Effect of Germination on the Digestion of Legume Proteins
Abstract
:1. Introduction
2. Changes in Protein during Germination
2.1. Changes in Protein Content during Germination
2.2. Changes in Protein Structure during Germination
3. Changes in Anti-Nutritional Factors during Germination
3.1. Changes in Tannins during Germination
3.2. Changes in Trypsin Inhibitor during Germination
3.3. Changes in Phytic Acid during Germination
3.4. Changes in Lectins during Germination
4. Effect of Changes in Proteins and Anti-Nutritional Factors on Legume Protein Digestion
4.1. Effect of Structure on Protein Digestibility
4.2. Effect of Tannin on Protein Digestibility
4.3. Effect of Trypsin Inhibitor on Protein Digestibility
4.4. Effect of Phytic Acid on Protein Digestibility
4.5. Effect of Lectins on Protein Digestibility
5. Summary
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boirie, Y.; Morio, B.; Caumon, E.; Cano, N.J. Nutrition and protein energy homeostasis in elderly. Mech. Ageing Dev. 2014, 136–137, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Langyan, S.; Yadava, P.; Khan, F.N.; Dar, Z.A.; Singh, R.; Kumar, A. Sustaining Protein Nutrition Through Plant-Based Foods. Front. Nutr. 2021, 8, 772573. [Google Scholar] [CrossRef] [PubMed]
- Nitride, C.; Vegarud, G.E.; Comi, I.; Devold, T.G.; Roseth, A.; Marti, A.; Iametti, S.; Mamone, G.; Picariello, G.; Alfieri, F.; et al. Effect of sprouting on the proteome of chickpea flour and on its digestibility by ex vivo gastro-duodenal digestion complemented with jejunal brush border membrane enzymes. Food Res. Int. 2022, 154, 111012. [Google Scholar] [CrossRef]
- Ohanenye, I.C.; Tsopmo, A.; Ejike, C.E.C.C.; Udenigwe, C.C. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci. Technol. 2020, 101, 213–222. [Google Scholar] [CrossRef]
- Setia, R.; Dai, Z.; Nickerson, M.T.; Sopiwnyk, E.; Malcolmson, L.; Ai, Y. Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Res. Int. 2019, 122, 263–272. [Google Scholar] [CrossRef]
- Uppal, V.; Bains, K. Effect of germination periods and hydrothermal treatments on in vitro protein and starch digestibility of germinated legumes. J. Food Sci. Technol. 2012, 49, 184–191. [Google Scholar] [CrossRef]
- Xie, Y.; Cai, L.; Zhao, D.; Liu, H.; Xu, X.; Zhou, G.; Li, C. Real meat and plant-based meat analogues have different in vitro protein digestibility properties. Food Chem. 2022, 387, 132917. [Google Scholar] [CrossRef]
- Schaafsma, G. The Protein Digestibility–Corrected Amino Acid Score. J. Nutr. 2000, 130, 1865S–1867S. [Google Scholar] [CrossRef]
- Bera, I.; O’Sullivan, M.; Flynn, D.; Shields, D.C. Relationship between Protein Digestibility and the Proteolysis of Legume Proteins during Seed Germination. Molecules 2023, 28, 3204. [Google Scholar] [CrossRef]
- Wang, X.; Ye, A.; Dave, A.; Singh, H. In vitro digestion of soymilk using a human gastric simulator: Impact of structural changes on kinetics of release of proteins and lipids. Food Hydrocoll. 2021, 111, 106235. [Google Scholar] [CrossRef]
- Sofi, S.A.; Rafiq, S.; Singh, J.; Mir, S.A.; Sharma, S.; Bakshi, P.; McClements, D.J.; Mousavi Khaneghah, A.; Dar, B.N. Impact of germination on structural, physicochemical, techno-functional, and digestion properties of desi chickpea (Cicer arietinum L.) flour. Food Chem. 2023, 405, 135011. [Google Scholar] [CrossRef] [PubMed]
