Hybrid Fruits for Improving Health—A Comprehensive Review
Abstract
:1. Introduction
2. Hybridization
2.1. Concept
2.2. Hybridization Techniques
2.3. Nutrition and Sensorial Aspects of Hybrid Fruits
3. Antioxidants
4. Health Benefits of Hybrid Fruits
4.1. Anticancer Effect
Cytotoxic Activity
4.2. Anti-Diabetic Effect
4.3. Anti-Inflammatory Effects
4.4. Anti-Degenerative Disease Effect
4.5. Drug-Food Synergy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christ, G.D.; Bernal, A.d.O.; Galafassi, L.B.; Coronel, D.A. Brazilian agribusiness in international trade: Vulnerability, setback, missed opportunity or optimal situation? Inf. GEPEC 2022, 26, 190–209. [Google Scholar] [CrossRef]
- Landau, E.C.; da Silva, G.A.; Moura, L.; Hirsch, A.; Guimarães, D.P. Dynamics of Agricultural Production and Natural Landscape in Brazil in the Last Decades, 1st ed.; Embrapa: Brasília, Brazil, 2020. [Google Scholar]
- Camargo, U.A.; Maia, J.D.G.; Ritschel, P. Embrapa Grapes and Wine: New Brazilian Cultivars of Grape; Embrapa Uva e Vinho: Bento Gonçalves, Brazil, 2010; 64p, ISBN 978-85-89921-09-1. [Google Scholar]
- Schulz, M.; Katia, S.; Seraglio, T.; Brugnerotto, P.; Gonzaga, L.V.; Carolina, A.; Costa, O.; Fett, R. Composition and Potential Health Effects of Dark-Colored Underutilized Brazilian Fruits—A Review. Food Res. Int. 2020, 137, 109744. [Google Scholar] [CrossRef]
- Pascoal, G.d.F.L.; Cruz, M.A.d.A.S.; de Abreu, J.P.; Santos, M.C.B.; Fanaro, G.B.; Júnior, M.R.M.; Silva, O.F.; Moreira, R.F.A.; Cameron, L.C.; Ferreira, M.S.L.; et al. Evaluation of the Antioxidant Capacity, Volatile Composition and Phenolic Content of Hybrid Vitis vinifera L. Varieties Sweet Sapphire and Sweet Surprise. Food Chem. 2022, 366, 130644. [Google Scholar] [CrossRef]
- Montero, M.L.; Rojas-Garbanzo, C.; Usaga, J.; Pérez, A.M. Nutritional Composition, Content of Bioactive Compounds, and Hydrophilic Antioxidant Capacity of Selected Costa Rican Fruits. Agron. Mesoam. 2022, 33, 46175. [Google Scholar] [CrossRef]
- Oliveira, A.A.; Ribeiro, E.A.; Oliveira, A.; Oliveira, M.; Oliveira, A.G. Designing nutrition for health—Incorporating dietary by-products into poultry feed to create functional foods with insights into health benefits, risks, bioactive compounds, functionality of food components, and safety regulations. Food 2023, 12, 4001. [Google Scholar] [CrossRef]
- Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits. Int. J. Food Sci. 2020, 2020, 9081686. [Google Scholar] [CrossRef]
- Jideani, A.I.O.; Silungwe, H.; Takalani, T.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-Rich Natural Fruit and Vegetable Products and Human Health. Int. J. Food Prop. 2021, 24, 41–67. [Google Scholar] [CrossRef]
- Mallawaarachchi, M.A.L.N.; Madhujith, T.; Suriyagoda, L.D.B.; Pushpakumara, D.K.N.G. Antioxidant Efficacy of Selected Underutilized Fruit Species Grown in Sri Lanka. Trop. Agric. Res. 2021, 32, 68. [Google Scholar] [CrossRef]
- Yu, H.; Li, J. Breeding Future Crops to Feed the World through de Novo Domestication. Nat. Commun. 2022, 13, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Ergün, Z. Determination of Biochemical Contents of Fresh, Oven-Dried, and Sun-Dried Peels and Pulps of Five Apple Cultivars (Amasya, Braeburn, Golden Delicious, Granny Smith, and Starking). J. Food Qual. 2021, 2021, 9916694. [Google Scholar] [CrossRef]
- Ganji, S.M.; Singh, H.; Friedman, M. Phenolic Content and Antioxidant Activity of Extracts of 12 Melon (Cucumis melo) Peel Powders Prepared from Commercial Melons. J. Food Sci. 2019, 84, 1943–1948. [Google Scholar] [CrossRef] [PubMed]
