Food Additives Derived from Fruits and Vegetables for Sustainable Animal Production and Their Impact in Latin America: An Alternative to the Use of Antibiotics
Abstract
:1. Introduction
2. Risks of Antibiotics in Livestock
3. Feed Additives as Antibiotics Alternatives
Plant Waste/ Co-Product | Animal Feed Application | Bioactive Components | Benefits | Challenges | References |
---|---|---|---|---|---|
Soybean meal | Poultry, swine, ruminants | Isoflavones (genistein, daidzein), saponins, fiber | Source of protein and amino acids; enhances animal growth | May contain anti-nutritional factors (e.g., trypsin inhibitors) | [43,44] |
Citrus peel and pulp | Poultry, swine, ruminants | Hesperidin, naringin, limonoids, flavonoids | Rich in vitamin C, fiber and antioxidants; improves animal immune response | High in moisture; can be susceptible to spoilage. | [45,46] |
Apple pomace | Poultry, swine | Pectins, procyanidins, quercetin, flavonoids | High in fiber; improves gut health and feed palatability | May contain high levels of sugar, leading to digestive issues | [47,48] |
Brewer’s grains | Cattle, pigs | β-Glucans, fiber, protein, minerals (P, K, Mg) | High in protein, fiber, and B vitamins; improves milk production in dairy cows | May have high levels of fiber; can be prone to spoilage | [49,50] |
Potato peel | Poultry, swine | Fiber, potassium, vitamin C, polyphenols, carotenoids | High in starch and fiber; can replace a portion of grain in poultry diets; antioxidant capacity | May contain high levels of moisture and sugars | [51] |
Olive pomace | Poultry, swine | Polyphenols (oleuropein, hydroxytyrosol), fiber, antioxidants | Rich in polyphenols and antioxidants; improves animal immune response | May contain high levels of fat; can be susceptible to spoilage | [7] |
Grape pomace and seed extract | Broilers, duck, poultry, pig | Resveratrol, anthocyanins, proanthocyanidin, flavonoids | Antioxidant capacity; growth performance; improves immunity and meat quality | Solubility of grape extracts; toxicities associated with the high and continuous consumption | [52,53,54,55,56] |
Mango seeds and peel | Poultry | Polyphenols (mangiferin, catechin), fiber, | Growth performance; antioxidant capacity | Presence of anti-nutritional compounds | [57] |
Pomegranate peels and pulp | Poultry, fish | Punicalagin, punicic acid, ellagic acid, antioxidants, high amounts of phenolic acids, flavonoids and tannins | Increases physicochemical and microbiological stability of meat Enhances immunity; anti-inflammatory and gut health benefits;antioxidant capacity | Complex extraction methods;antinutritional effects and palatability | [58,59,60] |
Carrot peel | Laying hens, poultry, swine | β-Carotene and α-carotene, vitamin C, fiber | Improves digestion, health and immune function;antioxidant capacity | High moisture content; presence of potentially toxic compounds (nitrates and solanines) | [61,62] |
Banana peel | Ruminants, broilers | Potassium, fiber, vitamins C and B | Antioxidant capacity; gut health benefits | High moisture content requires careful processing and handling to prevent spoilage | [63,64] |
Tomato seed and peel | Cattle, poultry, sheep and goats, and swine | Lycopene, flavonoids, phenolic compound, vitamins C and E | Enhanced immune function; anti-inflammatory effects; improves meat quality; fiber source | Palatability; complex processing methods; antinutritional factors (lectins) | [65] |
4. Relevant Bioactive Properties of Fruit and Vegetable Loss and Waste Supporting Their Potential as Antibiotic Alternatives
4.1. Antimicrobial Effects
4.2. Antioxidant Effects
4.3. Prebiotic Properties
4.4. Non-Nutritional Properties of Phytogenics as Feed Additives
5. Extraction of Value-Added Ingredients from Fruit and Vegetable Loss and Waste
6. Safety of Extracted Value-Added Ingredients
7. Enhancing Animal Feed in Latin America with Fruit and Vegetable Loss and Waste
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Helliwell, R.; Morris, C.; Raman, S. Antibiotic stewardship and its implications for agricultural animal-human relationships: Insights from an intensive dairy farm in England. J. Rural. Stud. 2020, 78, 447–456. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom and Wellcome Trust: London, UK, 2016; Available online: https://amr-review.org/ (accessed on 14 July 2024).
