Garlic Extract Increased Acrylamide Formation in French Fries Obtained by Different Cooking Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Garlic Extract
2.3. Determination of Total Phenolic Content (TPC)
2.4. Quantification of Chlorogenic Acid by HPTLC
2.5. Evaluation of Antioxidant Activity of Garlic Extract
2.6. Preparation and Quantification of Acrylamide
2.6.1. Frying Experiments
2.6.2. Extraction of Acrylamide
2.6.3. HPLC Analysis of Acrylamide
2.7. Statistical Analysis
3. Results
3.1. Total Phenolic Content of Garlic Extracts
3.2. Antioxidant Scavenging Activity
3.3. HPTLC Analysis of Chlorogenic Acid Content
3.4. Acrylamide Content
3.4.1. Effect of Fryer Type on Acrylamide Formation
3.4.2. Effect of Garlic Extract on Acrylamide Formation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grosse, Y.; Baan, R.; Straif, K.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Altieri, A.; Cogliano, V. Carcinogenicity of 1, 3-butadiene, ethylene oxide, vinyl chloride, vinyl fluoride, and vinyl bromide. Lancet Oncol. 2007, 8, 679–680. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on acrylamide in food. EFSA J. 2015, 13, 4104. [Google Scholar]
- Quan, W.; Wu, Z.; Jiao, Y.; Liu, G.; Wang, Z.; He, Z.; Tao, G.; Qin, F.; Zeng, M.; Chen, J. Exploring the relationship between potato components and Maillard reaction derivative harmful products using multivariate statistical analysis. Food Chem. 2021, 339, 127853. [Google Scholar] [CrossRef]
- Zaghi, A.N.; Barbalho, S.M.; Guiguer, E.L.; Otoboni, A.M. Frying process: From conventional to air frying technology. Food Rev. Int. 2019, 35, 763–777. [Google Scholar] [CrossRef]
- Teruel, M.D.R.; Gordon, M.; Linares, M.B.; Garrido, M.D.; Ahromrit, A.; Niranjan, K. A comparative study of the characteristics of French fries produced by deep fat frying and air frying. J. Food Sci. 2015, 80, E349–E358. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.S.; Cunha, S.C.; Casal, S. Domestic low-fat “frying” alternatives: Impact on potatoes composition. Food Sci. Nutr. 2018, 6, 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Mesias, M.; Delgado-Andrade, C.; Holgado, F.; Morales, F.J. Acrylamide content in French fries prepared in households: A pilot study in Spanish homes. Food Chem. 2018, 260, 44–52. [Google Scholar] [CrossRef]
- Sanny, M.; Jinap, S.; Bakker, E.J.; van Boekel, M.A.J.S.; Luning, P.A. Possible causes of variation in acrylamide concentration in French fries prepared in food service establishments: An observational study. Food Chem. 2012, 132, 134–143. [Google Scholar] [CrossRef]
- Johnson, A.M.; Porter, G.; Camire, M.E. Low-acrylamide French fry acceptance: A pilot study. J. Food Sci. 2019, 84, 3717–3725. [Google Scholar] [CrossRef]
- Li, D.; Chen, Y.; Zhang, Y.; Lu, B.; Jin, C.; Wu, X.; Zhang, Y. Study on mitigation of acrylamide formation in cookies by 5 antioxidants. J. Food Sci. 2012, 77, C1144–C1149. [Google Scholar] [CrossRef]
- Jin, C.; Wu, X.; Zhang, Y. Relationship between antioxidants and acrylamide formation: A review. Food Res. Int. 2013, 51, 611–620. [Google Scholar] [CrossRef]
- Borlinghaus, J.; Foerster, J.; Kappler, U.; Antelmann, H.; Noll, U.; Gruhlke, M.C.; Slusarenko, A.J. Allicin, the odor of freshly crushed garlic: A review of recent progress in understanding allicin’s effects on cells. Molecules 2021, 26, 1505. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Goran, A.; Igic, R. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chem. 2008, 111, 925–929. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef]
