Effect of Shikimic Acid on Oxidation of Myofibrillar Protein of Duck Meat During Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Methods
2.2.1. Preparation of Duck Meat Myofibrillar Protein
2.2.2. Sample Preparation
2.2.3. Determination of Carbonyl Content
2.2.4. Determination of Free Sulfhydryl Content
2.2.5. Hydroxyl Radical-Scavenging Activity
- A0—Distilled water instead of blank group and experimental group sample solution absorbance value;
- A1—Absorbance at 510 nm;
- A2—The absorbance value of anhydrous ethanol instead of salicylic acid–ethanol solution.
2.2.6. DPPH Radical-Scavenging Activity
2.2.7. Surface Hydrophobicity
2.2.8. Molecular Fluorescence Assay
2.2.9. Particle Size Determination
2.2.10. DSC Analysis
2.2.11. Fourier Transform Infrared Absorption Spectroscopy Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Hydroxyl Radical- and DPPH Radical-Scavenging Rate
3.2. Carbonyl and Free Sulfhydryl Groups
3.3. DSC Analysis
3.4. Surface Hydrophobicity
3.5. Endogenous Amino Acids
3.6. Secondary Structure of Myofibrillar Protein
3.7. Particle Size
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FTIR | Fourier transform infrared spectroscopy |
ANS | 8-anilino-1-naphthalene sulfonic acid |
DSC | Differential scanning calorimetry |
MP | Myofibrillar protein |
NIR | Near-infrared spectroscopy |
References
- Slobodyanik, V.S.; Ilina, N.M.; Suleymanov, S.M.; Polyanskikh, S.V.; Maslova, Y.F.; Galin, R.F. Study of composition and properties of duck meat. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 032046. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Shi, W.; Huang, H.; Shen, S.; Yang, F.; Chen, S. Changes of the flavor substances and protein degradation of black carp (Mylopharyngodon piceus) pickled products during steaming. J. Sci. Food Agric. 2021, 101, 4033–4041. [Google Scholar] [CrossRef]
- Khan, M.A.; Ali, S.; Abid, M.; Cao, J.; Jabbar, S.; Tume, R.K.; Zhou, G. Improved duck meat quality by application of high pressure and heat: A study of water mobility and compartmentalization, protein denaturation and textural properties. Food Res. Int. 2014, 62, 926–933. [Google Scholar] [CrossRef]
- Wang, D.; Dong, H.; Zhang, M.; Liu, F.; Bian, H.; Zhu, Y.; Xu, W. Changes in actomyosin dissociation and endogenous enzyme activities during heating and their relationship with duck meat tenderness. Food Chem. 2013, 141, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Deng, X.; Zhang, Z.; Guo, X.; Zhang, J. Effects of oxidation on the physicochemical properties and degradation of mutton myofibrillar proteins. J. Food Sci. 2022, 87, 2932–2942. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Wu, B.; Fu, B.; Jiang, P.; Liu, Y.; Qi, L.; Du, M.; Dong, X. Enzyme treatment-induced tenderization of puffer fish meat and its relation to physicochemical changes of myofibril protein. LWT 2022, 155, 112891. [Google Scholar] [CrossRef]
- Rowe, L.J.; Maddock, K.R.; Lonergan, S.M.; Huff-Lonergan, E. Influence of early postmortem protein oxidation on beef quality. J. Anim. Sci. 2004, 82, 785–793. [Google Scholar] [CrossRef]
- Kim, Y.H.; Huff-Lonergan, E.; Sebranek, J.G.; Lonergan, S.M. High-oxygen modified atmosphere packaging system induces lipid and myoglobin oxidation and protein polymerization. Meat Sci. 2010, 85, 759–767. [Google Scholar] [CrossRef]
- Liu, G.; Xiong, Y.L. Electrophoretic pattern, thermal denaturation, and in vitro digestibility of oxidized myosin. J. Agric. Food Chem. 2000, 48, 624–630. [Google Scholar] [CrossRef]