- Dhanyasree, K.; Rafeekher, M. Wide Hybridization for Fruit Crop Improvement: A Review Anushma PL, Wide Hybridization for Fruit Crop Improvement: A Review. Int. J. Chem. Stud. 2021, 9, 769–773. [Google Scholar] [CrossRef]
- Silva, H. New Plant Breeding Techniques in Citrus for the Improvement of Important Agronomic Traits. A Review. Front. Plant Sci. 2020, 11, 1234. [Google Scholar] [CrossRef]
- Goulet, B.E.; Roda, F.; Hopkins, R. Hybridization in Plants: Old Ideas, New Techniques. Plant Physiol. 2017, 173, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.L.; Oliveira, J.A.; Howard, M.E. Plant Molecular Agriculture: Systems and Products. Plant Cell Rep. 2004, 22, 711–720. [Google Scholar] [CrossRef]
- Zhu, L.; Li, X.; Hu, X.; Wu, X.; Liu, Y.; Yang, Y.; Zang, Y.; Tang, H. Características de Qualidade e Perfis de Antocianina de Diferentes Cultivares de Uva Vitis Amurensis e Híbridos Do Germoplasma Chinês. Molecules 2021, 26, 6696. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, J.; Cao, J.; Wang, D.; Liu, C.; Yang, R.; Li, X. Antioxidant Capacity, Antiseptic Capacity and Flavonoid Composition of 35 Citrus Varieties (Citrus Reticulata Blanco). Molecules 2017, 22, 1114. [Google Scholar] [CrossRef]
- Daldoul, S.; Boubakri, H.; Gargouri, M.; Mliki, A. Recent Advances in Biotechnological Studies on Wild Grapevines as Valuable Resistance Sources for Smart Viticulture. Mol. Biol. Rep. 2020, 47, 3141–3153. [Google Scholar] [CrossRef] [PubMed]
- Hallauer, A.R. Evolution of Plant Breeding. Crop Breed. Appl. Biotechnol. 2011, 11, 197–206. [Google Scholar] [CrossRef]
- Blesso, C.N. Dietary Anthocyanins and Human Health. Nutrients 2019, 11, 2107. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.D.; Malnoy, M.; Gribaudo, I. Fruit Breeding from Next Generation Trees: Technical and Legal Challenges Introduction. Hortic. Res. 2017, 4, 17067. [Google Scholar] [CrossRef]
- Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B. Green Processing and Biotechnological Potential of Grape Pomace: Current Trends and Opportunities for Sustainable Biorefinery. Bioresour. Technol. 2020, 314, 123771. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, A.M.M.; dos Santos, P.R.; Costa, K.D.d.S.; Nascimento, M.R.; Martins, C.d.S.R.; Michelon, G.K.; de Lima, R.S.R. Improvement and Characterization of Grapevine Genetic Resources: A Literature Review. In Annals of the XXI Latin American Meeting of Scientific Initiation, XVII Latin American Meeting of Graduate Studies and VII Meeting of Initiation to Teaching; University of Vale do Paraíba: São José dos Campos, Brazil, 2017; pp. 1–6. [Google Scholar]
- Abdallah, N.A.; Prakash, C.S.; Mchughen, A.G. Genome Editing for Crop Improvement: Challenges and Opportunities. GM Crops Food 2015, 6, 183–205. [Google Scholar] [CrossRef]
- Zecca, G.; Labra, M.; Grassi, F. Untangling the Evolution of American Wild Grapes: Admixed Species and How to Find Them. Front. Plant Sci. 2020, 10, 01814. [Google Scholar] [CrossRef] [PubMed]
- Lobato-gómez, M.; Hewitt, S.; Capell, T.; Christou, P.; Dhingra, A.; Girón-calva, P.S. Transgenic and Genome-Edited Fruits: Background, Constraints, Bene Fi Ts, and Commercial Opportunities. Hortic. Res. 2021, 8, 166. [Google Scholar] [CrossRef] [PubMed]