- Besharati, M.; Maggiolino, A.; Palangi, V.; Kaya, A.; Jabbar, M.; Eseceli, H.; De Palo, P.; Lorenzo, J.M. Tannin in Ruminant Nutrition: Review. Molecules 2022, 27, 8273. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Dawidziak, M.; Tomczak, A.; Burzyńska, M.; Rokosik, E.; Dwiecki, K.; Piasecka-Kwiatkowska, D. Comparison ofLupinus angustifoliusprotein digestibility in dependence on protein, amino acids, trypsin inhibitors and polyphenolic compounds content. Int. J. Food Sci. Technol. 2019, 55, 2029–2040. [Google Scholar] [CrossRef]
- Onyango, E.M.; Asem, E.K.; Adeola, O. Phytic acid increases mucin and endogenous amino acid losses from the gastrointestinal tract of chickens. Br. J. Nutr. 2009, 101, 836–842. [Google Scholar] [CrossRef]
- Pan, L.; Liu, J.; Hamdy Farouk, M.; Qin, G.; Bao, N.; Zhao, Y.; Sun, H. Anti-nutritional characteristics and mechanism of soybean agglutinin. Biocell 2021, 45, 451–459. [Google Scholar] [CrossRef]
- Hall, A.E.; Moraru, C.I. Comparative effects of high pressure processing and heat treatment on in vitro digestibility of pea protein and starch. NPJ Sci. Food 2022, 6, 2. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Li, M.; Guo, S.; Lv, Y. Effects of heat treatment on protein molecular structure and in vitro digestion in whole soybeans with different moisture content. Food Res. Int. 2022, 155, 111115. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; Habiba, R.A.; Shatta, A.A.; Embaby, H.E. Effect of soaking, germination, cooking and fermentation on antinutritional factors in cowpeas. Food/Nahr. 2002, 46, 92–95. [Google Scholar] [CrossRef]
- Nambara, E.; Okamoto, M.; Tatematsu, K.; Yano, R.; Seo, M.; Kamiya, Y. Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res. 2010, 20, 55–67. [Google Scholar] [CrossRef]
- Van Vo, B.; Siddik, M.A.B.; Fotedar, R.; Chaklader, M.R.; Foysal, M.J.; Pham, H.D. Digestibility and water quality investigations on the processed peanut (Arachis hypogaea) meal fed barramundi (Lates calcarifer) at various inclusion levels. Aquac. Rep. 2020, 18, 100474. [Google Scholar] [CrossRef]
- Di, Y.; Li, X.; Chang, X.; Gu, R.; Duan, X.; Liu, F.; Liu, X.; Wang, Y. Impact of germination on structural, functional properties and in vitro protein digestibility of sesame (Sesamum indicum L.) protein. Lwt 2022, 154, 112651. [Google Scholar] [CrossRef]
- Suarez-Estrella, D.; Bresciani, A.; Iametti, S.; Marengo, M.; Pagani, M.A.; Marti, A. Effect of Sprouting on Proteins and Starch in Quinoa (Chenopodium quinoa Willd.). Plant Foods Hum. Nutr. 2020, 75, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.Z.; An, H.G.; Kang, S.J.; Lee, Y.T. Physicochemical and bioactive properties of a high beta-glucan barley variety ’Betaone’ affected by germination processing. Int. J. Biol. Macromol. 2021, 177, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Rico, D.; Penas, E.; Garcia, M.D.C.; Martinez-Villaluenga, C.; Rai, D.K.; Birsan, R.I.; Frias, J.; Martin-Diana, A.B. Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods 2020, 9, 296. [Google Scholar] [CrossRef]
- Ghumman, A.; Kaur, A.; Singh, N. Impact of germination on flour, protein and starch characteristics of lentil (Lens culinari) and horsegram (Macrotyloma uniflorum L.) lines. LWT Food Sci. Technol. 2016, 65, 137–144. [Google Scholar] [CrossRef]
- Sun, W.-X.; Zhang, R.-J.; Fan, J.; He, Y.; Mao, X.-H. Comprehensive transformative profiling of nutritional and functional constituents during germination of soybean sprouts. J. Food Meas. Charact. 2018, 12, 1295–1302. [Google Scholar] [CrossRef]