- Dong, S.; Li, L.; Hao, F.; Fang, Z.; Zhong, R.; Wu, J.; Fang, X. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poult. Sci. 2024, 103, 103287. [Google Scholar] [CrossRef]
- Ferrentino, G.; Asaduzzaman, M.; Scampicchio, M.M. Current technologies and new insights for the recovery of high valuable compounds from fruits by-products. Crit. Rev. Food Sci. Nutr. 2017, 31, 386–404. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Kasapidou, E.; Sossidou, E.; Mitlianga, P. Fruit and vegetable co-products as functional feed ingredients in farm animal nutrition for improved product quality. Agriculture 2015, 5, 1020–1034. [Google Scholar] [CrossRef]
- Radha, A.; Ahluwalia, V.; Rai, A.K.; Varjani, S.; Kumar Awasthi, M.; Sindhu, R.; Binod, P.; Saran, S.; Kumar, V. The way forward to produce nutraceuticals from agri-food processing residues: Obstacle, solution, and possibility. J. Food Sci. Technol. 2024, 61, 429–443. [Google Scholar] [CrossRef]
- Aljila, C.M.; Satinder, K.; Brar, M.; Verma, U.; Prasada Rao, J.S. Sustainable solutions for agro processing waste management: An overview. In Environmental Protection Strategies for Sustainable Development, 1st ed.; Malik, A., Grohmann, E., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 66–99. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Ghafoor, K.; AlJuhaimi, F.Y.; Nyam, K.L.; Norulaini, N.A.N.; Sahena, F.; Omar, A.K.M. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chem. 2015, 183, 173–180. [Google Scholar] [CrossRef]
- Ueda, J.M.; Pedrosa, M.C.; Heleno, S.A.; Carocho, M.; Ferreira, I.C.; Barros, L. Food additives from fruit and vegetable by-products and bio-residues: A comprehensive review focused on sustainability. Sustainability 2022, 14, 5212. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Moreira, S.A.; Castro, L.M.G.; Pintado, M.; Saraiva, J.A. Emerging technologies to extract high added value compounds from fruit residues: Sub/supercritical, ultrasound-, and enzyme-assisted extractions. Food Rev. Int. 2017, 34, 581–612. [Google Scholar] [CrossRef]
- Gomez, M.; Martinez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2017, 58, 2119–2135. [Google Scholar] [CrossRef]
- Food, FAO Save. Global Initiative on Food Loss and Waste Reduction. 2017. Retrieved from FAO. Available online: https://twosides.info/includes/files/upload/files/UK/Myths_and_Facts_2016_Sources/18-19/Key_facts_on_food_loss_and_waste_you_should_know-FAO_2016.pdf (accessed on 20 August 2024).
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J.; Dumas, P.; Matthews, E.; Klirs, C. Creating a Sustainable Food Future. A Menu of Solutions to Feed Nearly 10 Billion People by 2050. 2019. Available online: https://research.wri.org/sites/default/files/2019-07/WRR_Food_Full_Report_0.pdf (accessed on 17 August 2024).
- Kumar, V.; Yadav, S.K.; Patel, A.K.; Mishra, B.B.; Ahluwalia, V.; Thakur, L.K.; Kumar, J. Bioprocessing of agri-food processing residues into nutraceuticals and bioproducts. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 301–322. [Google Scholar]
- Wadhwa, M.; Bakshi, M.P.S. Utilization of Fruit and Vegetable Wastes as Livestock Feed and as a Substrate for Generation of Other Value-Added Products; Makkar, H.P.S., Ed.; FAO: Rome, Italy; RAP Publication: Bangkok, Thailand, 2013; pp. 1–56. [Google Scholar]
- Wadhwa, M.; Bakshi, M.P.S.; Makkar, H.P.S. Waste to worth: Fruit wastes and by-products as animal feed. CAB Rev. 2015, 10, 31. [Google Scholar] [CrossRef]
- Ariyo-Okaiyeto, S.; Sutar, P.P.; Chen, C.; Ni, J.B.; Wang, J.; Mujumdar, A.S.; Zhang, J.S.; Xu, M.Q.; Fang, J.M.; Zhang, C.; et al. Antibiotic resistant bacteria in food systems: Current status, resistance mechanisms, and mitigation strategies. Agricult Comm. 2024, 2, 100027. [Google Scholar] [CrossRef]
- Arsène, M.M.J.; Davares, A.K.L.; Viktorovna, P.I.; Andreevna, S.L.; Sarra, S.; Khelifi, I.; Sergueïevna, D.M. The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions. Vet. World 2022, 15, 662–671. [Google Scholar] [CrossRef]
- Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D.; Petcu, C.D. Antibiotic use in livestock and residues in food-a public health threat: A review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef]
- Bacanli, M.G. The two faces of antibiotics: An overview of the effects of antibiotic residues in foodstuffs. Arch. Toxicol. 2024, 98, 1717–1725. [Google Scholar] [CrossRef]
- Khalifa, H.O.; Shikoray, L.; Mohamed, M.-Y.I.; Habib, I.; Matsumoto, T. Veterinary drug residues in the food chain as an emerging public health threat: Sources, analytical methods, health impacts, and preventive measures. Foods 2024, 13, 1629. [Google Scholar] [CrossRef]
