production of low-consumption food groups, strengthening marketing and distribution systems gains, and raising people’s awareness of their nutritional importance;
- -
- Continue the monitoring of food security, livelihoods, and population resilience in urban areas by state technical services in order to facilitate alerts in the event of a food crisis situations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Caractéristiques Socioéconomiques | Pauvre | Limite | Acceptable | Total | Signification Asymptotique (Bilatérale | |||
---|---|---|---|---|---|---|---|---|
PREFECTURE | GOLFE | 5.7% | 30.4% | 63.9% | 100.0% | 18.277 | 0.000 | *** |
AGOE-NYIVE | 0.7% | 15.1% | 84.2% | 100.0% | ||||
8.2 Sexe du chef de ménage | Masculin | 2.8% | 23.4% | 73.8% | 100.0% | 0.753 | 0.686 | |
Féminin | 4.8% | 21.0% | 74.2% | 100.0% | ||||
Tranche d’âge | <=25 | 0.0% | 40.0% | 60.0% | 100.0% | 10.774 | 0.375 | |
[26–35] | 2.2% | 21.3% | 76.4% | 100.0% | ||||
[36–45] | 2.7% | 16.8% | 80.5% | 100.0% | ||||
[46–55] | 6.0% | 29.9% | 64.2% | 100.0% | ||||
[56–65] | 5.9% | 23.5% | 70.6% | 100.0% | ||||
66+ | 0.0% | 35.7% | 64.3% | 100.0% | ||||
Statut matrimonial du chef de ménage | Marié(e) | 3.0% | 21.6% | 75.4% | 100.0% | 3.393 | 0.758 | |
Séparé(e)/Divorcé(e) | 3.8% | 23.1% | 73.1% | 100.0% | ||||
Veuf(ve) | 3.2% | 22.6% | 74.2% | 100.0% | ||||
Célibataire | 4.8% | 38.1% | 57.1% | 100.0% | ||||
Nombre totale de personnes dans le ménage | 1 à 3 personnes | 5.0% | 26.3% | 68.8% | 100.0% | 4.002 | 0.676 | |
4 à 6 personnes | 2.2% | 21.1% | 76.8% | 100.0% | ||||
7 à 9 personnes | 5.3% | 26.3% | 68.4% | 100.0% | ||||
10 personnes et plus | 0.0% | 14.3% | 85.7% | 100.0% | ||||
2.1-Quels sont les chocs les plus graves auxquels le ménage a été confronté au cours des 12 derniers mois? | Aucun_choc | 2.4% | 21.2% | 76.3% | 100.0% | 22.306 | 0.034 | ** |
Maladie_deces | 5.0% | 30.0% | 65.0% | 100.0% | ||||
Perte_emploi | 50.0% | 50.0% | 0.0% | 100.0% | ||||
Prix_eleve_aliment | 0.0% | 44.4% | 55.6% | 100.0% | ||||
Prix_eleve_carburant | 6.9% | 24.1% | 69.0% | 100.0% | ||||
Inondation_pluies_diluviennes | 0.0% | 33.3% | 66.7% | 100.0% | ||||
Incendie | 0.0% | 0.0% | 100.0% | 100.0% | ||||
3.1-Quelle est la principale activité génératrice de revenu? | Commerce | 2.5% | 21.3% | 76.3% | 100.0% | 16.055 | 0.310 | |
Artisanat (Tailleur, couturier, coifeuse…) | 6.2% | 22.7% | 71.1% | 100.0% | ||||
Agent de la fonction publique | 4.2% | 4.2% | 91.7% | 100.0% | ||||
Agent d’une administration privée | 3.1% | 18.8% | 78.1% | 100.0% | ||||
Retraité | 0.0% | 21.4% | 78.6% | 100.0% | ||||
Profession libérale | 0.0% | 33.3% | 66.7% | 100.0% | ||||
Transport (y compris taxi moto) | 0.0% | 38.5% | 61.5% | 100.0% | ||||
Autre activité | 0.0% | 28.6% | 71.4% | 100.0% | ||||
3.3-Avez-vous une activité secondaire génératrice de revenu? | Oui | 5.7% | 19.3% | 75.0% | 100.0% | 3.009 | 0.222 | |
Non | 2.3% | 24.3% | 73.4% | 100.0% | ||||
Total | 3.2% | 22.9% | 73.9% | 100.0% |
Caractéristiques Socioéconomiques | Groupe de Score de Diversité Alimentaire | Total | Tests du Khi-Carré | |||||
---|---|---|---|---|---|---|---|---|
Diversité Faible | Diversité Moyenne | Diversité Élevée | Valeur | ddl | Signification Asymptotique (Bilatérale) | |||
Préfecture | GOLFE | 11.4% | 60.8% | 27.8% | 100.0% | 0.091 | 2 | 0.955 |
AGOE-NYIVE | 12.5% | 59.9% | 27.6% | 100.0% | ||||