- Xue, Z.; Wang, C.; Zhai, L.; Yu, W.; Chang, H.; Kou, X.; Zhou, F. Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process. Czech J. Food Sci. 2016, 34, 68–78. [Google Scholar] [CrossRef]
- de la Rosa-Millán, J.; Heredia-Olea, E.; Perez-Carrillo, E.; Guajardo-Flores, D.; Serna-Saldívar, S.R.O. Effect of decortication, germination and extrusion on physicochemical and in vitro protein and starch digestion characteristics of black beans (Phaseolus vulgaris L.). Lwt 2019, 102, 330–337. [Google Scholar] [CrossRef]
- Ghavidel, R.A.; Prakash, J. The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT Food Sci. Technol. 2007, 40, 1292–1299. [Google Scholar] [CrossRef]
- Kaur, R.; Prasad, K. Technological, processing and nutritional aspects of chickpea (Cicer arietinum)—A review. Trends Food Sci. Technol. 2021, 109, 448–463. [Google Scholar] [CrossRef]
- Khattak, A.B.; Zeb, A.; Bibi, N. Impact of germination time and type of illumination on carotenoidcontent, protein solubility and in vitro protein digestibility of chickpea (Cicer arietinum L.) sprouts. Food Chem. 2008, 109, 797–801. [Google Scholar] [CrossRef]
- Serrano-Sandoval, S.N.; Guardado-Felix, D.; Gutierrez-Uribe, J.A. Changes in digestibility of proteins from chickpeas (Cicer arietinum L.) germinated in presence of selenium and antioxidant capacity of hydrolysates. Food Chem. 2019, 285, 290–295. [Google Scholar] [CrossRef]
- Alonso, R.; Aguirre, A.; Marzo, F. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Kalpanadevi, V.; Mohan, V.R. Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna unguiculata (L.) Walp subsp. unguiculata. LWT Food Sci. Technol. 2013, 51, 455–461. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I.; Hu, X. In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing. Food Res. Int. 2017, 92, 64–78. [Google Scholar] [CrossRef]
- Urbano, G.; Lopez-Jurado, M.; Frejnagel, S.; Gomez-Villalva, E.; Porres, J.M.; Frias, J.; Vidal-Valverde, C.; Aranda, P. Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition 2005, 21, 230–239. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Gao, J.; Tong, P.; Yang, A.; Chen, H. Germination-Assisted Enzymatic Hydrolysis Can Improve the Quality of Soybean Protein. J. Food Sci. 2017, 82, 1814–1819. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, H.; Yan, H.; Qiu, L.; Baskin, C.C. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species. Front. Plant Sci. 2018, 9, 234. [Google Scholar] [CrossRef]
- Chau, E.Y. The invention Relates to a Method for Producing Sprout Bean Milk. CN114886089A, 12 August 2022. [Google Scholar]
- Guo, N.; Zhu, G.; Zhang, F.; Dai, H.; Zhang, H.; Lu, H. The invention Relates to a Method for Preparing Seed Chickpea and Konjac Vermicelli. CN115381086A, 25 November 2022. [Google Scholar]
- Jin, X.; Wang, H.; Li, Y.; Lin, H.; Xu, Y. The Invention Relates to a Budding Soybean Rich in Folic Acid, a Preparation Method and a Protein Milk Prepared by Using the Budding Soybean. CN115997894A, 25 April 2023. [Google Scholar]
- Xu, X.; Xu, Y.; He, C.; Ma, G.; Yang, N.; Jin, Y.; Wu, F.; Chen, Y.; Zhang, Y. The Invention Relates to a Method for Preparing Fancy cake With High γ-Aminobutyric Acid Budding Mung bean Powder. CN110916097B, 3 December 2021. [Google Scholar]
- Links, S. Various HD Vegetable Combinations. Available online: https://699pic.com/tupian-500522778.html (accessed on 3 August 2024).