- Adegbeye, M.J.; Adetuyi, B.O.; Igirigi, A.I.; Adisa, A.; Palangi, V.; Aiyedun, S.; Alvarado-Ramírez, E.R.; Elghandour, M.M.M.Y.; Márquez Molina, O.; Oladipo, A.A.; et al. Comprehensive insights into antibiotic residues in livestock products: Distribution, factors, challenges, opportunities, and implications for food safety and public health. Food Control 2024, 163, 110545. [Google Scholar] [CrossRef]
- Pratiwi, R.; Ramadhanti, S.P.; Amatulloh, A.; Megantara, S.; Subra, L. Recent advances in the determination of veterinary drug residues in food. Foods. 2023, 12, 3422. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, Z. Antibiotic residues, antimicrobial resistance and intervention strategies of foodborne pathogens. Antibiotics 2024, 13, 321. [Google Scholar] [CrossRef]
- Sadighara, P.; Rostami, S.; Shafaroodi, H.; Sarshogi, A.; Mazaheri, Y.; Sadighara, M. The effect of residual antibiotics in food on intestinal microbiota: A systematic review. Front. Sust. Food Syst. 2023, 7, 1163885. [Google Scholar] [CrossRef]
- Almansour, A.M.; Alhadlaq, M.A.; Alzahrani, K.O.; Mukhtar, L.E.; Alharbi, A.L.; Alajel, S.M. The silent threat: Antimicrobial-resistant pathogens in food-producing animals and their impact on public health. Microorganisms 2023, 11, 2127. [Google Scholar] [CrossRef]
- Morel, C. Transmission of antimicrobial resistance from livestock agriculture to humans and from humans to animals. In OECD Food, Agriculture and Fisheries Working Papers; OECD Publishing: Paris, France, 2019; p. 133. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Abramova, A.; Berendonk, T.U.; Coelho, L.P.; Forslund, S.K.; Gschwind, R.; Heikinheimo, A.; Jarquín-Díaz, V.H.; Khan, A.A.; Klümper, U.; et al. Towards monitoring of antimicrobial resistance in the environment: For what reasons, how to implement it, and what are the data needs? Environ. Int. 2023, 178, 108089. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef]
- World Health Organization (WHO) 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 20 August 2024).
- Schmerold, I.; van Geijlswijk, I.; Gehring, R. European regulations on the use of antibiotics in veterinary medicine. Eur. J. Pharm. Sci. 2023, 189, 106473. [Google Scholar] [CrossRef]
- Coe, S.; Balogun, B.; Sutherland, N. The Use of Antibiotics on Healthy Farm Animals and Antimicrobial Resistance. Debate Pack. 13. Jan 2023. Number CDP 2023/012. Available online: https://researchbriefings.files.parliament.uk/documents/CDP-2023-0012/CDP-2023-0012.pdf (accessed on 20 August 2024).
- Anderson, M.; Panteli, D.; Mossialos, E. Strengthening the EU Response to Prevention and Control of Antimicrobial Resistance (AMR): Policy Priorities for Effective Implementation; WHO Regional Office for Europe: Copenhagen, Denmark, 2024. [Google Scholar]
- da Silva, R.A.; Arenas, N.E.; Luiza, V.L.; Bermudez, J.A.Z.; Clarke, S.E. Regulations on the use of antibiotics in livestock production in South America: A comparative literature analysis. Antibiotics 2023, 12, 1303. [Google Scholar] [CrossRef]
- Pinto Ferreira, J.; Battaglia, D.; Dorado García, A.; Tempelman, K.; Bullon, C.; Motriuc, N.; Caudell, M.; Cahill, S.; Song, J.; LeJeune, J. Achieving antimicrobial stewardship on the global scale: Challenges and opportunities. Microorganisms 2022, 10, 1599. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture. Moving forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019; Available online: https://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 24 July 2024).
- Cassani, L.; Gomez-Zavaglia, A. Sustainable food systems in fruits and vegetables food supply chains. Front. Nutr. 2022, 9, 829061. [Google Scholar] [CrossRef]
- Firmino, J.P.; Galindo-Villegas, J.; Reyes-López, F.E.; Gisbert, E. Phytogenic bioactive compounds shape fish mucosal immunity. Front. Immunol. 2021, 12, 695973. [Google Scholar] [CrossRef]
- Wang, J.; Deng, L.; Chen, M.; Che, Y.; Li, L.; Zhu, L.; Chen, G.; Feng, T. Phytogenic feed additives as natural antibiotic alternatives in animal health and production: A review of the literature of the last decade. Anim. Nutr. 2024, 17, 244–264. [Google Scholar] [CrossRef]
- Bandeira Junior, G.; Sutili, F.J.; Gressler, L.T.; Ely, V.L.; Silveira, B.P.; Tasca, C.; Reghelin, M.; Matter, L.B.; Vargas, A.P.C.; Baldisserotto, B. Antibacterial potential of phytochemicals alone or in combination with antimicrobials against fish pathogenic bacteria. J. Appl. Microbiol. 2018, 125, 655–665. [Google Scholar] [CrossRef]