Sexe du chef de ménage | Masculin | 12.5% | 58.5% | 29.0% | 100.0% | 1.782 | 2 | 0.410 |
Féminin | 9.7% | 67.7% | 22.6% | 100.0% | ||||
Tranche d’âge | <=25 | 90.0% | 10.0% | 100.0% | 12.803 | 10 | 0.235 | |
[26–35] | 10.1% | 66.3% | 23.6% | 100.0% | ||||
[36–45] | 13.3% | 51.3% | 35.4% | 100.0% | ||||
[46–55] | 16.4% | 59.7% | 23.9% | 100.0% | ||||
[56–65] | 11.8% | 64.7% | 23.5% | 100.0% | ||||
66+ | 71.4% | 28.6% | 100.0% | |||||
Statut matrimonial du chef de ménage | Marié(e) | 12.1% | 59.1% | 28.9% | 100.0% | 1.542 | 6 | 0.957 |
Séparé(e)/Divorcé(e) | 15.4% | 57.7% | 26.9% | 100.0% | ||||
Veuf(ve) | 9.7% | 67.7% | 22.6% | 100.0% | ||||
Célibataire | 9.5% | 66.7% | 23.8% | 100.0% | ||||
Niveau d’instruction du chef de ménage ** | Aucun | 16.0% | 80.0% | 4.0% | 100.0% | 20.693 | 10 | 0.023 |
Alphabétisé | 100.0% | 100.0% | ||||||
Coranique/Islamique | 50.0% | 50.0% | 100.0% | |||||
Primaire | 14.7% | 67.6% | 17.6% | 100.0% | ||||
Secondaire | 12.5% | 57.9% | 29.6% | 100.0% | ||||
Supérieur/Universitaire | 6.9% | 50.0% | 43.1% | 100.0% | ||||
Nombre totale de personnes dans le ménage | 1 à 3 personnes | 17.5% | 61.3% | 21.3% | 100.0% | 10.369 | 6 | 0.110 |
4 à 6 personnes | 8.1% | 61.6% | 30.3% | 100.0% | ||||
7 à 9 personnes | 21.1% | 50.0% | 28.9% | 100.0% | ||||
10 personnes et plus | 71.4% | 28.6% | 100.0% | |||||
Quels sont les chocs les plus graves auxquels le ménage a été confronté au cours des 12 derniers mois? | Aucun_choc | 12.2% | 60.0% | 27.8% | 100.0% | 12.361 | 12 | 0.417 |
Maladie_deces | 15.0% | 70.0% | 15.0% | 100.0% | ||||
Perte_emploi | 50.0% | 50.0% | 100.0% | |||||
Prix_eleve_aliment | 88.9% | 11.1% | 100.0% | |||||
Prix_eleve_carburant | 10.3% | 51.7% | 37.9% | 100.0% | ||||
Inondation_pluies_diluviennes | 33.3% | 66.7% | 100.0% | |||||
Incendie | 50.0% | 50.0% | 100.0% | |||||
Quelle est la principale activité génératrice de revenu? | Commerce | 8.8% | 63.8% | 27.5% | 100.0% | 16.597 | 14 | 0.278 |
Artisanat (Tailleur, couturier, coiffeuse…) | 16.5% | 56.7% | 26.8% | 100.0% | ||||
Agent de la fonction publique | 4.2% | 50.0% | 45.8% | 100.0% | ||||
Agent d’une administration privée | 15.6% | 50.0% | 34.4% | 100.0% | ||||
Retraité | 78.6% | 21.4% | 100.0% | |||||
Profession libérale (Avocat, géomètre, Huissier…) | 33.3% | 66.7% | 100.0% | |||||
Transport (y compris taxi moto) | 12.8% | 66.7% | 20.5% | 100.0% | ||||
Autre activité | 14.3% | 71.4% | 14.3% | 100.0% | ||||
Avez-vous une activité secondaire génératrice de revenu ? * | Oui | 18.2% | 58.0% | 23.9% | 100.0% | 4.797 | 2 | 0.091 |
Non | 9.5% | 61.3% | 29.3% | 100.0% |
Caractéristiques Socioéconomiques | Groupe rCSI | Total | Tests du Khi-Carré | |||||
---|---|---|---|---|---|---|---|---|
Minimal | Stress | Crise | Valeur | ddl | Signification Asymptotique (Bilatérale) | |||
Préfecture * | GOLFE | 46.2% | 41.8% | 12.0% | 100.0% | 5.855 | 2 | 0.054 |
AGOE-NYIVE | 57.9% | 36.2% | 5.9% | 100.0% | ||||
8.2-Sexe du chef de ménage | Masculin | 53.6% | 38.3% | 8.1% | 100.0% | 2.138 | 2 | 0.343 |
Féminin | 45.2% | 41.9% | 12.9% | 100.0% | ||||
Tranche d’âge * | <=25 | 50.0% | 40.0% | 10.0% | 100.0% | 17.164 | 10 | 0.071 |
[26–35] | 60.7% | 34.8% | 4.5% | 100.0% | ||||
[36–45] | 53.1% | 39.8% | 7.1% | 100.0% | ||||
[46–55] | 37.3% | 43.3% | 19.4% | 100.0% | ||||
[56–65] | 64.7% | 29.4% | 5.9% | 100.0% | ||||