- Mashilo, J.; Shimelis, H.; Ngwepe, R.M.; Thungo, Z. Genetic Analysis of Fruit Quality Traits in Sweet Watermelon (Citrullus lanatus var. lanatus): A Review. Front. Plant Sci. 2022, 13, 834696. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Luo, M.; Li, S.; Tao, M.; Ye, X.; Duan, W.; Zhang, C.; Qin, Q.; Xiao, J.; Liu, S. A Comparative Study of Distant Hybridization in Plants and Animals. Sci. China Life Sci. 2017, 61, 285–309. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Durante, M.; Caretto, S.; Milano, F.; Imperio, M.D.; Serio, F.; Santamaria, P. Supplementary Light Differently Influences Physico-Chemical Parameters and Antioxidant Compounds of Tomato Fruits Hybrids. Antioxidants 2021, 10, 687. [Google Scholar] [CrossRef] [PubMed]
- Olędzki, R.; Lutosławski, K.; Nowicka, P.; Wojdyło, A.; Harasym, J. Non-Commercial Grapevines Hybrids Fruits as a Novel Food of High Antioxidant Activity. Foods 2022, 11, 2216. [Google Scholar] [CrossRef]
- Gratl, V.; Sturm, S.; Zini, E.; Letschka, T.; Stefanini, M.; Vezzulli, S.; Stuppner, H. Comprehensive Polyphenolic Profiling in Promising Resistant Grapevine Hybrids Including 17 Novel Breeds in Northern Italy. J. Sci. Food Agric. 2021, 101, 2380–2388. [Google Scholar] [CrossRef] [PubMed]
- Samoticha, J.; Wojdyło, A.; Golis, T. Phenolic Composition, Physicochemical Properties and Antioxidant Activity of Interspecific Hybrids of Grapes Growing in Poland. Food Chem. 2016, 215, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pan, H.; Hao, S.; Pan, D.; Wang, G.; Yu, W. Evaluation of Phenolic Composition and Antioxidant Properties of Different Varieties of Chinese Citrus. Food Chem. 2021, 364, 130413. [Google Scholar] [CrossRef] [PubMed]
- Rasines-Perea, Z.; Teissedre, P.L. Grape Polyphenols’ Effects in Human Cardiovascular Diseases and Diabetes. Molecules 2017, 22, 68. [Google Scholar] [CrossRef] [PubMed]
- Gill, N.K.; Rios, D.; Osorio-camacena, E.; Mojica, B.E.; Kaur, B.; Soderstrom, M.A.; Gonzalez, M.; Poblete, C.; Kaur, N.; Singh, H.; et al. Anticancer Effects of Extracts from Three Different Chokeberry Species Anticancer Effects of Extracts from Three Different Chokeberry Species. Nutr. Cancer 2020, 73, 1168–1174. [Google Scholar] [CrossRef]
- Gustavo, L.; Ponte, S.; Carolina, I.; Pavan, B.; Camargo, M.; Mancini, S.; Guilherme, L.; Morelli, A.P.; Severino, M.B.; Maria, R.; et al. The Hallmarks of Flavonoids in Cancer. Molecules 2021, 26, 2029. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrient 2020, 12, 457. [Google Scholar] [CrossRef]
- Xia, L.; Xu, C.; Huang, K.; Lu, J.; Zhang, Y. Evaluation of Phenolic Compounds, Antioxidant and Antiproliferative Activities of 31 Grape Cultivars with Different Genotypes. J. Food Biochem. 2019, 43, e12626. [Google Scholar] [CrossRef]
- Yang, L.; Gao, S.; Su, Z.; Qin, X.; Li, Z. Identification of the Constituents and the Cancer-Related Targets of the Fruit of Solanum Nigrum Based on Molecular Docking and Network Pharmacology. J. Pharm. Biomed. Anal. 2021, 200, 114067. [Google Scholar] [CrossRef]
- Maksoud, S.; Abdel-massih, R.M.; Rajha, H.N.; Louka, N.; Chemat, F.; Barba, F.J. Citrus aurantium L. Active Constituents, Biological Effects and Extraction Methods. An Updated Review. Molecules 2021, 26, 5832. [Google Scholar] [CrossRef]
- Fakhri, S.; Khodamorady, M.; Naseri, M.; Farzaei, M.H.; Khan, H. The Ameliorating Effects of Anthocyanins on the Cross-Linked Signaling Pathways of Cancer Dysregulated Metabolism. Pharmacol. Res. 2020, 159, 104895. [Google Scholar] [CrossRef]
- Carlos, A.; Pinto, D.Q.; Hugo, V.; Ramos, V. Evaluation of Mango Cultivars and Hybrid Selections in Cerrado Areas. Res. Bull. 2004.