- Aderibigbe, A.; Cowieson, A.J.; Sorbara, J.O.; Pappenberger, G.; Adeola, O. Growth performance and amino acid digestibility responses of broiler chickens fed diets containing purified soybean trypsin inhibitor and supplemented with a monocomponent protease. Poult. Sci. 2020, 99, 5007–5017. [Google Scholar] [CrossRef]
- Lambo, M.T.; Ma, H.; Zhang, H.; Song, P.; Mao, H.; Cui, G.; Dai, B.; Li, Y.; Zhang, Y. Mechanism of action, benefits, and research gap in fermented soybean meal utilization as a high-quality protein source for livestock and poultry. Anim. Nutr. 2023, 16, 130–146. [Google Scholar] [CrossRef]
- Zoidis, E.; Simitzis, P.; Kampantais, D.; Katsoulas, P.; Pappas, A.C.; Papadomichelakis, G.; Goliomytis, M. Dietary orange pulp and organic selenium effects on growth performance, meat quality, fatty acid profile, and oxidative stability parameters of broiler chickens. Sustainability 2022, 14, 1534. [Google Scholar] [CrossRef]
- Luzardo, S.; Banchero, G.; Ferrari, V.; Ibáñez, F.; Roig, G.; Aznárez, V.; Clariget, J.; La Manna, A. Effect of fresh citrus pulp supplementation on animal performance and meat quality of feedlot steers. Animals 2021, 11, 3338. [Google Scholar] [CrossRef]
- Ajila, C.M.; Sarma, S.J.; Brar, S.K.; Godbout, S.; Cote, M.; Guay, F.; Verma, M.; Valéro, J.R. Fermented apple pomace as a feed additive to enhance growth performance of growing pigs and its effects on emissions. Agriculture 2015, 5, 313–329. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, T.; Wang, X.; Lü, X. Apple pomace as a potential valuable resource for full-components utilization: A review. J. Clean. Prod. 2021, 329, 129676. [Google Scholar] [CrossRef]
- Jackowski, M.; Niedźwiecki, Ł.; Jagiełło, K.; Uchańska, O.; Trusek, A. Brewer’s spent grains-valuable beer industry by-product. Biomolecules 2020, 10, 1669. [Google Scholar] [CrossRef]
- Eliopoulos, C.; Arapoglou, D.; Chorianopoulos, N.; Markou, G.; Haroutounian, S.A. Conversion of brewers’ spent grain into proteinaceous animal feed using solid state fermentation. Environ. Sci. Pollut. Res. 2022, 29, 29562–29569. [Google Scholar] [CrossRef]
- Gebrechristos, H.Y.; Chen, W. Utilization of potato peel as eco-friendly products: A review. Food Sci. Nutr. 2018, 6, 1352–1356. [Google Scholar] [CrossRef]
- Ao, X.; Kim, I.H. Effects of grape seed extract on performance, immunity, antioxidant capacity, and meat quality in Pekin ducks. Poult. Sci. 2020, 99, 2078–2086. [Google Scholar] [CrossRef]
- Smet, K.; Raes, K.; Huyghebaert, G.; Haak, L.; Arnouts, S.; de Smet, S. Lipid and protein oxidation of broiler meat as influenced by dietary natural antioxidant supplementation. Poult. Sci. 2008, 87, 1682–1688. [Google Scholar] [CrossRef]
- Hassan, Y.I.; Kosir, V.; Yin, X.; Ross, K.; Diarra, M.S. Grape pomace as a promising antimicrobial alternative in feed: A critical review. J. Agric. Food Chem. 2019, 67, 9705–9718. [Google Scholar] [CrossRef]
- Costa, M.M.; Alfaia, C.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A. Grape by-products as feedstuff for pig and poultry production. Animals 2022, 12, 2239. [Google Scholar] [CrossRef]
- Sáyago-Ayerdi, S.G.; Brenes, A.; Viveros, A.; Goñi, I. Antioxidative effect of dietary grape pomace concentrate on lipid oxidation of chilled and long-term frozen stored chicken patties. Meat Sci. 2009, 83, 528–533. [Google Scholar] [CrossRef]
- Beriso, Y.; Tesfaye, E. Livestock feed potential of mango (Mangifera indica L.) seed kernel. Cogent Food Agric. 2024, 10, 2301833. [Google Scholar] [CrossRef]
- Natalello, A.; Hervás, G.; Toral, P.G.; Luciano, G.; Valenti, B.; Mendoza, A.G.; Pauselli, M.; Priolo, A.; Frutos, P. Bioactive compounds from pomegranate by-products increase the in vitro ruminal accumulation of potentially health promoting fatty acids. Anim. Feed. Sci. Technol. 2020, 259, 114355. [Google Scholar] [CrossRef]
- Kaderides, K.; Kyriakoudi, A.; Mourtzinos, I.; Goula, A.M. Potential of pomegranate peel extract as a natural additive in foods. Trends Food Sci. Technol. 2021, 115, 380–390. [Google Scholar] [CrossRef]
- El-Shamy, S.; Farag, M.A. Novel trends in extraction and optimization methods of bioactives recovery from pomegranate fruit biowastes: Valorization purposes for industrial applications. Food Chem. 2021, 365, 130465. [Google Scholar] [CrossRef]
- Pistol, G.C.; Pertea, A.M.; Taranu, I. The use of fruit and vegetable by-products as enhancers of health status of piglets after weaning: The role of bioactive compounds from apple and carrot industrial wastes. Vet. Sci. 2023, 11, 15. [Google Scholar] [CrossRef]