66+ | 42.9% | 50.0% | 7.1% | 100.0% | ||||
Statut matrimonial du chef de ménage | Marié(e) | 52.2% | 39.7% | 8.2% | 100.0% | 4.255 | 6 | 0.642 |
Séparé(e)/Divorcé(e) | 46.2% | 38.5% | 15.4% | 100.0% | ||||
Veuf(ve) | 45.2% | 45.2% | 9.7% | 100.0% | ||||
Célibataire | 66.7% | 23.8% | 9.5% | 100.0% | ||||
Niveau d’instruction du chef de ménage ** | Aucun | 28.0% | 48.0% | 24.0% | 100.0% | 22.071 | 10 | 0.015 |
Alphabétisé | 100.0% | 100.0% | ||||||
Coranique/Islamique | 83.3% | 16.7% | 100.0% | |||||
Primaire | 42.6% | 44.1% | 13.2% | 100.0% | ||||
Secondaire | 53.9% | 38.8% | 7.2% | 100.0% | ||||
Supérieur/Universitaire | 65.5% | 31.0% | 3.4% | 100.0% | ||||
Nombre totale de personnes dans le ménage ** | 1 à 3 personnes | 60.0% | 37.5% | 2.5% | 100.0% | 20.187 | 6 | 0.003 |
4 à 6 personnes | 53.0% | 38.9% | 8.1% | 100.0% | ||||
7 à 9 personnes | 34.2% | 42.1% | 23.7% | 100.0% | ||||
10 personnes et plus | 28.6% | 42.9% | 28.6% | 100.0% | ||||
Quels sont les chocs les plus graves auxquels le ménage a été confronté au cours des 12 derniers mois? | Aucun_choc | 52.7% | 38.0% | 9.4% | 100.0% | 18.429 | 12 | 0.103 |
Maladie_deces | 40.0% | 60.0% | 100.0% | |||||
Perte_emploi | 50.0% | 50.0% | 100.0% | |||||
Prix_eleve_aliment | 55.6% | 44.4% | 100.0% | |||||
Prix_eleve_carburant | 55.2% | 37.9% | 6.9% | 100.0% | ||||
Inondation_pluies_diluviennes | 66.7% | 33.3% | 100.0% | |||||
Incendie | 50.0% | 50.0% | 100.0% | |||||
Quelle est la principale activité génératrice de revenu? ** | Commerce | 53.8% | 40.0% | 6.3% | 100.0% | 31.111 | 14 | 0.005 |
Artisanat (Tailleur, couturier, coiffeuse…) | 44.3% | 44.3% | 11.3% | 100.0% | ||||
Agent de la fonction publique | 87.5% | 12.5% | 100.0% | |||||
Agent d’une administration privée | 59.4% | 28.1% | 12.5% | 100.0% | ||||
Retraité | 50.0% | 42.9% | 7.1% | 100.0% | ||||
Profession libérale (Avocat, géomètre, Huissier…) | 66.7% | 33.3% | 100.0% | |||||
Transport (y compris taxi moto) | 46.2% | 51.3% | 2.6% | 100.0% | ||||
Autre activité | 38.1% | 33.3% | 28.6% | 100.0% | ||||
Avez-vous une activité secondaire génératrice de revenu? | Oui | 47.7% | 38.6% | 13.6% | 100.0% | 3.308 | 2 | 0.191 |
Non | 53.6% | 39.2% | 7.2% | 100.0% | ||||
Total | 51,9% | 39.0% | 9.0% | 100.0% |
Caractéristiques Socioéconomiques | ISAME | Tests du Khi-Carré | |||||||
---|---|---|---|---|---|---|---|---|---|
Sans Strategie | Stress | Crise | Urgence | Valeur | ddl | Signification Asymptotique (Bilatérale) | |||
Préfecture * | GOLFE | 38.0% | 38.6% | 18.4% | 5.1% | 100.0% | 6.688 | 3 | 0.083 |
AGOE-NYIVE | 34.2% | 41.4% | 23.7% | 0.7% | 100.0% | ||||
Total | 36,1% | 40.0% | 21.0% | 2.9% | 100.0% | ||||
Sexe du chef de ménage | Masculin | 36.3% | 41.5% | 19.8% | 2.4% | 100.0% | 2.602 | 3 | 0.457 |
Féminin | 35.5% | 33.9% | 25.8% | 4.8% | 100.0% | ||||
Tranche d’âge ** | <=25 | 60.0% | 20.0% | 10.0% | 10.0% | 100.0% | 28.588 | 15 | 0.018 |
[26–35] | 30.3% | 50.6% | 18.0% | 1.1% | 100.0% | ||||
[36–45] | 38.9% | 37.2% | 17.7% | 6.2% | 100.0% | ||||
[46–55] | 29.9% | 34.3% | 35.8% | 100.0% | |||||
[56–65] | 52.9% | 35.3% | 11.8% | 100.0% | |||||
66+ | 42.9% | 42.9% | 14.3% | 100.0% | |||||
Statut matrimonial du chef de ménage | Marié(e) | 34.9% | 42.2% | 20.3% | 2.6% | 100.0% | 14.645 | 9 | 0.101 |
Séparé(e)/Divorcé(e) | 30.8% | 50.0% | 11.5% | 7.7% | 100.0% | ||||