- Links, S. Grains Picture. Available online: https://ts1.cn.mm.bing.net/th/id/R-C.25f8cda22cbe0258b96e310bd84a65c2?rik=qvK9aVWzpttWVA&riu=http%3a%2f%2fseopic.699pic.com%2fphoto%2f50047%2f3194.jpg_wh1200.jpg&ehk=DTfkcfCJ3e61UrS1%2fEwFjk37baowENpa9XMddOubdyo%3d&risl=&pid=ImgRaw&r=0 (accessed on 3 August 2024).
- Links, S. Fungus Picture. Available online: http://www.nbs99.com/Mobile/MArticles/syjschjtsd_1_page1.html (accessed on 3 August 2024).
- Pidjoe. Broccoli. Available online: https://www.veer.com/photo/153683882.html?topicId=1562 (accessed on 3 August 2024).
- Hu, W.; Liu, X.; Xiong, Y.; Liu, T.; Li, Z.; Song, J.; Wang, J.; Wang, X.; Li, X. Nutritional evaluation and transcriptome analyses of short-time germinated seeds in soybean (Glycine max L. Merri.). Sci. Rep. 2021, 11, 22714. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, P.; Gu, Z.; Sun, M.; Yang, R. Effects of germination on physio-biochemical metabolism and phenolic acids of soybean seeds. J. Food Compos. Anal. 2022, 112, 104717. [Google Scholar] [CrossRef]
- Shi, H.; Nam, P.K.; Ma, Y. Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination. J. Agric. Food Chem. 2010, 58, 4970–4976. [Google Scholar] [CrossRef] [PubMed]
- Maetens, E.; Hettiarachchy, N.; Dewettinck, K.; Horax, R.; Moens, K.; Moseley, D.O. Physicochemical and nutritional properties of a healthy snack chip developed from germinated soybeans. Lwt 2017, 84, 505–510. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Lu, H.; Shu, Q.; Zhang, Y.; Chen, Q. New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends Food Sci. Technol. 2022, 123, 187–197. [Google Scholar] [CrossRef]
- lyfnn. Hand-Painted Cartoon Bean Crops. Available online: https://ixintu.com/sucai/7SzWVqkWW.html (accessed on 3 August 2024).
- Wang, C.; Jiang, L.; Wei, D.; Li, Y.; Sui, X.; Wang, Z.; Li, D. Effect of Secondary Structure determined by FTIR Spectra on Surface Hydrophobicity of Soybean Protein Isolate. Procedia Eng. 2011, 15, 4819–4827. [Google Scholar] [CrossRef]
- Newstead, S. Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2015, 1850, 488–499. [Google Scholar] [CrossRef]
- Fei, Y.-J.; Kanai, Y.; Nussberger, S.; Ganapathy, V.; Leibach, F.H.; Romero, M.F.; Singh, S.K.; Boron, W.F.; Hediger, M.A. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 1994, 368, 563–566. [Google Scholar] [CrossRef]
- Hu, S.; Gao, H.; Ouyang, L.; Li, X.; Zhu, S.; Wu, Y.; Yuan, L.; Zhou, J. Mechanistic insights into the improving effects of germination on physicochemical properties and antioxidant activity of protein isolate derived from black and white sesame. Food Chem. 2023, 429, 136833. [Google Scholar] [CrossRef]
- Brandsch, M.; Knütter, I.; Leibach, F.H. The intestinal H+/peptide symporter PEPT1: Structure–affinity relationships. Eur. J. Pharm. Sci. 2004, 21, 53–60. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Y.; Wang, A.; Wang, J.; Wu, X.; Wu, Y.; Fu, Y.; Sun, H. Insights into interactions between food polyphenols and proteins: An updated overview. J. Food Process. Preserv. 2022, 46, e16597. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Q.; Zhang, X.; Bassey, A.P.; Zeng, X.; Zhou, G.; Xu, X. A structural explanation for protein digestibility changes in different food matrices. Food Hydrocoll. 2023, 136, 108281. [Google Scholar] [CrossRef]
- Jing, H.; Huang, X.; Jiang, C.; Wang, L.; Du, X.; Ma, C.; Wang, H. Effects of tannic acid on the structure and proteolytic digestion of bovine lactoferrin. Food Hydrocoll. 2021, 117, 106666. [Google Scholar] [CrossRef]
- Joye, I. Protein Digestibility of Cereal Products. Foods 2019, 8, 199. [Google Scholar] [CrossRef]