- Li, X.; Teng, W.; Liu, G.; Guo, F.; Xing, H.; Zhu, Y.; Li, J. Allicin promoted reducing effect of garlic powder through acrylamide formation stage. Foods 2022, 11, 2394. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zuo, J.; Qiao, X.; Zhang, Y.; Xu, Z. Effect of garlic powder on acrylamide formation in a low-moisture model system and bread baking. J. Sci. Food Agric. 2016, 96, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; He, Z.; Wang, Z.; Fang, Q.; Oz, F.; Chen, J.; Zeng, M. Processing stage-guided effects of spices on the formation and accumulation of heterocyclic amines in smoked and cooked sausages. Food Biosci. 2022, 47, 101776. [Google Scholar] [CrossRef]
- Tajner-Czopek, A.; Kita, A.; Rytel, E. Characteristics of french fries and potato chips in aspect of acrylamide content—Methods of reducing the toxic compound content in ready potato snacks. Appl. Sci. 2021, 11, 3943. [Google Scholar] [CrossRef]
- Başaran, B.; Turk, H. The influence of consecutive use of different oil types and frying oil in French fries on the acrylamide level. J. Food Compos. Anal. 2021, 104, 104177. [Google Scholar] [CrossRef]
- Cavalcanti, V.P.; Aazza, S.; Bertolucci, S.K.V.; Rocha, J.P.M.; Coelho, A.D.; Oliveira, A.J.M.; Mendes, L.C.; Pereira, M.M.A.; Morais, L.C.; Forim, M.R.; et al. Solvent mixture optimization in the extraction of bioactive compounds and antioxidant activities from garlic (Allium sativum L.). Molecules 2021, 26, 6026. [Google Scholar] [CrossRef]
- Sermenli, M.H. Farklı Yöntemlerle Elde Edilmiş Sarımsak (Allium sativum L.) Ekstraktlarının Antimutagenik Etkilerinin Araştırılması. Master’s Thesis, Adnan Menderes University, Aydın, Türkiye, 2006. [Google Scholar]
- Bardakci, H.; Barak, T.H.; Ozdemir, K.; Celep, E. Effect of brewing material and various additives on polyphenolic composition and antioxidant bioactivity of commercial Tilia platyphyllos Scop. infusions. J. Res. Pharm. 2020, 24, 133–141. [Google Scholar] [CrossRef]
- Barak, T.H.; Celep, E.; İnan, Y.; Yeşilada, E. In vitro human digestion simulation of the bioavailability and antioxidant activity of phenolics from Sambucus ebulus L. fruit extracts. Food Biosci. 2020, 37, 100711. [Google Scholar] [CrossRef]
- Barak, T.H.; Celep, İ.K.; Şentürk, T.B.; Bardakci, H.; Celep, E. In vitro anti-aging potential evaluation of Maclura pomifera (Rafin.) Schneider 80% methanol extract with quantitative HPTLC analysis. Turk. J. Pharm. Sci. 2022, 19, 400–407. [Google Scholar] [CrossRef]
- Negoiță, M.; Mihai, A.L.; Horneț, G.A. Influence of water, NaCl and citric acid soaking pre-treatments on acrylamide content in french fries prepared in domestic conditions. Foods 2022, 11, 1204. [Google Scholar] [CrossRef] [PubMed]
- Khoshnam, F.; Zargar, B.; Pourreza, N.; Parham, H. Acetone extraction and HPLC determination of acrylamide in potato chips. J. Iran. Chem. Soc. 2010, 7, 853–858. [Google Scholar] [CrossRef]
- Haddarah, A.; Naim, E.; Dankar, I.; Sepulcre, F.; Pujolà, M.; Chkeir, M. The effect of borage, ginger and fennel extracts on acrylamide formation in French fries in deep and electric air frying. Food Chem. 2021, 350, 129060. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.J.; Lee, H.J.; Yoon, D.K.; Ji, D.S.; Kim, J.H.; Lee, C.H. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci. Biotechnol. 2018, 27, 219–225. [Google Scholar] [CrossRef]
- Koca, I.; Tekguler, B.; Odabas, H.I. Comparison of the antioxidant properties of some onion and garlic cultivars grown in Turkey. In Proceedings of the VII International Symposium on Edible Alliaceae, Niğde, Türkiye, 21 May 2015; p. 1143. [Google Scholar]
- Nuutila, A.M.; Puupponen-Pimiä, R.; Aarni, M.; Oksman-Caldentey, K.-M. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem. 2003, 81, 485–493. [Google Scholar] [CrossRef]
- Gorinstein, S.; Leontowicz, H.; Leontowicz, M.; Namiesnik, J.; Najman, K.; Drzewiecki, J.; Cvikrová, M.; Martincová, O.; Katrich, E.; Trakhtenberg, S. Comparison of the main bioactive compounds and antioxidant activities in garlic and white and red onions after treatment protocols. J. Agric. Food Chem. 2008, 56, 4418–4426. [Google Scholar] [CrossRef]