Veuf(ve) | 35.5% | 29.0% | 35.5% | 100.0% | |||||
Célibataire | 57.1% | 19.0% | 19.0% | 4.8% | 100.0% | ||||
Niveau d’instruction du chef de ménage | Aucun | 36.0% | 36.0% | 20.0% | 8.0% | 100.0% | 19.033 | 15 | 0.212 |
Alphabétisé | 100.0% | 100.0% | |||||||
Coranique/Islamique | 50.0% | 50.0% | 100.0% | ||||||
Primaire | 25.0% | 39.7% | 32.4% | 2.9% | 100.0% | ||||
Secondaire | 38.2% | 43.4% | 15.8% | 2.6% | 100.0% | ||||
Supérieur/Universitaire | 43.1% | 32.8% | 22.4% | 1.7% | 100.0% | ||||
Nombre totale de personnes dans le ménage | 1 à 3 personnes | 43.8% | 38.8% | 15.0% | 2.5% | 100.0% | 13.485 | 9 | 0.142 |
4 à 6 personnes | 36.2% | 38.9% | 22.2% | 2.7% | 100.0% | ||||
7 à 9 personnes | 18.4% | 47.4% | 31.6% | 2.6% | 100.0% | ||||
10 personnes et plus | 42.9% | 42.9% | 14.3% | 100.0% | |||||
Quels sont les chocs les plus graves auxquels le ménage a été confronté au cours des 12 derniers mois? ** | Aucun_choc | 32.2% | 42.4% | 22.4% | 2.9% | 100.0% | 32.285 | 18 | 0.020 |
Maladie_deces | 40.0% | 50.0% | 10.0% | 100.0% | |||||
Perte_emploi | 50.0% | 50.0% | 100.0% | ||||||
Prix_eleve_aliment | 44.4% | 22.2% | 33.3% | 100.0% | |||||
Prix_eleve_carburant | 58.6% | 24.1% | 13.8% | 3.4% | 100.0% | ||||
Inondation_pluies_ diluviennes | 66.7% | 33.3% | 100.0% | ||||||
Incendie | 50.0% | 50.0% | 100.0% | ||||||
Quelle est la principale activité génératrice de revenu? ** | Commerce | 46.3% | 27.5% | 21.3% | 5.0% | 100.0% | 35.654 | 21 | 0.024 |
Artisanat (Tailleur, couturier, coifeuse…) | 26.8% | 45.4% | 23.7% | 4.1% | 100.0% | ||||
Agent de la fonction publique | 70.8% | 25.0% | 4.2% | 100.0% | |||||
Agent d’une administration privée | 34.4% | 43.8% | 21.9% | 100.0% | |||||
Retraité | 28.6% | 50.0% | 21.4% | 100.0% | |||||
Profession libérale (Avocat, géomètre, Huissier…) | 66.7% | 33.3% | 100.0% | ||||||
Transport (y compris taxi moto) | 17.9% | 53.8% | 28.2% | 100.0% | |||||
Autre activité | 38.1% | 42.9% | 14.3% | 4.8% | 100.0% | ||||
Avez-vous une activité secondaire génératrice de revenu? | Oui | 36.4% | 42.0% | 19.3% | 2.3% | 100.0% | 0.458 | 3 | 0.928 |
Non | 36.0% | 39.2% | 21.6% | 3.2% | 100.0% |
References
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.-C.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengård, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, eaai9214. [Google Scholar] [CrossRef] [PubMed]
- Nations Unies. Commission Economique pour l’Afrique; Commission de l’Union Africaine; Nations Unies Programme de Développement. Rapport sur le Développement Durable en Afrique; United NationsEconomic Commission for Africa: Addis Ababa, Ethiopia, 2022; p. 152. Available online: https://www.undp.org/sites/g/files/zskgke326/files/2023-06/asdr_2022-fr-full_report-final.pdf (accessed on 7 October 2024).
- FAO; FIDA; OMS; PAM; UNICEF. Résumé de L’État de la Sécurité Alimentaire et de la Nutrition dans le Monde 2023; FAO; IFAD; WHO; UNICEF; WFP: Rome, Italy, 2023; ISBN 978-92-5-137955-4. [Google Scholar]
- Bai, Y.; Bouscarat, J.; Sokourenko, K.; Heinrigs, P.; Zougbédé, K. Alimentation Saine, Coûts et Politiques Alimentaires au Sahel et en Afrique de l’Ouest; Notes Ouest-Africaines; 2023; Volume 39. Available online: https://www.oecd-ilibrary.org/development/alimentation-saine-couts-et-politiques-alimentaires-au-sahel-et-en-afrique-de-l-ouest_43a62f1d-fr (accessed on 7 October 2024).