- Duodu, K.G.; Taylor, J.R.N.; Belton, P.S.; Hamaker, B.R. Factors affecting sorghum protein digestibility. J. Cereal Sci. 2003, 38, 117–131. [Google Scholar] [CrossRef]
- Watford, M.; Wu, G. Protein. Adv. Nutr. 2018, 9, 651–653. [Google Scholar] [CrossRef] [PubMed]
- Guldiken, B.; Konieczny, D.; Franczyk, A.; Satiro, V.; Pickard, M.; Wang, N.; House, J.; Nickerson, M.T. Impacts of infrared heating and tempering on the chemical composition, morphological, functional properties of navy bean and chickpea flours. Eur. Food Res. Technol. 2022, 248, 767–781. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Alli, I.; Konishi, Y.; Ziomek, E. Characterization of protein fractions from chickpea (Cicer arietinum L.) and oat (Avena sativa L.) seeds using proteomic techniques. Food Res. Int. 2011, 44, 3094–3104. [Google Scholar] [CrossRef]
- Serrano, J.; Puupponen-Pimia, R.; Dauer, A.; Aura, A.M.; Saura-Calixto, F. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. Mol. Nutr. Food Res. 2009, 53 (Suppl. 2), S310–S329. [Google Scholar] [CrossRef] [PubMed]
- Godrich, J.; Rose, P.; Muleya, M.; Gould, J. The effect of popping, soaking, boiling and roasting processes on antinutritional factors in chickpeas and red kidney beans. Int. J. Food Sci. Technol. 2022, 58, 279–289. [Google Scholar] [CrossRef]
- Khandelwal, S.; Udipi, S.A.; Ghugre, P. Polyphenols and tannins in Indian pulses: Effect of soaking, germination and pressure cooking. Food Res. Int. 2010, 43, 526–530. [Google Scholar] [CrossRef]
- Dida Bulbula, D.; Urga, K.; Yildiz, F. Study on the effect of traditional processing methods on nutritional composition and anti nutritional factors in chickpea (Cicer arietinum). Cogent Food Agric. 2018, 4, 1422370. [Google Scholar] [CrossRef]
- Akkad, R.; Buchko, A.; Johnston, S.P.; Han, J.; House, J.D.; Curtis, J.M. Sprouting improves the flavour quality of faba bean flours. Food Chem. 2021, 364, 130355. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Rani, A.; Mittal, P.; Shuaib, M. Kunitz trypsin inhibitor in soybean: Contribution to total trypsin inhibitor activity as a function of genotype and fate during processing. J. Food Meas. Charact. 2019, 13, 1583–1590. [Google Scholar] [CrossRef]
- Weder, J.K.; Kahleyss, R. Reaction of lentil trypsin-chymotrypsin inhibitors with human and bovine proteinases. J. Agric. Food Chem. 2003, 51, 8045–8050. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.C.; Mandarino, J.M.; Kurozawa, L.E.; Ida, E.I. The effect of thermal treatment of whole soybean flour on the conversion of isoflavones and inactivation of trypsin inhibitors. Food Chem. 2016, 194, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tan, M.; Zhu, Y.; Duan, H.; Ramaswamy, H.S.; Bai, W.; Wang, C. The influence of high pressure processing and germination on anti-nutrients contents, in vitro amino acid release and mineral digestibility of soybeans. J. Food Compos. Anal. 2023, 115, 104953. [Google Scholar] [CrossRef]
- Huang, H.; Kwok, K.-C.; Liang, H. Effects of tea polyphenols on the activities of soybean trypsin inhibitors and trypsin. J. Sci. Food Agric. 2004, 84, 121–126. [Google Scholar] [CrossRef]
- Patterson, C.A.; Curran, J.; Der, T. Effect of Processing on Antinutrient Compounds in Pulses. Cereal Chem. J. 2017, 94, 2–10. [Google Scholar] [CrossRef]
- Zahir, M.; Fogliano, V.; Capuano, E. Soybean germination limits the role of cell wall integrity in controlling protein physicochemical changes during cooking and improves protein digestibility. Food Res. Int. 2021, 143, 110254. [Google Scholar] [CrossRef]
- Kumar, V.; Rani, A.; Pandey, V.; Chauhan, G.S. Changes in lipoxygenase isozymes and trypsin inhibitor activity in soybean during germination at different temperatures. Food Chem. 2006, 99, 563–568. [Google Scholar] [CrossRef]