- Šeregelj, V.; Vulić, J.; Ćetković, G.; Čanadanovć-Brunet, J.; Šaponjac, V.T.; Stajčić, S. Natural bioactive compounds in carrot waste for food applications and health benefits. Stud. Nat. Prod. Chem. 2020, 67, 307–344. [Google Scholar] [CrossRef]
- Nuriyasa, I.M.; Puja, I.K.; Puger, A.W. Growth performance and lipids profile of meat of native chicken fed with feed substituted with fermented banana peel. Int. J. Veter Sci. 2022, 11, 455–460. [Google Scholar] [CrossRef]
- Zaini, H.M.; Pindi, W. Banana peels in livestock breeding. In Banana Peels Valorization; Academic Press: Cambridge, MA, USA, 2024; pp. 37–60. [Google Scholar] [CrossRef]
- Travieso, M.D.C.; de Evan, T.; Marcos, C.N.; Molina-Alcaide, E. Tomato by-products as animal feed. In Tomato Processing By-Products; Academic Press: Cambridge, MA, USA, 2022; pp. 33–76. [Google Scholar] [CrossRef]
- Duba, K.S.; Fiori, L. Supercritical CO2 extraction of grape seed oil: Effect of process parameters on the extraction kinetics. J. Supercrit. Fluids 2015, 98, 33–43. [Google Scholar] [CrossRef]
- de Ancos, B.; Colina-Coca, C.; González-Peña, D.; Sánchez-Moreno, C. Bioactive compounds from vegetable and fruit by-products. In Biotechnology of Bioactive Compounds: Sources and Applications; Wiley: Hoboken, NJ, USA, 2015; pp. 1–36. [Google Scholar] [CrossRef]
- Malenica, D.; Kass, M.; Bhat, R. Sustainable management and valorization of agri-food industrial wastes and by-products as animal feed: For ruminants, non-ruminants and as poultry feed. Sustainability 2022, 15, 117. [Google Scholar] [CrossRef]
- Padayachee, A.; Day, L.; Howell, K.; Gidley, M.J. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2017, 57, 59–81. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, G.; Bai, W.; Han, X.; Li, C.; Bian, S. The role of bioactive compounds in natural products extracted from plants in cancer treatment and their mechanisms related to anticancer effects. Oxid. Med. Cell Longev. 2022, 2022, 1429869. [Google Scholar] [CrossRef]
- Darré, M.; Vicente, A.R.; Cisneros-Zevallos, L.; Artés-Hernández, F. Postharvest ultraviolet radiation in fruit and vegetables: Applications and factors modulating its efficacy on bioactive compounds and microbial growth. Foods 2022, 11, 653. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Ramos, L.; Moreno, M.; Zúñiga-Paredes, J.C.; Carlosama-Yepez, M.; Ruales, P. Antimicrobial activity of plant-food by-products: A review focusing on the tropics. Livest. Sci. 2016, 189, 32–49. [Google Scholar] [CrossRef]
- Spalvins, K.; Ivanovs, K.; Blumberga, D. Single cell protein production from waste biomass: Review of various agricultural by-products. Agron. Res. 2018, 16, 1493–1508. [Google Scholar] [CrossRef]
- La Cava, E.L.; Gerbino, E.; Sgroppo, S.C.; Gómez-Zavaglia, A. Characterization of pectins extracted from different varieties of pink/red and white grapefruits [Citrus paradisi (Macf.)] by thermal treatment and thermosonication. J. Food Sci. 2018, 83, 1613–1621. [Google Scholar] [CrossRef]
- Reddy, P.R.K.; Elghandour, M.; Salem, A.; Yasaswini, D.; Reddy, P.; Reddy, A.N.; Hyder, I. Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Anim. Feed. Sci. Technol. 2020, 264, 114469. [Google Scholar] [CrossRef]
- Hochma, E.; Yarmolinsky, L.; Khalfin, B.; Nisnevitch, M.; Ben-Shabat, S.; Nakonechny, F. Antimicrobial effect of phytochemicals from edible plants. Processes 2021, 9, 2089. [Google Scholar] [CrossRef]
- Castillo, A.; Celeiro, M.; Rubio, L.; Bañobre, A.; Otero-Otero, M.; Garcia-Jares, C.; Lores, M. Optimization of bioactives extraction from grape marc via a medium scale ambient temperature system and stability study. Front. Nutr. 2022, 9, 1008457. [Google Scholar] [CrossRef]
- Touza-Otero, L.; Landin, M.; Diaz-Rodriguez, P. Fighting antibiotic resistance in the local management of bovine mastitis. Biomed. Pharmacother. 2024, 170, 115967. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Mandić, A.I.; Bantis, F.; Böhm, V.; Borge, G.I.A.; Brnčić, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A comprehensive review on carotenoids in foods and feeds: Status quo, applications, patents, and research needs. Crit. Rev. Food Sci. Nutr. 2022, 62, 1999–2049. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 2015, 6, 7–17. [Google Scholar] [CrossRef]
- Odey, T.O.J.; Tanimowo, W.O.; Afolabi, K.O.; Jahid, I.K.; Reuben, R.C. Antimicrobial use and resistance in food animal production: Food safety and associated concerns in Sub-Saharan. Afr. Int. Microbiol. 2024, 27, 1–23. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, D.; Chen, Y.; Shi, J.; Zhang, X.; Hao, Y.; Zhang, Z.; Sun, Y.; Zhang, J. MOF-based active packaging materials for extending post-harvest shelf-life of fruits and vegetables. Materials 2023, 16, 3406. [Google Scholar] [CrossRef]