- CILSS; CSAO/OCDE. Agir d’urgence pour sauver 31.7 millions de vies et bâtir un avenir sans crise alimentaire et nutritionnelle. In 39ème Réunion Annuelle du Réseau de Prévention des Crises Alimentaires (RPCA); Relevé Des Conclusions; 2023. Available online: https://www.inter-reseaux.org/evenement/39eme-reunion-annuelle-du-reseau-de-prevention-des-crises-alimentaires-rpca/ (accessed on 7 October 2024).
- CILSS; FSIN. Rapport Régional 2024 sur la Sécurité Alimentaire et Nutritionnelle au Sahel et en Afrique de l’Ouest; Niamey et Rome: Rome, Italy, 2024. [Google Scholar]
- Sebego, M. Rapport 2020 sur le dévéloppement durable en afrique de l’ouest. In Proceedings of the Vingt-Troisième Session du Comité Intergouvernemental de Hauts Fonctionnaires et d’Experts (23ième CIE), Niamey, Niger, 26–27 November 2020. [Google Scholar]
- Zaouaq, K. L’adaptation aux changements climatiques et la lutte contre l’insécurité alimentaire en Afrique de l’ouest. Afr. Durable 2030 2020, 68–83. Available online: https://hal.science/hal-02453545 (accessed on 7 October 2024).
- Yue, W.; Liu, Y.; Fan, P. Measuring urban sprawl and its drivers in large Chinese cities: The case of Hangzhou. Land Use Policy 2013, 31, 358–370. [Google Scholar] [CrossRef]
- Tonou, K.D. Dynamique Urbaine et Développement des Activités de rue à Agoè-Nyivé au Togo; Université de Lomé: Lomé, Togo, 2019. [Google Scholar]
- Liu, S.; Hou, M. Spatiotemporal Differences, Dynamic Evolution and Trend of the Coupled Coordination Relationship between Urbanization and Food Security in China. Foods 2022, 11, 2526. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Qi, H. Transforming urbanization development and ensuring national food security. Macroeconomics 2014, 8, 54–60. [Google Scholar]
- Kemajou, A.; Konou, A.A.; Jaligot, R.; Chenal, J. Analyzing four decades of literature on urban planning studies in Africa (1980–2020). Afr. Geogr. Rev. 2021, 40, 425–443. [Google Scholar] [CrossRef]
- INSEED. Distribution spatiale de la population résidente par sexe, Avril 2023. In Recensement Général de la Population et de l’Habitat (RGPH-5); INSEED: Togo, 2022; p. 9. [Google Scholar]
- Elodie, B.; Yves, M.-P. Mesure de la Vulnérabilité Alimentaire en Milieu Urbain Sahélien. Résultats de l’étude de Ouagadougou. Description et Evaluation de deux outils de Mesures de la Vulnérabilité Alimentaire; CILSS-IRD-MAE: 2008. Available online: http://portails.cilss.bf/nusapps/pdf/vamuouagafinal.pdf (accessed on 7 October 2024).
- van Wesenbeeck, C.F.A. Distinguer Sécurité Alimentaire Urbaine et Rurale en AFRIQUE de l’Ouest; Notes OUEST-AFRIcaines; OCDE: Paris, France, 2018; Volume 15. [Google Scholar]
- Dziwonou, Y. La géomatique cadastrale comme outil d’aide et de gestion urbaine en Afrique noire: Cas de Lomé. Cah. CERLESHS 2010, 25, 1–19. [Google Scholar]
- Sogue, B. Evaluation à Mi-Parcours du Plan d’Action Régional D’urgence face aux Impacts de la COVID-19 et aux Menaces des Nuisibles sur la Sécurité Alimentaire et Nutritionnelle en Afrique de l’Ouest. 2022. Available online: https://www.researchgate.net/publication/361315852_Evaluation_a_mi-parcours_du_Plan_d%27action_regional_d%27urgence_face_aux_impacts_de_la_COVID-19_et_aux_menaces_des_nuisibles_sur_la_securite_alimentaire_et_nutritionnelle_en_Afrique_de_l%27Ouest (accessed on 7 October 2024).