- da Silva, M.J.R.; da Silva Padilha, C.V.; dos Santos Lima, M.; Pereira, G.E.; Filho, W.G.V.; Moura, M.F.; Tecchio, M.A. Grape Juices Produced from New Hybrid Varieties Grown on Brazilian Rootstocks—Bioactive Compounds, Organic Acids and Antioxidant Capacity. Food Chem. 2019, 289, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Perera, S.; Silva, A.B.G.; Amarathunga, Y.; de Silva, S.; Jayatissa, R.; Gamage, A.; Merah, O.; Madhujith, T. Nutritional Composition and Antioxidant Activity of Selected Underutilized Fruits Grown in Sri Lanka. Agronomy 2022, 12, 1073. [Google Scholar] [CrossRef]
- Balasubramani, S.P. Synergistic Action of Stilbenes in Grape Blackberry Extract Muscadin Shows Better Cytotoxic Potential Against Cancedrogen Cells Than Resveratrol Alone. Biomedicines 2019, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Oskarsson, T. Stress-Induced Metastatic Niches in Breast Cancer. Mol. Cell. Oncol. 2020, 7, 1780105. [Google Scholar] [CrossRef]
- Montenegro, J.; dos Santos, L.S.; de Souza, R.G.G.; Lima, L.G.B.; Mattos, D.S.; Viana, B.P.P.B.; da Fonseca Bastos, A.C.S.; Muzzi, L.; Conte-Júnior, C.A.; Gimba, E.R.P.; et al. Bioactive Compounds, Antioxidant Activity and Antiproliferative Effects in Prostate Cancer Cells of Green and Roasted Coffee Extracts Obtained by Microwave-Assisted Extraction (MAE). Food Res. Int. 2021, 140, 110014. [Google Scholar] [CrossRef]
- Kelly, E.; Vyas, P.; Weber, J.T. Biochemical Properties and Neuroprotective Effects of Compounds in Various Species of Berries. Molecules 2018, 23, 26. [Google Scholar] [CrossRef]
- Olivati, C.; de Oliveira Nishiyama, Y.P.; de Souza, R.T.; Janzantti, N.S.; Mauro, M.A.; Gomes, E.; Hermosín-Gutiérrez, I.; da Silva, R.; Lago-Vanzela, E.S. Effect of the Pre-Treatment and the Drying Process on the Phenolic Composition of Raisins Produced with a Seedless Brazilian Grape Cultivar. Food Res. Int. 2019, 116, 190–199. [Google Scholar] [CrossRef]
- Tabeshpour, J.; Mehri, S.; Shaebani Behbahani, F.; Hosseinzadeh, H. Protective Effects of Vitis Vinifera (Grapes) and One of Its Biologically Active Constituents, Resveratrol, against Natural and Chemical Toxicities: A Comprehensive Review. Phyther. Res. 2018, 32, 2164–2190. [Google Scholar] [CrossRef]
- Nassiri-Asl, M.; Hosseinzadeh, H. Review of the Pharmacological Effects of Vitis Vinifera (Grape) and Its Bioactive Constituents: An Update. Phyther. Res. 2016, 30, 1392–1403. [Google Scholar] [CrossRef]
- Ladeia, D.N.; Costa, A.l.m.l.; Vieira, A.L.C.; Ramos, D.S.; Coelho, J.L.; Lima, L.R.d.O.; Santos, L.P.d.F.; Violante, P.M.; Bravim, P.M.V.; Lopes, A.G. Protective Factors and Prevention Actions for Cervical Cancer: An Integrative Review of the Last 10 Years. Electron. J. Health Collect. 2020, e3923. [Google Scholar] [CrossRef]
- Mitchell, N.; Campbell, L.G.; Ahern, J.R.; Paine, K.C.; Giroldo, A.B.; Whitney, K.D. Correlates of Hybridization in Plants. Evol. Lett. 2019, 3, 570–585. [Google Scholar] [CrossRef] [PubMed]
- Orsavova, J.; Misurcova, L.; Vavra Ambrozova, J.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef] [PubMed]