- Akan, S. Evaluation and comparison of some parameters in four garlic varieties. J. Inst. Sci. Technol. 2019, 9, 1866–1875. [Google Scholar] [CrossRef]
- Turfan, N. Variation in chemicals and growth parameters of Taşköprü garlic. Turk. J. Agric.-Food Sci. Technol. 2020, 8, 847–854. [Google Scholar] [CrossRef]
- Fei, M.L.; Tong, L.I.; Wei, L.I.; De Yang, L. Changes in antioxidant capacity, levels of soluble sugar, total polyphenol, organosulfur compound and constituents in garlic clove during storage. Ind. Crops Prod. 2015, 69, 137–142. [Google Scholar] [CrossRef]
- Farhat, Z.; Scheving, T.; Aga, D.S.; Hershberger, P.A.; Freudenheim, J.L.; Hageman Blair, R.; Mammen, M.J.; Mu, L. Antioxidant and Antiproliferative Activities of Several Garlic Forms. Nutrients 2023, 15, 4099. [Google Scholar] [CrossRef]
- Šnirc, M.; Lidiková, J.; Čeryová, N.; Pintér, E.; Ivanišová, E.; Musilová, J.; Vollmannová, A.; Rybnikár, S. Mineral and phytochemical profiles of selected garlic (Allium sativum L.) cultivars. S. Afr. J. Bot. 2023, 158, 319–325. [Google Scholar] [CrossRef]
- Yünlü, S.; Kır, E. Soğan (Allium cepa) ve sarımsaktaki (Allium sativum) bazı fenolik bileşiklerin HPLC yöntemiyle tayin edilmesi. Süleyman Demirel Üniversitesi Fen Bilim. Enstitüsü Derg. 2016, 20, 566–574. [Google Scholar] [CrossRef]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in phenolic compounds in garlic (Allium sativum L.) owing to the cultivar and location of growth. Plant Foods Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef]
- Santos, C.S.; Cunha, S.C.; Casal, S. Deep or air frying? A comparative study with different vegetable oils. Eur. J. Lipid Sci. Technol. 2017, 119, 1600375. [Google Scholar] [CrossRef]
- Dong, L.; Qiu, C.Y.; Wang, R.C.; Zhang, Y.; Wang, J.; Liu, J.M.; Yu, H.-N.; Wang, S. Effects of air frying on French fries: The indication role of physicochemical properties on the formation of Maillard hazards, and the changes of starch digestibility. Front. Nutr. 2022, 9, 889901. [Google Scholar] [CrossRef]
- Sansano, M.; Juan-Borrás, M.; Escriche, I.; Andrés, A.; Heredia, A. Effect of pretreatments and air-frying, a novel technology, on acrylamide generation in fried potatoes. J. Food Sci. 2015, 80, T1120–T1128. [Google Scholar] [CrossRef]
- Navruz-Varlı, S.; Mortaş, H. Acrylamide formation in air-fried versus deep and oven-fried potatoes. Front. Nutr. 2024, 10, 1297069. [Google Scholar] [CrossRef]
- Rani, L.; Kumar, M.; Kaushik, D.; Kaur, J.; Kumar, A.; Oz, F.; Proestos, C.; Oz, E. A Review on the frying process: Methods, models and their mechanism and application in the food industry. Food Res. Int. 2023, 172, 113176. [Google Scholar] [CrossRef] [PubMed]
- Skog, K.; Viklund, G.; Olsson, K.; Sjöholm, I. Acrylamide in home-prepared roasted potatoes. Mol. Nutr. Food Res. 2008, 52, 307–312. [Google Scholar] [CrossRef]
- Maan, A.A.; Anjum, M.A.; Khan, M.K.I.; Nazir, A.; Saeed, F.; Afzaal, M.; Aadil, R.M. Acrylamide formation and different mitigation strategies during food processing—A review. Food Rev. Int. 2022, 38, 70–87. [Google Scholar] [CrossRef]
- Rajesh, T.P.; Basheer, V.A.; Packirisamy, A.S.B.; Ravi, S.N.; Vallinayagam, S. Effective inhibition of enzymatic browning and carcinogenic acrylamide in fried food by polyphenols. Top. Catal. 2024, 67, 300–312. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Deng, P.; He, Z.; Qin, F.; Chen, Q.; Wang, Z.; Pan, H.; Chen, J.; Zeng, M. Research progress on generation, detection and inhibition of multiple hazards-acrylamide, 5-hydroxymethylfurfural, advanced glycation end products, methylimidazole-in baked goods. Food Chem. 2023, 431, 137152. [Google Scholar] [CrossRef]