- Millogo, R.M. Insécurité alimentaire en milieu urbain Africain: Les évidences de l’observatoire de population de Ouagadougou. Rev. Espace Territ. Sociétés Santé 2020, 3, 109–124. [Google Scholar]
- Cornilleau, L. Définir et gouverner les crises au sein du Comité de la sécurité alimentaire mondiale (1974–2008). Crit. Int. 2019, 85, 23–41. [Google Scholar] [CrossRef]
- Li, J.; Song, W. Food Security Review Based on Bibliometrics from 1991 to 2021. Foods 2022, 11, 3915. [Google Scholar] [CrossRef] [PubMed]
- Pinstrup-Andersen, P. Food security: Definition and measurement. Food Secur. 2009, 1, 5–7. [Google Scholar] [CrossRef]
- Dico, S.O.W.; Konate, F.; Coulibaly, D.; Diarra, S.; Goita, A.; Iknana, A.A. Les facteurs associés l’état nutritionnel des femmes en âge de procréer dans la région de Mopti. Sci. Santé 2021, 44. Available online: https://revuesciences-techniquesburkina.org/index.php/sciences_de_la_sante/article/download/1141/946 (accessed on 7 October 2024).
- Onyeaka, H.; Ekwebelem, O.C.; Eze, U.A.; Onwuka, Q.I.; Aleke, J.; Nwaiwu, O.; Chionuma, J.O. Improving Food Safety Culture in Nigeria: A Review of Practical Issues. Foods 2021, 10, 1878. [Google Scholar] [CrossRef] [PubMed]
- Ndamobissi, R. Les Défis Sociodémographiques et Politiques de la Malnutrition des Enfants Dans Les Pays d’Afrique du Sahel et de la Corne de l’Afrique. Ph.D. Thesis, Université Bourgogne Franche-Comté, Dijon, France, 2017. [Google Scholar]
- Zinsou-klassou, K. La situation alimentaire et la restauration de rue à Lomé. Rev. Geogr. Lardymes (À H כֿ H כֿ) Univ. Lomé 2007, 50. [Google Scholar]
- Castetbon, K. Measuring Food Insecurity. In Sustainable Nutrition in a Changing World; Biesalski, H.K., Drewnowski, A., Dwyer, J.T., Strain, J., Weber, P., Eggersdorfer, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 35–41. ISBN 978-3-319-55942-1. [Google Scholar]
- Caccavale, O.M.; Giuffrida, V. The Proteus composite index: Towards a better metric for global food security. World Dev. 2020, 126, 104709. [Google Scholar] [CrossRef]
- Jones, A.D.; Ngure, F.M.; Pelto, G.; Young, S.L. What Are We Assessing When We Measure Food Security? A Compendium and Review of Current Metrics. Adv. Nutr. 2013, 4, 481–505. [Google Scholar] [CrossRef] [PubMed]
- Vaudin, A.M.; Moshfegh, A.J.; Sahyoun, N.R. Measuring Food Insecurity in Older Adults Using Both Physical and Economic Food Access, NHANES 2013–18. J. Nutr. 2022, 152, 1953–1962. [Google Scholar] [CrossRef] [PubMed]
- Émile Blaise, S.P.; Nyore; Goudoum, A.; Madi, A.; Abdou bouba, A. La sécurité alimentaire au Nord Cameroun: Une approche d’analyse quantitative. New Medit 2023, 22, 23–42. [Google Scholar] [CrossRef]
- Vam, W. Food Consumption Analysis: Calculation and Use of the Food Consumption Score in Food Security Analysis: Technical Guidance Sheet; Vulnerability Analysis and Mapping Unit, World Food Programme: Rome, Italy, 2008. [Google Scholar]
- Lepiller, O.; Fournier, T.; Bricas, N.; Figuié, M. (Eds.) Méthodes D’investigation de L’alimentation et des Mangeurs; Éditions Quae: Versailles, France, 2021. [Google Scholar]
- CILSS. Cadre Harmonisé—Manuel Version 2.0; CILSS: Ouagadougou, Burkina Faso, 2019; pp. 35–36. [Google Scholar]
- Smith, L.C.; Subandoro, A. Measuring Food Security Using Household Expenditure Surveys; International Food Policy Research Institute: Washington, DC, USA, 2007; ISBN 978-0-89629-767-8. [Google Scholar]
- DSID; CILSS. Résultats de l’analyse de l’insécurité alimentaire et nutritionnelle aiguë courante en mars-mai 2024 et projetée en juin-août 2024. March 2024. [Google Scholar]
- Wadhwa, A.; Mballa, A.; Chaumont, C.; Papavero, C.; Njilie, F.; Geniez, P.; Hollema, S. Situation de la sécurité alimentaire et des marchés au Cameroun. In Analyse Globale de la Sécurité Alimentaire et de la Vulnérabilité au Cameroun; Programme Alimentaire Mondial, Service de l’Analyse de la Sécurité Alimentaire (VAM) Programme Alimentaire Mondial des Nations Unies (PAM) Siège Social: Rome, Italy, 2011; p. 59. [Google Scholar]
- FAO. Agricultural livelihoods and food security in the context of COVID-19. In Results from Household Surveys in 11 Countries with High Pre-Existing Levels of Food Insecurity—Cross-Country Monitoring Report; FAO: Rome, Italy, 2021; ISBN 978-92-5-134430-9. [Google Scholar]
- Lian, Y.; Gu, L.; Yang, L.; Wang, L.; Li, H. The reasonableness and spatial differences of the food consumption structure of urban and rural residents in China, 2015–2021. Foods 2023, 12, 1997. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.; Heinrigs, P. Les Nouvelles Opportunités de L’économie Alimentaire Ouest-Africaine; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Adaye, A. Assunta Evaluation de la sécurité alimentaire en Côte d’Ivoire par la méthode du cadre harmonisé. In Proceedings of the Cahiers du Cerleshs, Ouagadougou, Burkina Faso, December 2020. p. N° 66. [Google Scholar]
- CILSS; FSRP; DSID. Rapport Définitif de L’enquête sur la Sécurité Alimentaire et Nutritionnelle de la Campagne Agricole 2022–2023. 2022; pp. 29–38.