- Azeke, M.A.; Egielewa, S.J.; Eigbogbo, M.U.; Ihimire, I.G. Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum). J. Food Sci. Technol. 2011, 48, 724–729. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef]
- Singh, P.K. Significance of phytic acid and supplemental phytase in chicken nutrition: A review. World’s Poult. Sci. J. 2019, 64, 553–580. [Google Scholar] [CrossRef]
- Sarkhel, S.; Roy, A. Phytic acid and its reduction in pulse matrix: Structure–function relationship owing to bioavailability enhancement of micronutrients. J. Food Process Eng. 2022, 45, e14030. [Google Scholar] [CrossRef]
- Egli, I.; Davidsson, L.; Juillerat, M.A.; Barclay, D.; Hurrell, R.F. The Influence of Soaking and Germination on the Phytase Activity and Phytic Acid Content of Grains and Seeds Potentially Useful for Complementary Feedin. J. Food Sci. 2002, 67, 3484–3488. [Google Scholar] [CrossRef]
- Luo, Y.; Gu, Z.; Han, Y.; Chen, Z. The impact of processing on phytic acid, in vitro soluble iron and Phy/Fe molar ratio of faba bean (Vicia faba L.). J. Sci. Food Agric. 2009, 89, 861–866. [Google Scholar] [CrossRef]
- Shimelis, E.A.; Rakshit, S.K. Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chem. 2007, 103, 161–172. [Google Scholar] [CrossRef]
- De Mejia, E.G.; Del Carmen Valadez-Vega, M.; Reynoso-Camacho, R.; Loarca-Pina, G. Tannins, trypsin inhibitors and lectin cytotoxicity in tepary (Phaseolus acutifolius) and common (Phaseolus vulgaris) beans. Plant Foods Hum. Nutr. 2005, 60, 137–145. [Google Scholar] [CrossRef]
- Ghani, M.; Kulkarni, K.P.; Song, J.T.; Shannon, J.G.; Lee, J.-D. Soybean Sprouts: A Review of Nutrient Composition, Health Benefits and Genetic Variation. Plant Breed. Biotechnol. 2016, 4, 398–412. [Google Scholar] [CrossRef]
- Sharma, B.; Gujral, H.S. Modifying the dough mixing behavior, protein & starch digestibility and antinutritional profile of minor millets by sprouting. Int. J. Biol. Macromol. 2020, 153, 962–970. [Google Scholar] [CrossRef]
- Mohamed Nour, A.A.; Mohamed Ahmed, I.A.; Babiker, E.E.; Yagoub, A.E.A. Investigations on winter season Sudanese sorghum cultivars: Effect of sprouting on the nutritional value. Int. J. Food Sci. Technol. 2010, 45, 884–890. [Google Scholar] [CrossRef]
- Devi, C.B.; Kushwaha, A.; Kumar, A. Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata). J. Food Sci. Technol. 2015, 52, 6821–6827. [Google Scholar] [CrossRef] [PubMed]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef]
- Elliott, H.; Woods, P.; Green, B.D.; Nugent, A.P. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes? Nutr. Bull. 2022, 47, 138–156. [Google Scholar] [CrossRef]
- Zinia, S.A.; Nupur, A.H.; Karmoker, P.; Hossain, A.; Jubayer, M.F.; Akhter, D.; Mazumder, M.A.R. Effects of sprouting of soybean on the anti-nutritional, nutritional, textural and sensory quality of tofu. Heliyon 2022, 8, e10878. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Qin, G.; Sun, Z.; Long, G. Relationship between Molecular Structure Characteristics of Feed Proteins and Protein in vitro Digestibility and Solubility. Asian-Australas. J. Anim. Sci. 2016, 29, 1159–1165. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Qi, B.; Sui, X.; Jiang, L. Complexation of thermally-denatured soybean protein isolate with anthocyanins and its effect on the protein structure and in vitro digestibility. Food Res. Int. 2018, 106, 619–625. [Google Scholar] [CrossRef]
- Samadi; Yu, P. Dry and moist heating-induced changes in protein molecular structure, protein subfraction, and nutrient profiles in soybeans. J. Dairy. Sci. 2011, 94, 6092–6102. [Google Scholar] [CrossRef]