- Klinder, A.; Shen, Q.; Heppel, S.; Lovegrove, J.A. Function Impact of Increasing Fruit and Vegetables. Food Funct. 2016, 7, 1788–1796. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Xi, W.; Shen, Y.; Qiao, L.; Zhong, L.; Ye, X.; Zhou, Z. Phenolic Compositions and Antioxidant Capacities of Chinese Wild Mandarin (Citrus Reticulata Blanco) Fruits Key Laboratory of Horticulture Science for Southern Mountainous Regions. Food Chem. 2013, 145, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Blando, F.; Berland, H.; Maiorano, G.; Durante, M.; Mazzucato, A.; Picarella, M.E.; Nicoletti, I.; Gerardi, C.; Mita, G.; Andersen, O.M. Nutraceutical Characterization of Anthocyanin-Rich Fruits Produced by Sun Black Tomato Line. Front. Nutr. 2019, 6, 133. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M.; Bautista, R.J.H.; Sandhu, M.A.; Hussein, O.E. Review Article Beneficial Effects of Citrus Flavonoids on Cardiovascular and Metabolic Health. Oxidative Med. Cell. Longev. 2019, 2019, 5484138. [Google Scholar] [CrossRef]
- Stevens, J.F.; Revel, J.S.; Maier, C.S. Mitochondria-Centric Review of Polyphenol Bioactivity in Cancer Models. Antioxid. Redox Signal. 2018, 29, 1589–1611. [Google Scholar] [CrossRef]
- Alappat, B.; Alappat, J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020, 25, 5500. [Google Scholar] [CrossRef]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Bassanesi, G.; Andrade Touguinha, L.B.; Salvador, M. Antioxidant Capacity of Juices and Nectars of Grapes From Rio Grande Do Sul. Rev. Int. Ciênc. 2020, 10, 55–67. [Google Scholar] [CrossRef]
- Yaman, M.; Uzun, A. Evaluation of Superior Hybrid Individuals with Intra and Interspecific Hybridization Breeding in Apricot. Int. J. Fruit Sci. 2020, 20, 2045–2055. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; Mohammed, R.; El-Din, M.E.; Hassan, H.M.; Ali, Z.Y.; Rateb, M.E.; Bellah El Naggar, E.M.; Othman, E.M.; Abdelmohsen, U.R. Comparative Phytochemical Analysis of Five Egyptian Strawberry Cultivars (Fragaria × Ananassa Duch.) and Antidiabetic Potential of Festival and Red Merlin Cultivars. RSC Adv. 2021, 11, 16755–16767. [Google Scholar] [CrossRef] [PubMed]
- Tommonaro, G.; Speranza, G.; De Prisco, R.; Iodice, C.; Crudele, E.; Abbamondi, G.R.; Nicolaus, B. Antioxidant Activity and Bioactive Compound Contents before and after in Vitro Digestion of New Tomato Hybrids. J. Sci. Food Agric. 2017, 97, 5241–5246. [Google Scholar] [CrossRef] [PubMed]
- Madeira, P.M.R.; de Macedo, G.R. Adding Value to Melon Residue: Characterization, Evaluation of Antioxidant, Antiproliferative Activity, Prebiotic Potential and Enzyme Production. Ph.D. Thesis, Federal University of Rio Grande do Norte, Natal, Brazil, 2017. [Google Scholar]
- Campeanu, G.; Neata, G.; Darjanschi, G. Chemical Composition of the Fruits of Several Apple Cultivars Growth as Biological Crop. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 161–164. [Google Scholar]
- Wei, Z.; Liu, X.; Huang, Y.; Lu, J.; Zhang, Y. Volatile Aroma Compounds in Wines from Chinese Wild/Hybrid Species. J. Food Biochem. 2019, 43, 12684. [Google Scholar] [CrossRef]