- Kafantaris, I.; Kotsampasi, B.; Christodoulou, V.; Kokka, E.; Kouka, P.; Terzopoulou, Z.; Gerasopoulos, K.; Stagos, D.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves antioxidant capacity and faecal microflora of lambs. J. Anim. Physiol. Anim. Nutr. 2017, 101, 108–121. [Google Scholar] [CrossRef]
- Yan, L.; Kim, I.H. Effect of dietary grape pomace fermented by Saccharomyces boulardii on the growth performance, nutrient digestibility and meat quality in finishing pigs. Asian-Australas. J. Anim. Sci. 2011, 24, 1763–1770. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Goñi, I.; Centeno, C.; Sáyago-Ayerdy, S.G.; Arija, I.; Saura-Calixto, F. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult. Sci. 2008, 87, 307–316. [Google Scholar] [CrossRef]
- Goñi, I.; Brenes, A.; Centeno, C.; Viveros, A.; Saura-Calixto, F.; Rebolé, A.; Arija, I.; Estevez, R. Effect of dietary grape pomace and vitamin E on growth performance, nutrient digestibility, and susceptibility to meat lipid oxidation in chickens. Poult. Sci. 2007, 86, 508–516. [Google Scholar] [CrossRef]
- Iqbal, Z.; Ali, R.; Sultan, J.I.; Ali, A.; Kamran, Z.; Khan, S.A.; Ahsan, U. Impact of replacing grape polyphenol with vitamin E on growth performance, relative organs weight, and antioxidant status of broilers. J. Anim. Plant Sci. 2014, 24, 1579–1583. [Google Scholar]
- Chamorro, S.; Viveros, A.; Rebolé, A.; Rica, B.D.; Arija, I.; Brenes, A. Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. Food Res. Int. 2015, 73, 197–203. [Google Scholar] [CrossRef]
- Chamorro, S.; Viveros, A.; Rebolé, A.; Arija, I.; Romero, C.; Alvarez, I.; Rey, A.; Brenes, A. Addition of exogenous enzymes to diets containing grape pomace: Effects on intestinal utilization of catechins and antioxidant status of chickens. Food Res. Int. 2017, 96, 226–234. [Google Scholar] [CrossRef]
- Kaderides, K.; Goula, A.M.; Adamopoulos, K. A process for turning pomegranate peels into a valuable food ingredient using ultrasound-assisted extraction and encapsulation. Inn. Food Sci. Emerg. Technol. 2015, 31, 204–215. [Google Scholar] [CrossRef]
- Hernández-Carranza, P.; Ávila-Sosa, R.; Guerrero-Beltrán, J.A.; Navarro-Cruz, A.R.; Corona-Jiménez, E.; Ochoa-Velasco, C.E. Optimization of antioxidant compounds extraction from fruit by-products: Apple pomace, orange and banana peel. J. Food Proc. Preserv. 2016, 40, 103–115. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A.; Čanadanović-Brunet, J.; Ćetković, G.; Tumbas Šaponjac, V. Microencapsulates and extracts from red beetroot pomace modify antioxidant capacity, heat damage and colour of pseudocereals-enriched einkorn water biscuits. Food Chem. 2018, 268, 40–48. [Google Scholar] [CrossRef]
- Nishad, J.; Koley, T.K.; Varghese, E.; Kaur, C. Synergistic effects of nutmeg and citrus peel extracts in imparting oxidative stability in meat balls. Food Res. Int. 2018, 106, 1026–1036. [Google Scholar] [CrossRef]
- Marchi, L.B.; Monteiro, A.R.G.; Mikcha, J.M.G.; Santos, A.R.; Chinellato, M.M.; Marques, D.R.; Dacome, A.S.; Costa, S.C. Evaluation of antioxidant and antimicrobial capacity of pomegranate peel extract (Punica granatum L.) under different drying temperatures. Chem. Eng. Trans. 2015, 44, 121–126. [Google Scholar] [CrossRef]
- Ding, S.; Wang, R.; Li, G.; Lü, H.; Fu, F.; Dan, Y. Effects of drying temperature on the drying kinetics, phenolic acids, flavonoids, and antioxidant capacities of orange peels. J. Chin. Inst. Food Sci. Technol. 2016, 16, 137–144. [Google Scholar] [CrossRef]
- Soares, E.; Soares, A.C.; Trindade, P.L.; Monteiro, E.B.; Martins, F.F.; Forgie, A.J.; Inada, K.O.P.; de Bem, G.F.; Resende, A.; Perrone, D.; et al. Jaboticaba (Myrciaria jaboticaba) powder consumption improves the metabolic profile and regulates gut microbiome composition in high-fat diet-fed mice. Biomed. Pharmacother. 2021, 144, 112314. [Google Scholar] [CrossRef]
- García-Villalba, R.; González-Sarrías, A.; Giménez-Bastida, J.A.; Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Metabolism of dietary (poly)phenols by the gut microbiota. Compr. Gut Microbiota 2022, 3, 149–175. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Rodríguez, J.M. Interactions of food with the microbiota of the digestive tract. Compr. Gut Microbiota 2022, 3, 1–11. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scot, K.; Stanton, C.; Swanon, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Santhiravel, S.; Bekhit, A.E.A.; Mendis, E.; Jacobs, J.L.; Dunshea, F.R.; Rajapakse, N.; Ponnampalam, E.N. The impact of plant phytochemicals on the gut microbiota of humans for a balanced life. Int. J. Mol. Sci. 2022, 23, 8124. [Google Scholar] [CrossRef]