- FAO; PAM. Etude sur le Suivi des Moyens D’existence Agricoles et de la Sécurité Alimentaire et Nutritionnelle au Togo de la Campagne Agricole 2022–2023; 2022; p. 28.
- Hazard, E. Rising Food Prices in the Sahel: The Urgency of Long-Term Action; Oxfam: Oxford, UK, 2016. [Google Scholar]
Region | Prefectures | Size of Household to Be Surveyed | Municipalities to Be Investigated | Pop 2022 | Average Household Size | Number of Households per Municipality | Weight/ Commune | Number of Households Surveyed | Number of Districts to Be Surveyed (30%) |
---|---|---|---|---|---|---|---|---|---|
Grand Lome | Agoé-Nyivé | 152 | Agoé-Nyivé 1 | 396,544 | 4.5 | 88,121 | 0.57 | 87 | 12 |
Agoé-Nyivé 2 | 159,595 | 4.5 | 35,466 | 0.23 | 35 | 6 | |||
Agoé-Nyivé 6 | 136,450 | 4.5 | 30,322 | 0.20 | 30 | 4 | |||
Total | 692,589 | 4.5 | 153,909 | 1 | 152 | 22 | |||
Golfe | 158 | Gulf 3 | 77,825 | 4.5 | 17,294 | 0.11 | 17 | 3 | |
Gulf 4 | 142,326 | 4.5 | 31,628 | 0.19 | 30 | 8 | |||
Gulf 6 | 196,005 | 4.5 | 43,557 | 0.26 | 42 | 2 | |||
Gulf 7 | 324,260 | 4.5 | 72,058 | 0.44 | 69 | 7 | |||
Total | 740,416 | 4.5 | 164,537 | 1 | 158 | 20 | |||
TOTAL | 310 |
Thresholds (SCA) | Household Food Consumption Profile | Meaning of the Different Classes |
---|---|---|
0–21 | Poor | Households that do not consume staple foods and vegetables every day and that never or very rarely consume protein-rich foods such as meat or milk. |
21.5–35 | Limit | Households that consume staple foods and vegetables every day, accompanied by oil and pulses a few times a week. |
Greater than or equal to 35.5 | Acceptable | Households that consume staple foods and vegetables daily, frequently accompanied by oil, vegetables, and occasionally meat, fish and dairy products. |
Thresholds (SDAM) | Household Dietary Diversity Profile |
---|---|
1 to 3 groups | Low diversity |
4 to 5 groups | Average diversity |
≥6 groups | High diversity |
Domain | Indicator | Food Safety (1) | Food Safety Limit (2) | Moderate Food Insecurity (3) | Severe Food Insecurity (4) | |
---|---|---|---|---|---|---|
Survivability | Income status | Share of food expenditure | <50% | 50–<65% | 65–<75% | ≥75% |
Weighted Score (rCSI) | Profile of Household Food Adaptation Strategies |
---|---|
0–3 | Minimal |
4–18 | Stress |
≥19 | Crisis |
ScoreISAME | Livelihood Strategies Profile |
---|---|
0 | Without strategies |
≥1 | Stress |
≥10 | Crisis |
≥100 | Emergency |
Global Acute Malnutrition (GAM) | ||
---|---|---|
Clues | Moderate Acute Malnutrition (MAM) | Severe Acute Malnutrition (SAM) |
MUAC | MUAC between 11.5 cm and 12.5 cm | <11.5 cm |
Edema | Bilateral |
Evolution of Household Income | Decrease (−54%) | No Change (27%) | Increase (19%) |
---|---|---|---|
Households affected by main activity |
|
| |
Households affected according to the Prefecture | Agoè-Nyivé (50%) Gulf (55%) | - | |
Households affected by gender of CM | Male (48.79%) Female (67.74%) |
Levels | SCA | |||||||
---|---|---|---|---|---|---|---|---|
Acceptable | Limit | Poor | Signification (p) | |||||
Headcount | (%) | Headcount | (%) | Headcount | (%) | |||
Prefectures | Agoè-Nyivé | 128 | 84.2% | 23 | 15.1% | 1 | 0.7% | 0.000 |
Golfe | 101 | 63.9% | 48 | 30.4% | 9 | 5.7% | ||
Gender of head of household Grand Lome | Male | 183 | 73.8% | 58 | 23.4% | 7 | 2.8% | 0.686 |