- Sommella, E.; Pagano, F.; Pepe, G.; Ostacolo, C.; Manfra, M.; Chieppa, M.; Sanzo, D.; Carabetta, S.; Russo, M. Flavonoid Composition of Tarocco (Citrus sinensis L. Osbeck) Clone “Lempso” and Fast Antioxidant Activity Screening by DPPH-UHPLC-PDA-IT-TOF. Phytochem. Anal. 2017, 28, 521–528. [Google Scholar] [CrossRef]
- Raghavan, S.; Gurunathan, J. Citrus Species—A Golden Treasure Box of Metabolites That Is Beneficial against Disorders. J. Herb. Med. 2021, 28, 100438. [Google Scholar] [CrossRef]
- Sanjust, E.; Mocci, G.; Zucca, P.; Rescigno, A. Mediterranean Shrubs as Potential Antioxidant Sources. Nat. Prod. Res. 2008, 22, 689–708. [Google Scholar] [CrossRef]
- Henriques, J.F.; Serra, D.; Dinis, T.C.P.; Almeida, L.M. The anti-neuroinflammatory role of anthocyanins and their metabolites for the prevention and treatment of brain disorders. Int. J. Mol. Sci. 2020, 21, 8653. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M.; Poovarodom, S.; Leontowicz, H.; Leontowicz, M.; Vearasilp, S.; Trakhtenberg, S.; Gorinstein, S. The Multiple Nutrition Properties of Some Exotic Fruits: Biological Activity and Active Metabolites. Food Res. Int. 2011, 44, 1671–1701. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, D.; Li, G.; Yang, Y.; Zhang, G.; Li, S.; Liang, Z. The Grapevine R2R3-Type MYB Transcription Factor VdMYB1 Positively Regulates Defense Responses by Activating the Stilbene Synthase Gene 2 (VdSTS2). BMC Plant Biol. 2019, 19, 478. [Google Scholar] [CrossRef] [PubMed]
- Aguiñiga-Sánchez, I.; Soto-Hernández, M.; Cadena-Iñiguez, J.; Suwalsky, M.; Colina, J.R.; Castillo, I.; Rosado-Pérez, J.; Mendoza-Núñez, V.M.; Santiago-Osorio, E. Phytochemical Analysis and Antioxidant and Anti-Inflammatory Capacity of the Extracts of Fruits of the Sechium Hybrid. Molecules 2020, 25, 4637. [Google Scholar] [CrossRef]
- Gorinstein, S.; Poovarodom, S.; Leontowicz, H.; Leontowicz, M.; Namiesnik, J.; Vearasilp, S.; Haruenkit, R.; Ruamsuke, P.; Katrich, E.; Tashma, Z. Antioxidant Properties and Bioactive Constituents of Some Rare Exotic Thai Fruits and Comparison with Conventional Fruits In Vitro and in Vivo Studies. Food Res. Int. 2011, 44, 2222–2232. [Google Scholar] [CrossRef]
- Liang, N.N.; Pan, Q.H.; He, F.; Wang, J.; Reeves, M.J.; Duan, C.Q. Phenolic Profiles of Vitis Davidii and Vitis Quinquangularis Species Native to China. J. Agric. Food Chem. 2013, 61, 6016–6027. [Google Scholar] [CrossRef] [PubMed]
- Tassoni, A.; Zappi, A.; Melucci, D.; Reisch, B.I.; Davies, P.J. Seasonal Changes in Amino Acids and Phenolic Compounds in Fruits from Hybrid Cross Populations of American Grapes Differing in Disease Resistance. Plant Physiol. Biochem. 2018, 135, 182–193. [Google Scholar] [CrossRef]
- Gazzola, R.; Dalla Porta Gründling, R.; Araújo Aragão, A. The production and international trade of grapes. Braz. J. Agrotechnol. 2020, 10, 68–74. [Google Scholar] [CrossRef]
- Correa, M.G.; Couto, J.S.; Trindade, B.B.; Abreu, J.P.; Nakajima, V.M.; Oliveira, F.L.; Farah, A.; Teodoro, A.J. Antiproliferative Effect of Guava Fruit Extracts in MDA-MB-435 and MCF- 7 Human Breast Cancer Cell Lines. An. Acad. Bras. Cienc. 2020, 92, e20191500. [Google Scholar] [CrossRef]