- Delles, R.M.; Xiong, Y.L. The effect of protein oxidation on hydration and water-binding in pork packaged in an oxygen-enriched atmosphere. Meat Sci. 2014, 97, 181–188. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, J.; Chen, Y.; Ma, Y.; Yang, Q.; Fan, Y.; Fu, C.; Limsila, B.; Li, R.; Liao, W. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides. LWT 2022, 154, 112805. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, Y.; Du, R.; Zhang, S.; Wang, Q.; Dao, X.; Li, N.; Wang, L.; Wang, L.; He, H. Arginine as a regulator of antioxidant and gel formation in yak Myofibrillar proteins: Efficacy and mechanistic insights. Food Chem. X 2024, 24, 101839. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Sun, F.; Chen, Q.; Liu, Q.; Wang, H.; Kong, B. Investigating the effect of catechin on the emulsification and oxidation stability of myofibrillar protein-diacylglycerol emulsions. Meat Sci. 2024, 210, 109434. [Google Scholar] [CrossRef]
- Niu, Y.; Chen, J.; Fan, Y.; Kou, T. Effect of flavonoids from Lycium barbarum leaves on the oxidation of myofibrillar proteins in minced mutton during chilled storage. J. Food Sci. 2021, 86, 1766–1777. [Google Scholar] [CrossRef]
- Cai, M.; Luo, Y.; Chen, J.; Liang, H.; Sun, P. Optimization and comparison of ultrasound-assisted extraction and microwave-assisted extraction of shikimic acid from Chinese star anise. Sep. Purif. Technol. 2014, 133, 375–379. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Q.; Wang, Y.; Qu, S.; Tan, J.; Tang, Y.; Li, P.; Zheng, X. Exploiting the synergistic antibacterial activity of shikimic acid and ceftiofur against methicillin-resistant Staphylococcus aureus. World J. Microbiol. Biotechnol. 2024, 40, 78. [Google Scholar] [CrossRef]
- Huang, F.; Huang, M.; Xu, X.; Zhou, G. Influence of heat on protein degradation, ultrastructure and eating quality indicators of pork. J. Sci. Food Agric. 2011, 91, 443–448. [Google Scholar] [CrossRef]
- Rodriguez-Carpena, J.G.; Morcuende, D.; Estevez, M. Avocado by-products as inhibitors of color deterioration and lipid and protein oxidation in raw porcine patties subjected to chilled storage. Meat Sci. 2011, 89, 166–173. [Google Scholar] [CrossRef]
- Zakrys-Waliwander, P.I.; O’Sullivan, M.G.; O’Neill, E.E.; Kerry, J.P. The effects of high oxygen modified atmosphere packaging on protein oxidation of bovine M. longissimus dorsi muscle during chilled storage. Food Chem. 2012, 131, 527–532. [Google Scholar] [CrossRef]
- Shen, Q.; Ou, A.; Liu, S.; Elango, J.; Wang, S.; Henriques da Silva, T.; Wu, W.; Robinson, J.; Bao, B. Effects of ion concentrations on the hydroxyl radical scavenging rate and reducing power of fish collagen peptides. J. Food Biochem. 2019, 43, e12789. [Google Scholar] [CrossRef]
- Braca, A.; Fico, G.; Morelli, I.; De Simone, F.; Tome, F.; De Tommasi, N. Antioxidant and free radical scavenging activity of flavonol glycosides from different Aconitum species. J. Ethnopharmacol. 2003, 86, 63–67. [Google Scholar] [CrossRef]
- Turgut, S.S.; Isikci, F.; Soyer, A. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage. Meat Sci. 2017, 129, 111–119. [Google Scholar] [CrossRef]
- Guo, J.; He, Z.; Wu, S.; Zeng, M.; Chen, J. Effects of concentration of flavor compounds on interaction between soy protein isolate and flavor compounds. Food Hydrocoll. 2020, 100, 105388. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, L.; Xiong, S.; Li, A. Property and structure changes of myofibril protein in pork treated by high pressure combined with heat. Food Sci. Technol. Int. 2016, 22, 647–662. [Google Scholar] [CrossRef]
- Kocher, P.N.; Foegeding, E.A. Microcentrifuge-Based Method for Measuring Water-Holding of Protein Gels. J. Food Sci. 1993, 58, 1040–1046. [Google Scholar] [CrossRef]
- Nguyen, T.; Kim, S.; Kim, J.G. Diffuse reflectance spectroscopy to quantify the met-myoglobin proportion and meat oxygenation inside of pork and beef. Food Chem. 2019, 275, 369–376. [Google Scholar] [CrossRef]