- Jin, J.; Okagu, O.D.; Yagoub, A.E.A.; Udenigwe, C.C. Effects of sonication on the in vitro digestibility and structural properties of buckwheat protein isolates. Ultrason. Sonochem 2021, 70, 105348. [Google Scholar] [CrossRef]
- Pan, M.; Xu, F.; Wu, Y.; Yao, M.; Xiao, X.; Zhang, N.; Ju, X.; Wang, L. Application of ultrasound-assisted physical mixing treatment improves in vitro protein digestibility of rapeseed napin. Ultrason. Sonochem 2020, 67, 105136. [Google Scholar] [CrossRef]
- Hall, A.E.; Moraru, C.I. Effect of High Pressure Processing and heat treatment on in vitro digestibility and trypsin inhibitor activity in lentil and faba bean protein concentrates. Lwt 2021, 152, 112342. [Google Scholar] [CrossRef]
- Bhattarai, R.R.; Dhital, S.; Wu, P.; Chen, X.D.; Gidley, M.J. Digestion of isolated legume cells in a stomach-duodenum model: Three mechanisms limit starch and protein hydrolysis. Food Funct. 2017, 8, 2573–2582. [Google Scholar] [CrossRef]
- Sarwar, G. The Protein Digestibility–Corrected Amino Acid Score Method Overestimates Quality of Proteins Containing Antinutritional Factors and of Poorly Digestible Proteins Supplemented with Limiting Amino Acids in Rats. J. Nutr. 1997, 127, 758–764. [Google Scholar] [CrossRef]
- Shaheen, N.; Islam, S.; Munmun, S.; Mohiduzzaman, M.; Longvah, T. Amino acid profiles and digestible indispensable amino acid scores of proteins from the prioritized key foods in Bangladesh. Food Chem. 2016, 213, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Craddock, J.C.; Genoni, A.; Strutt, E.F.; Goldman, D.M. Limitations with the Digestible Indispensable Amino Acid Score (DIAAS) with Special Attention to Plant-Based Diets: A Review. Curr. Nutr. Rep. 2021, 10, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Zia Ur, r.; Shah, W.H. Tannin contents and protein digestibility of black grams (Vigna mungo) after soaking and cooking. Plant Foods Hum. Nutr. 2001, 56, 265–273. [Google Scholar] [CrossRef]
- Yao, J.; Chen, P.; Apraku, A.; Zhang, G.; Huang, Z.; Hua, X. Hydrolysable Tannin Supplementation Alters Digestibility and Utilization of Dietary Protein, Lipid, and Carbohydrate in Grass Carp (Ctenopharyngodon idellus). Front. Nutr. 2019, 6, 183. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Ai, Q.; Mai, K.; Xu, W.; Ma, H.; Li, Y.; Zhang, J. Effects of dietary canola meal on growth performance, digestion and metabolism of Japanese seabass, Lateolabrax japonicus. Aquaculture 2010, 305, 102–108. [Google Scholar] [CrossRef]
- Varanka, Z.; Rojik, I.; Varanka, I.; Nemcsók, J.; Ábrahám, M. Biochemical and morphological changes in carp (Cyprinus carpio L.) liver following exposure to copper sulfate and tannic acid. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 128, 467–477. [Google Scholar] [CrossRef]
- Chung, K.-T.; Wei, C.-I.; Johnson, M.G. Are tannins a double-edged sword in biology and health? Trends Food Sci. Technol. 1998, 9, 168–175. [Google Scholar] [CrossRef]
- Adamczyk, B.; Simon, J.; Kitunen, V.; Adamczyk, S.; Smolander, A. Tannins and Their Complex Interaction with Different Organic Nitrogen Compounds and Enzymes: Old Paradigms versus Recent Advances. ChemistryOpen 2017, 6, 610–614. [Google Scholar] [CrossRef]
- Al-Mamary, M.; Molham, A.-H.; Abdulwali, A.-A.; Al-Obeidi, A. In vivo effects of dietary sorghum tannins on rabbit digestive enzymes and mineral absorption. Nutr. Res. 2001, 21, 1393–1401. [Google Scholar] [CrossRef]
- Mahmood, S.; Khan, M.A.; Sarwar, M.; Nisa, M. Use of chemical treatments to reduce antinutritional effects of tannins in salseed meal: Effect on performance and digestive enzymes of broilers. Livest. Sci. 2008, 116, 162–170. [Google Scholar] [CrossRef]
- Muran. Vector Human Intestine. Available online: https://www.tukuppt.com/muban/vnjjybjn.html (accessed on 3 August 2024).