- Correa, M.G.; Couto, J.S.; Teodoro, A.J. Anticancer Properties of Psidium Guajava—A Mini-Review. Asian Pac. J. Cancer Prev. 2016, 17, 4199–4204. [Google Scholar]
- Soares, N.d.C.P.; Teodoro, A.J.; Lotsch, P.F.; Granjeiro, J.M.; Borojevic, R. Anticancer Properties of Carotenoids in Prostate Cancer. A Review. Histol. Histopathol. 2015, 30, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Spada, V.; Di Stasio, L.; Ferranti, P.; Addeo, F.; Mamone, G.; Picariello, G. Differential Protein Expression in Berry Skin from Red Grapes with Varying Hybrid Character. Int. J. Mol. Sci. 2022, 23, 1051. [Google Scholar] [CrossRef] [PubMed]
- López-Caamal, A.; Tovar-Sánchez, E. Genetic, Morphological, and Chemical Patterns of Plant Hybridization. Rev. Chil. De Hist. Nat. 2014, 87, 16. [Google Scholar] [CrossRef]
- Alamu, E.O.; Dixon, B.M.; Menkir, A.; Ogunlade, A.O. Harvesting Time and Roasting Effects on Colour Properties, Xanthophylls, Phytates, Tannins and Vitamin C Contents of Orange Maize Hybrid. Sci. Rep. 2020, 10, 21327. [Google Scholar] [CrossRef]
- Tel-Zur, N. Breeding an Underutilized Fruit Crop: A Long-Term Program for Hylocereus. Hortic. Res. 2022, 9, uhac078. [Google Scholar] [CrossRef] [PubMed]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and Biological Activities of Natural Polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef]
- Veena, G.; Challa, S.R.; Palatheeya, S.; Prudhivi, R.; Kadari, A. Granny Smith Apple Extract Lowers Inflammation and Improves Antioxidant Status in L-Arginineinduced Exocrine Pancreatic Dysfunction in Rats. Turk. J. Pharm. Sci. 2021, 18, 262–270. [Google Scholar] [CrossRef]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant Activity of Apple Peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef]
- Sridharan, K.; Sivaramakrishnan, G. Interaction of Citrus Juices with Cyclosporine: Systematic Review and Meta-Analysis. Eur. J. Drug Metab. Pharmacokinet. 2016, 41, 665–673. [Google Scholar] [CrossRef]
- de Castro, W.V.; Mertens-Talcott, S.; Derendorf, H.; Butterweck, V. Grapefruit Juice–Drug Interactions: Grapefruit Juice and Its Components Inhibit P-Glycoprotein (ABCB1) Mediated Transport of Talinolol in Caco-2 Cells. J. Pharm. Sci. 2007, 96, 2808–2817. [Google Scholar] [CrossRef]
- Bernardi, D.M.; Mello, H.R.L.S.; Almeida, L.T.; Marangon, L.M. Compositions and Functional Properties of Fruits, Beverages and Seasonings, 1st ed.; FAG: Cascavel, Paraná, Brazil, 2019. [Google Scholar]
- Kolayli, S.; Kara, M.; Tezcan, F.; Erim, F.B.; Sahin, H.; Ulusoy, E.; Aliyazicioglu, R. Comparative Study of Chemical and Biochemical Properties of Different Melon Cultivars: Standard, Hybrid, and Grafted Melons. J. Agric. Food Chem. 2010, 58, 9764–9769. [Google Scholar] [CrossRef] [PubMed]
- Musa, C.I.; Weber, B.; Gonzatti, H.C.; Biguelini, C.B.; de Souza, C.F.V.; Oliveira, E.C. Evaluation of vitamin C content in strawberries of different cultivars in different cultivation systems in the municipality of Bom Princípio/RS. Sci. Nat. 2015, 37, 368–373. [Google Scholar] [CrossRef]