- Pal, C.; Sarkar, S.; Mazumder, S.; Adhikari, S.; Bandyopadhyay, U. Synthesis and biological evaluation of primaquine–chloroquine twin drug: A novel heme-interacting molecule prevents free heme and hydroxyl radical-mediated protein degradation. MedChemComm 2013, 4, 731–736. [Google Scholar] [CrossRef]
- Korimová, Ľ.; Máté, D.; Turek, P. Influence of natural antioxidants on heat-untreated meat products quality. Czech J. Food Sci. 2000, 18, 124–128. [Google Scholar] [CrossRef]
- Lavado, G.; Cava, R. The incorporation of a pomegranate peel extract in the formulation of uncured dry sausages protects lipids and proteins from oxidation during in vitro gastrointestinal digestion. LWT 2023, 184, 115025. [Google Scholar] [CrossRef]
- Zhu, Z.; Fang, R.; Huang, M.; Wei, Y.; Zhou, G. Oxidation combined with Maillard reaction induced free and protein-bound Nε-carboxymethyllysine and Nε-carboxyethyllysine formation during braised chicken processing. Food Sci. Hum. Wellness 2020, 9, 383–393. [Google Scholar] [CrossRef]
- Alsenaidy, M.A.; Jain, N.K.; Kim, J.H.; Middaugh, C.R.; Volkin, D.B. Protein comparability assessments and potential applicability of high throughput biophysical methods and data visualization tools to compare physical stability profiles. Front. Pharmacol. 2014, 5, 39. [Google Scholar] [CrossRef]
- Xu, B.; He, W.; Yi, Y.; Wang, H.; Xu, W.; Guo, D. The impacting mechanism of β-sanshool in Zanthoxylum bungeanum Maxim on the structure of myofibrillar protein in duck meat. LWT 2023, 182, 114838. [Google Scholar] [CrossRef]
- Mao, M.; Jia, R.; Gao, Y.; Yang, W.; Tong, J.; Xia, G. Effects of innovative gelation and modified tapioca starches on the physicochemical properties of surimi gel during frozen storage. Int. J. Food Sci. Technol. 2022, 57, 6591–6601. [Google Scholar] [CrossRef]
- Mitra, B.; Rinnan, A.; Ruiz-Carrascal, J. Tracking hydrophobicity state, aggregation behaviour and structural modifications of pork proteins under the influence of assorted heat treatments. Food Res. Int. 2017, 101, 266–273. [Google Scholar] [CrossRef]
- Zhou, R.; Sun, J.; Qian, H.; Li, Y.; Zhang, H.; Qi, X.; Wang, L. Effect of the frying process on the properties of gluten protein of you-tiao. Food Chem. 2020, 310, 125973. [Google Scholar] [CrossRef]
- Santos, M.C.D.; Monteiro, J.D.; Araujo, J.M.G.; Lima, K.M.G. Molecular fluorescence spectroscopy with multi-way analysis techniques detects spectral variations distinguishing uninfected serum versus dengue or chikungunya viral infected samples. Sci. Rep. 2020, 10, 13758. [Google Scholar] [CrossRef]
- Khan, F.I.; Rehman, M.T.; Sameena, F.; Hussain, T.; AlAjmi, M.F.; Lai, D.; Khan, M.K.A. Investigating the binding mechanism of topiramate with bovine serum albumin using spectroscopic and computational methods. J. Mol. Recognit. 2022, 35, e2958. [Google Scholar] [CrossRef]
- Prasanna Kumari, N.K.; Jagannadham, M.V. SDS induced molten globule state of heynein; a new thiol protease: Evidence of domains and their sequential unfolding. Colloids Surf. B Biointerfaces 2011, 82, 609–615. [Google Scholar] [CrossRef]
- Wei, Z.; Lin, M. Near-Infrared Spectroscopy Analysis Technology Based on Single Sample. J. Appl. Spectrosc. 2021, 88, 681–688. [Google Scholar] [CrossRef]
- Chen, C.; Yu, Q.; Han, L.; Zhang, J.; Guo, Z. Effects of aldehyde products of lipid oxidation on the color stability and metmyoglobin reducing ability of bovine Longissimus muscle. Anim. Sci. J. 2018, 89, 810–816. [Google Scholar] [CrossRef]
- Serson, W.; Armstrong, P.; Maghirang, E.; Al-Bakri, A.; Phillips, T.; Al-Amery, M.; Su, K.; Hildebrand, D. Development of Whole and Ground Seed Near-Infrared Spectroscopy Calibrations for Oil, Protein, Moisture, and Fatty Acids in Salvia hispanica. J. Am. Oil Chem. Soc. 2019, 97, 3–13. [Google Scholar] [CrossRef]