- Jacela, J.Y.; Derouchey, J.M.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L.; Renter, D.G.; Dritz, S.S. Feed additives for swine: Fact sheets prebiotics and probiotics, and phytogenics. J. Swine Health Prod. 2010, 18, 132–134. [Google Scholar] [CrossRef]
- Hassan, A.H.A.; Youssef, I.M.I.; Abdel-Atty, N.S.; Abdel-Daim, A.S.A. Effect of thyme, ginger, and their nano-particles on growth performance, carcass characteristics, meat quality and intestinal bacteriology of broiler chickens. BMC Vet. Res. 2024, 20, 269. [Google Scholar] [CrossRef]
- Windisch, W.; Schedle, K.; Plitzer, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, 140–148. [Google Scholar] [CrossRef]
- Rabizadeh, F.; Mirian, M.S.; Doosti, R.; Kiani-Anbouhi, R.; Eftekhari, E. Phytochemical classification of medicinal plants used in the treatment of kidney disease based on traditional persian medicine. Evid. Based Complement. Alternat Med. 2022, 2022, 8022599. [Google Scholar] [CrossRef]
- Máthé, Á. Introduction: Utilization/significance of medicinal and aromatic plants. In Medicinal and Aromatic Plants of the World. Medicinal and Aromatic Plants of the World; Máthé, Á., Ed.; Springer: Dordrecht, Germany, 2015; Volume 1. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Molec Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Khanashyam, A.C.; Mundanat, A.S.; Shah, K.; Babu, K.S.; Thorakkattu, P.; Al-Asmari, F.; Pandiselvam, R. Valorization of fruit waste for bioactive compounds and their applications in the food industry. Foods 2023, 12, 556. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.; Barbosa, A.; Advinha, B.; Sales, H.; Pontes, R.; Nunes, J. Green extraction techniques of bioactive compounds: A state-of-the-art review. Processes 2023, 11, 2255. [Google Scholar] [CrossRef]
- Cassani, L.; Marcovich, N.E.; Gomez-Zavaglia, A. Valorization of fruit and vegetables agro-wastes for the sustainable production of carotenoid-based colorants with enhanced bioavailability. Food Res. Int. 2022, 152, 110924. [Google Scholar] [CrossRef]
- Râpă, M.; Darie-Niță, R.N.; Coman, G. Valorization of fruit and vegetable waste into sustainable and value-added materials. Waste 2024, 2, 258–278. [Google Scholar] [CrossRef]
- Basri, M.S.M.; Shah, N.; Sulaiman, A.; Tawakkal, I.; Nor, M.Z.M.; Ariffin, S.H.; Ghani, N.H.A.; Salleh, F.S.M. Progress in the valorization of fruit and vegetable wastes: Active packaging, biocomposites, by-products, and innovative technologies used for bioactive compound extraction. Polymers 2021, 13, 3503. [Google Scholar] [CrossRef]
- Naeem, U.; Arshad, M.U.; Saeed, F.; Imran, A. Extraction and characterization of polyphenols from fruits and vegetable waste through green extraction technologies with special reference to antioxidant profile. J. Food Proc. Preserv. 2022, 46, e16807. [Google Scholar] [CrossRef]
- Rifna, E.J.; Misra, N.N.; Dwivedi, M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 719–752. [Google Scholar] [CrossRef]
- Nabi, B.G.; Mukhtar, K.; Ansar, S.; Hassan, S.A.; Hafeez, M.A.; Bhat, Z.F.; Khaneghah, A.M.; Ul Haq, A.; Aadil, R.M. Application of ultrasound technology for the effective management of waste from fruit and vegetable. Ultrason. Sonochem 2024, 102, 106744. [Google Scholar] [CrossRef] [PubMed]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef]
- Kainat, S.; Arshad, M.S.; Khalid, W.; Zubair Khalid, M.; Koraqi, H.; Afzal, M.F.; Noreen, S.; Aziz, Z.; Al-Farga, A. Sustainable novel extraction of bioactive compounds from fruits and vegetables waste for functional foods: A review. Int. J. Food Prop. 2022, 25, 2457–2476. [Google Scholar] [CrossRef]
- Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Salehi, B.; Vlaisavljevic, S.; Oluwaseun Adetunji, C.; Bunmi Adetunji, J.; Kregiel, D.; Antolak, H.; Pawlikowska, E.; Uprety, Y.; Mileski, K.S.; Prasad Devkota, H.; et al. Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends Food Sci. Technol. 2019, 91, 362–379. [Google Scholar] [CrossRef]
- Facchini, F.; Silvestri, B.; Digiesi, S.; Lucchese, A. Agri-food loss and waste management: Win-win strategies for edible discarded fruits and vegetables sustainable reuse. Innov. Food Sci. Emerg. Technol. 2023, 83, 103235. [Google Scholar] [CrossRef]