Female | 46 | 74.2% | 13 | 21.0% | 3 | 4.8% | ||
Total | 229 | 73.9% | 71 | 22.9% | 10 | 3.2% |
Levels | SDAM | |||||||
---|---|---|---|---|---|---|---|---|
High Diversity | Average Diversity | Low Diversity | Signification (p) | |||||
Headcount | (%) | Headcount | (%) | Headcount | (%) | |||
Prefectures | Agoè-Nyivé | 42 | 27.6% | 91 | 59.9% | 19 | 12.5% | 0.955 |
Golfe | 44 | 27.8% | 96 | 60.8% | 18 | 11.4% | ||
Gender of head of household Grand Lome | Male | 72 | 29.0% | 145 | 58.5% | 31 | 12.5% | |
Female | 14 | 22.6% | 42 | 67.7% | 6 | 9.7% | 0.410 | |
Total | 86 | 27.7% | 187 | 60.3% | 37 | 11.9% |
Levels | rCSI | |||||||
---|---|---|---|---|---|---|---|---|
MINIMAL | STRESS | CRISIS | Signification (p) | |||||
Headcount | (%) | Headcount | (%) | Headcount | (%) | |||
Prefectures | Agoè-Nyivé | 88 | 57.9% | 55 | 36.2% | 9 | 5.9% | 0.054 |
Golfe | 73 | 46.2% | 66 | 41.8% | 19 | 12.0% | ||
Gender of head of household Grand Lome | Male | 133 | 53.6% | 95 | 38.3% | 20 | 8.1% | 0.343 |
Female | 28 | 45.2% | 26 | 41.9% | 8 | 12.9% | ||
Total | 161 | 51.9% | 121 | 39.0% | 28 | 9.0% |
Levels | ISAME | Signification (p) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Without Strategy | Stress | Crisis | Emergency | |||||||
Headcount | (%) | Headcount | (%) | Headcount | (%) | Headcount | (%) | |||
Prefectures | Agoè-Nyivé | 52 | 34.2% | 63 | 41.4% | 36 | 23.7% | 1 | 0.7% | 0.083 |
Golfe | 60 | 38.0% | 61 | 38.6% | 29 | 18.4% | 8 | 5.1% | ||
Gender of head of household Grand Lome | Male | 90 | 36.3% | 103 | 41.5% | 49 | 19.8% | 6 | 2.4% | 0.457 |
Female | 22 | 35.5% | 21 | 33.9% | 16 | 25.8% | 3 | 4.8% | ||
Total | 112 | 36.1% | 124 | 40.0% | 65 | 21.0% | 9 | 2.9% |
Levels | Headcount | Global | Moderate | Severe |
---|---|---|---|---|
Prevalence of Global Acute Malnutrition MUAC < 125 mm (95% CI) | MUAC < 125 and MUAC >= 115 mm (95% CI) | Prevalence of Severe Malnutrition MUAC < 115 mm (95% CI) | ||
Golfe | Total: 152 | 1.3% (0.2–6.1) | 1.3% (0.4–4.7) | 0% (0.0–2.5) |
Agoe-Nyive | Total: 151 | 2.10% (0.7–5.7) | 1.3% (0.4–4.7) | 0.7% (0.1–3.7) |
Grand Lome | Boys: 137 | 1.6 (1.0–2.5) | 1.0 (0.6–1.8) | 0.6 (0.3–1.1) |
Girls: 166 | 2.4 (1.5–3.5) | 1.8 (1.2–2.8) | 0.6 (0.3–1.3) | |
Total: 303 | 2.6 (1.5–2.8) | 1.4 (0.3–2.0) | 1.2 (1.1–4.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toumoudagou N’oueni, P.; Zinsou-Klassou, K.; Chenal, J. State of Food and Nutritional Security of Urban Households in Grand Lome: Approach by Measuring Household Indicators. Foods 2024, 13, 3345. https://doi.org/10.3390/foods13213345
Toumoudagou N’oueni P, Zinsou-Klassou K, Chenal J. State of Food and Nutritional Security of Urban Households in Grand Lome: Approach by Measuring Household Indicators. Foods. 2024; 13(21):3345. https://doi.org/10.3390/foods13213345
Chicago/Turabian StyleToumoudagou N’oueni, Penagui, Kossiwa Zinsou-Klassou, and Jérôme Chenal. 2024. "State of Food and Nutritional Security of Urban Households in Grand Lome: Approach by Measuring Household Indicators" Foods 13, no. 21: 3345. https://doi.org/10.3390/foods13213345
APA StyleToumoudagou N’oueni, P., Zinsou-Klassou, K., & Chenal, J. (2024). State of Food and Nutritional Security of Urban Households in Grand Lome: Approach by Measuring Household Indicators. Foods, 13(21), 3345. https://doi.org/10.3390/foods13213345