- Hamzalıoğlu, A.; Mogol, B.A.; Lumaga, R.B.; Fogliano, V.; Gökmen, V. Role of curcumin in the conversion of asparagine into acrylamide during heating. Amino Acids 2013, 44, 1419–1426. [Google Scholar] [CrossRef]
- Kotsiou, K.; Tasioula-Margari, M.; Capuano, E.; Fogliano, V. Effect of standard phenolic compounds and olive oil phenolic extracts on acrylamide formation in an emulsion system. Food Chem. 2011, 124, 242–247. [Google Scholar] [CrossRef]
- Cheng, K.W.; Shi, J.J.; Ou, S.Y.; Wang, M.; Jiang, Y. Effects of fruit extracts on the formation of acrylamide in model reactions and fried potato crisps. J. Agric. Food Chem. 2010, 58, 309–312. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Z.; Jiang, S.; Yu, M.; Huang, C.; Qiu, R.; Zou, Y.; Zhang, Q.; Ou, S.; Zhou, H.; et al. Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination. J. Hazard. Mater. 2014, 268, 1–5. [Google Scholar] [CrossRef]
- Soto, V.C.; Gonzalez, R.E.; Sance, M.M.; Galmarini, C.R. Organosulfur and phenolic content of garlic (Allium sativum L.) and onion (Allium cepa L.) and its relationship with antioxidant activity. In Proceedings of the VII International Symposium on Edible Alliaceae, Niğde, Türkiye, 21 May 2015. [Google Scholar]
- Rasul Suleria, H.A.; Sadiq Butt, M.; Muhammad Anjum, F.; Saeed, F.; Batool, R.; Nisar Ahmad, A. Aqueous garlic extract and its phytochemical profile; special reference to antioxidant status. Int. J. Food Sci. Nutr. 2012, 63, 431–439. [Google Scholar] [CrossRef]
- Martinez, E.; Rodriguez, J.A.; Mondragon, A.C.; Lorenzo, J.M.; Santos, E.M. Influence of potato crisps processing parameters on acrylamide formation and bioaccesibility. Molecules 2019, 24, 3827. [Google Scholar] [CrossRef] [PubMed]
- Mechi, D.; Pérez-Nevado, F.; Montero-Fernández, I.; Baccouri, B.; Abaza, L.; Martín-Vertedor, D. Evaluation of Tunisian olive leaf extracts to reduce the bioavailability of acrylamide in Californian-style black olives. Antioxidants 2023, 12, 117. [Google Scholar] [CrossRef] [PubMed]
- Hamzalıoğlu, A.; Gökmen, V. Investigation of the reactions of acrylamide during in vitro multistep enzymatic digestion of thermally processed foods. Food Funct. 2015, 6, 108–113. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Total Phenolic Content * | DPPH ** Radical Scavenging Activity |
---|---|---|
Garlic | 15.0 ± 0.5 | 765.0 ± 4.0 |
Compound | Amount | CV (%) | R2 |
---|---|---|---|
Chlorogenic Acid * | 5.74 ± 0.06 | 0.98% | 0.99 |
Cooking Method | Garlic Treatment | Acrylamide Content (μg/kg) | ||
---|---|---|---|---|
Mean ± SD | p-Values ** | p-Values *** | ||
Pan-frying | Control | 446.76 ± 15.87 a | p = 0.99 | a–c, p < 0.0001 |
Garlic | 441.21 ± 8.08 b | a–e, p < 0.0001 | ||
Air-frying | Control | 16.06 ± 3.05 c | p < 0.0001 * | c–e, p < 0.0001 |
Garlic | 311.95 ± 0.49 d | b–d, p < 0.0001 | ||
Oven-frying | Control | 138.34 ± 8.07 e | p < 0.0001 * | b–f, p < 0.0001 |
Garlic | 270.32 ± 23.38 f | d–f, p = 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sipahi, S.; Barak, T.H.; Can, Ö.; Temur, B.Z.; Baş, M.; Sağlam, D. Garlic Extract Increased Acrylamide Formation in French Fries Obtained by Different Cooking Methods. Foods 2024, 13, 2769. https://doi.org/10.3390/foods13172769
Sipahi S, Barak TH, Can Ö, Temur BZ, Baş M, Sağlam D. Garlic Extract Increased Acrylamide Formation in French Fries Obtained by Different Cooking Methods. Foods. 2024; 13(17):2769. https://doi.org/10.3390/foods13172769
Chicago/Turabian StyleSipahi, Simge, Timur Hakan Barak, Özge Can, Betül Zehra Temur, Murat Baş, and Duygu Sağlam. 2024. "Garlic Extract Increased Acrylamide Formation in French Fries Obtained by Different Cooking Methods" Foods 13, no. 17: 2769. https://doi.org/10.3390/foods13172769