- Tamasiga, P.; Miri, T.; Onyeaka, H.; Hart, A. Food waste and circular economy: Challenges and opportunities. Sustainability 2022, 14, 9896. [Google Scholar] [CrossRef]
- Okuthe, G. Valorizing fruit and vegetable waste: The untapped potential for entrepreneurship in sub-saharan africa—A systematic review. Recycling 2024, 9, 40. [Google Scholar] [CrossRef]
- Galagarza, O.A.; Ramirez-Hernandez, A.; Oliver, H.F.; Álvarez Rodríguez, M.V.; Valdez Ortiz, M.D.C.; Pachari, V.E.; Cereceda, Y.; Diaz-Valencia, Y.K.; Deering, A.J. Occurrence of chemical contaminants in Peruvian produce: A food-safety perspective. Foods 2021, 10, 1461. [Google Scholar] [CrossRef]
- Munir, S.; Azeem, A.; Sikandar Zaman, M.; Zia, M.; Haq, U.I. From field to table: Ensuring food safety by reducing pesticide residues in food. Sci. Total Environ. 2024, 922, 171382. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Marcelino, L.; Tawfeeq Al-Ani, L.K.; Wong-Villarreal, A.; Sotelo-Leyva, C. Persistence of pesticides residues with chemical food preservatives in fruits and vegetables. Ed. J. Singh, A. Pandey, S. Singh, V. Kumar Garg, P. Ramamurthy. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; Chapter 4; pp. 99–118. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Singleton, I.; Sant’Ana, A.S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol. 2018, 73, 177–208. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Ogbonna, C.U.; Upadhyay, A.K.; Baran, K.; Okpala, C.O.R.; Korzeniowska, M.; Guiné, R.P.F. Mycotoxins affecting animals, foods, humans, and plants: Types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies-a revisit. Foods 2021, 10, 1279. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cruz, M.L.; Mansilla, M.L.; Tadeo, J.L. Mycotoxins in fruits and their processed products: Analysis, occurrence and health implications. J. Adv. Res. 2010, 1, 113–122. [Google Scholar] [CrossRef]
- WHO. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/mycotoxins#:~:text=Most%20mycotoxins%20are%20chemically%20stable,%2C%20zearalenone%20and%20nivalenol%2Fdeoxynivalenol (accessed on 18 August 2024).
- Green, A.; Nemecek, T.; Chaudhary, A.; Mathys, A. Assessing nutritional, health, and environmental sustainability dimensions of agri-food production. Glob. Food Secur. 2020, 26, 100406. [Google Scholar] [CrossRef]
- Singh, P.; Kumar Pandey, V.; Sultan, Z.; Singh, R.; Hussain Dar, A. Classification, benefits, and applications of various anti-nutritional factors present in edible crops. J. Agric. Food Res. 2023, 14, 100902. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Martínez-Falcó, J.; Marco-Lajara, B.; Manresa-Marhuenda, E. Revolutionizing the circular economy through new technologies: A new era of sustainable progress. Environ. Technol. Innov. 2024, 33, 103509. [Google Scholar] [CrossRef]
- Cornale, P.; Mimosi, A.; Battaglini, L.M. Reducing feed-food competition: Impact of by-products and grazing in ruminant feeding. In Transforming Food Systems: Ethics, Innovation and Responsibility; Wageningen Academic Publishers: Wageningen, The Netherlands, 2022; pp. 282–287. [Google Scholar]
- Burey, P.P.; Panchal, S.K.; Helwig, A. Sustainable food systems. In Food Engineering Innovations across the Food Supply Chain; Academic Press: London, UK, 2022; pp. 15–46. [Google Scholar]
- WHO. WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals. 2017. Available online: https://www.who.int/publications/i/item/9789241550130 (accessed on 18 August 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golowczyc, M.; Gomez-Zavaglia, A. Food Additives Derived from Fruits and Vegetables for Sustainable Animal Production and Their Impact in Latin America: An Alternative to the Use of Antibiotics. Foods 2024, 13, 2921. https://doi.org/10.3390/foods13182921
Golowczyc M, Gomez-Zavaglia A. Food Additives Derived from Fruits and Vegetables for Sustainable Animal Production and Their Impact in Latin America: An Alternative to the Use of Antibiotics. Foods. 2024; 13(18):2921. https://doi.org/10.3390/foods13182921
Chicago/Turabian StyleGolowczyc, Marina, and Andrea Gomez-Zavaglia. 2024. "Food Additives Derived from Fruits and Vegetables for Sustainable Animal Production and Their Impact in Latin America: An Alternative to the Use of Antibiotics" Foods 13, no. 18: 2921. https://doi.org/10.3390/foods13182921
APA StyleGolowczyc, M., & Gomez-Zavaglia, A. (2024). Food Additives Derived from Fruits and Vegetables for Sustainable Animal Production and Their Impact in Latin America: An Alternative to the Use of Antibiotics. Foods, 13(18), 2921. https://doi.org/10.3390/foods13182921