- Colombo, M.; Masiero, S.; Rosa, S.; Caporali, E.; Toffolatti, S.L.; Mizzotti, C.; Tadini, L.; Rossi, F.; Pellegrino, S.; Musetti, R.; et al. NoPv1: A Synthetic Antimicrobial Peptide Aptamer Targeting the Causal Agents of Grapevine Downy Mildew and Potato Late Blight. Sci. Rep. 2020, 10, 17574. [Google Scholar] [CrossRef]
Hybrid Fruits | TEAC (mmol Trolox/100 FW) | FRAP (mmol Fe2+/100 g FW) | ORAC (mmol Trolox/100 g FW) | DPPH (mmol TE/100 g DM) | Total Phenolics (mg GAE/100 g FW) | Total Flavonoids (mg/100 g) | Total Antocianins (mg/100 g) | References |
---|---|---|---|---|---|---|---|---|
melon | nd | nd | nd | nd | 715.8 | nd | nd | [13] |
Grape (Sweet jubilee) | nd | 63.7 | nd | nd | 2038 | nd | nd | [14] |
Mandarin | 61 | 674,5 | 407.4 | 54.03 | 467 | 577 | nd | [17] |
Orange | nd | 755 | 244 | 16.1 | 1341 | nd | nd | [17] |
Pummelo | 24.9 | 7.31 | 449.1 | 10.1 | 1754 | nd | nd | [17] |
Grape (Vitis) | nd | 42.3 | 58.5 | 33.7 | 1015.2 | 122 | 3457.5 | [30] |
chokeberry | nd | 39.0 | 555.5 | 53.78 | 2340 | 556 | 256.4 | [32] |
SweetOrange | 31.9 | nd | nd | 12.3 | nd | nd | nd | [33] |
Kumquat | 15.7 | nd | nd | 2.9 | nd | nd | nd | [33] |
Lemon | 21.2 | nd | nd | 8.8 | nd | nd | nd | [33] |
Strawberry | 265.9 | 339 | 253.2 | nd | 6238 | 675 | nd | [60] |
Red Plum | 185.3 | 208.2 | 274.9 | nd | 352 | nd | nd | [60] |
Apple | 447 | 402 | 578 | nd | 490 | nd | nd | [60] |
Tomato | 269 | 501 | 459 | nd | 310 | nd | 620 | [60] |
Fruit | Hybrid Fruit (H) | ORAC (mmol TE/100 g) | FRAP (µM Trolox/g FW) | DPPH (µM Trolox TE/g FW) | Total Polyphenols (mg GAE/100 g) | Sugar | Vitamin C (mg/100 g) Fresh Content | References |
---|---|---|---|---|---|---|---|---|
Native Fruit (N) | (%) | |||||||
Sweet Orange (H) | 468.96 | nd | 568.39 | 248.00 | nd | 49.90 | [17,65,66,67] | |
Orange (N) | 213.25 | nd | 333.76 | 206.00 | nd | 68.50 | ||
Pummelo (H) | 319.01 | nd | nd | 275.50 | nd | 80.00 | [17] | |
Pummelo (N) | 201.56 | nd | nd | 172.00 | nd | 57.00 | ||
Tomato (H) | 855.83 | nd | nd | 52.21 | nd | 30.40 | [29,57] | |
Tomato (N) | 406.27 | nd | nd | 28.18 | nd | 21.20 | ||
Melon (H) | nd | 378.80 | nd | 96.00 | 3.97 | 18.34 | [68] | |
Melon (N) | nd | 493.80 | nd | 115.20 | 6.33 | 22.47 | ||
Grape (Vitis) (H) | 341.00 | nd | 386.20 | 203.50 | 15.50 | 3.20 | [14,30,69] | |
Grape (RSG) (N) | 146.57 | nd | 169.45 | 367.00 | 16.67 | 10.90 | ||
Apple (H) | nd | nd | 72.20 | 588.90 | 12.34 | 9.80 | [66] | |
Apple (N) | nd | nd | 131.60 | 83.00 | nd | 8.81 | ||
Mandarin (H) | 357.54 | nd | nd | 211.10 | nd | 50.00 | [17,67] | |
Mandarin (N) | 163.88 | nd | nd | 195.80 | nd | 40.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, M.A.A.S.; Coimbra, P.P.S.; Araújo-Lima, C.F.; Freitas-Silva, O.; Teodoro, A.J. Hybrid Fruits for Improving Health—A Comprehensive Review. Foods 2024, 13, 219. https://doi.org/10.3390/foods13020219
Cruz MAAS, Coimbra PPS, Araújo-Lima CF, Freitas-Silva O, Teodoro AJ. Hybrid Fruits for Improving Health—A Comprehensive Review. Foods. 2024; 13(2):219. https://doi.org/10.3390/foods13020219
Chicago/Turabian StyleCruz, Marta A. A. S., Pedro P. S. Coimbra, Carlos F. Araújo-Lima, Otniel Freitas-Silva, and Anderson J. Teodoro. 2024. "Hybrid Fruits for Improving Health—A Comprehensive Review" Foods 13, no. 2: 219. https://doi.org/10.3390/foods13020219