- Carbas, B.; Machado, N.; Oppolzer, D.; Ferreira, L.; Brites, C.; Rosa, E.A.S.; Barros, A. Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for the determination of nutritional and antinutritional parameters in common beans. Food Chem. 2020, 306, 125509. [Google Scholar] [CrossRef] [PubMed]
- Bull, S.P.; Hong, Y.; Khutoryanskiy, V.V.; Parker, J.K.; Faka, M.; Methven, L. Whey protein mouth drying influenced by thermal denaturation. Food Qual. Prefer. 2017, 56 Pt B, 233–240. [Google Scholar] [CrossRef]
- Dissanayake, M.; Vasiljevic, T. Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. J. Dairy. Sci. 2009, 92, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, J.; Zheng, B.; Guo, Z. Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates. Ultrason. Sonochem 2020, 65, 105063. [Google Scholar] [CrossRef]
- Saleem, R.; Ahmad, R. Effect of low frequency ultrasonication on biochemical and structural properties of chicken actomyosin. Food Chem. 2016, 205, 43–51. [Google Scholar] [CrossRef]
Shikimic Acid to Protein Mass Ratio | Denaturation Temperature/(°C) | Heat Absorption/(J·g−1) | Initial Denaturation Temperature/(°C) |
---|---|---|---|
Blank group | 69.93 | 1825.00 | 93.85 |
1:50,000 | 107.35 | 118.42 | 115.68 |
1:25,000 | 76.62 | 1674.00 | 96.04 |
1:12,500 | 106.24 | 125.43 | 114.35 |
1:6250 | 91.99 | 374.10 | 100.27 |
Peer Group | Heat Treatment Time/Min | α-Helix Ratio/% | β-Sheet Ratio/% | β-Turn Ratio/% | Irregular Structure Ratio/% |
---|---|---|---|---|---|
Blank group | 10 | 12.52 ± 0.53 a | 47.84 ± 0.65 b | 29.91 ± 0.62 b | 9.73 ± 1.12 a |
20 | 6.49 ± 0.22 a | 9.60 ± 1.20 a | 37.80 ± 3.71 b | 46.11 ± 3.27 c | |
30 | 1.95 ± 0.37 a | 15.73 ± 1.27 a | 6.81 ± 1.71 a | 75.51 ± 4.71 c | |
1:50,000 | 10 | 36.53 ± 2.02 c | 34.45 ± 2.13 a | 20.50 ± 1.25 a | 8.52 ± 1.54 a |
20 | 13.50 ± 1.22 b | 57.06 ± 1.43 c | 22.26 ± 1.85 a | 7.18 ± 1.14 a | |
30 | 18.67 ± 1.28 c | 40.47 ± 1.70 d | 21.58 ± 2.21 b | 19.28 ± 2.24 a | |
1:25,000 | 10 | 17.79 ± 1.30 b | 30.85 ± 5.11 a | 20.36 ± 0.77 a | 31.00 ± 2.60 c |
20 | 22.40 ± 2.64 c | 32.16 ± 4.18 b | 18.94 ± 1.49 a | 26.50 ± 3.54 b | |
30 | 12.57 ± 1.33 b | 25.09 ± 3.66 b | 28.43 ± 2.34 c | 33.91 ± 2.88 b | |
1:12,500 | 10 | 21.29 ± 3.22 b | 35.73 ± 2.71 a | 20.37 ± 1.95 a | 22.61 ± 2.03 b |
20 | 19.82 ± 2.34 c | 33.52 ± 4.02 b | 21.38 ± 1.06 a | 25.28 ± 2.83 b | |
30 | 15.27 ± 1.30 bc | 29.38 ± 3.35 bc | 23.30 ± 2.77 b | 32.05 ± 3.97 b | |
1:6250 | 10 | 18.60 ± 2.59 b | 34.90 ± 1.90 a | 18.55 ± 1.90 a | 27.95 ± 2.13 c |
20 | 21.62 ± 2.02 c | 30.74 ± 3.10 b | 19.90 ± 2.27 a | 27.74 ± 1.92 b | |
30 | 16.19 ± 2.51 c | 32.94 ± 2.12 c | 22.37 ± 3.65 b | 28.50 ± 1.90 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Zhang, Y.; Wang, Y.; He, W.; Xu, W.; Guo, D.; Wang, H.; Yi, Y.; Tan, G. Effect of Shikimic Acid on Oxidation of Myofibrillar Protein of Duck Meat During Heat Treatment. Foods 2024, 13, 3338. https://doi.org/10.3390/foods13203338
Niu Y, Zhang Y, Wang Y, He W, Xu W, Guo D, Wang H, Yi Y, Tan G. Effect of Shikimic Acid on Oxidation of Myofibrillar Protein of Duck Meat During Heat Treatment. Foods. 2024; 13(20):3338. https://doi.org/10.3390/foods13203338
Chicago/Turabian StyleNiu, Yue, Yingrui Zhang, Yuwei Wang, Wenjie He, Wei Xu, Danjun Guo, Hongxun Wang, Yang Yi, and Guowei Tan. 2024. "Effect of Shikimic Acid on Oxidation of Myofibrillar Protein of Duck Meat During Heat Treatment" Foods 13, no. 20: 3338. https://doi.org/10.3390/foods13203338
APA StyleNiu, Y., Zhang, Y., Wang, Y., He, W., Xu, W., Guo, D., Wang, H., Yi, Y., & Tan, G. (2024). Effect of Shikimic Acid on Oxidation of Myofibrillar Protein of Duck Meat During Heat Treatment. Foods, 13(20), 3338. https://doi.org/10.3390/foods13203338