- Nipic. Stomach. Available online: https://www.nipic.com/show/41268375.html (accessed on 3 August 2024).
- Sina. Pancreas Picture. Available online: https://n.sinaimg.cn/sinakd10114/97/w2048h2049/20210412/e712-knqqqmu9115086.jpg (accessed on 21 August 2024).
- Norozi, M.; Rezaei, M.; Kazemifard, M. Effect of different acid processing methodologies on the nutritional value and reduction of anti-nutrients in soybean meal. J. Food Process. Preserv. 2021, 46, e16205. [Google Scholar] [CrossRef]
- Chen, J.; Wedekind, K.; Escobar, J.; Vazquez-Añón, M. Trypsin Inhibitor and Urease Activity of Soybean Meal Products from Different Countries and Impact of Trypsin Inhibitor on Ileal Amino Acid Digestibility in Pig. J. Am. Oil Chem. Soc. 2020, 97, 1151–1163. [Google Scholar] [CrossRef]
- Pacheco, W.J.; Stark, C.R.; Ferket, P.R.; Brake, J. Effects of trypsin inhibitor and particle size of expeller-extracted soybean meal on broiler live performance and weight of gizzard and pancreas. Poult. Sci. 2014, 93, 2245–2252. [Google Scholar] [CrossRef] [PubMed]
- Thavarajah, P.; Thavarajah, D.; Vandenberg, A. Low phytic acid lentils (Lens culinaris L.): A potential solution for increased micronutrient bioavailability. J. Agric. Food Chem. 2009, 57, 9044–9049. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Guo, S. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2081–2105. [Google Scholar] [CrossRef]
- Vashishth, A.; Ram, S.; Beniwal, V. Cereal phytases and their importance in improvement of micronutrients bioavailability. 3 Biotech. 2017, 7, 42. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Weihrauch, D.; Nyachoti, C.M. Effect of dietary phytic acid on performance and nutrient uptake in the small intestine of piglets1. J. Anim. Sci. 2012, 90, 543–549. [Google Scholar] [CrossRef]
- Selle, P.H.; Cowieson, A.J.; Cowieson, N.P.; Ravindran, V. Protein-phytate interactions in pig and poultry nutrition: A reappraisal. Nutr. Res. Rev. 2012, 25, 1–17. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, A.; Meng, C.; Li, Z.; He, P. Quantification of lectin in soybeans and soy products by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1185, 122987. [Google Scholar] [CrossRef] [PubMed]
- Vojdani, A.; Afar, D.; Vojdani, E. Reaction of Lectin-Specific Antibody with Human Tissue: Possible Contributions to Autoimmunity. J. Immunol. Res. 2020, 2020, 1438957. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Heo, P.S.; Jang, J.C.; Jin, S.S.; Hong, J.S.; Kim, Y.Y. Effect of different soybean meal type on ileal digestibility of amino acid in weaning pigs. J. Anim. Sci. Technol. 2015, 57, 11. [Google Scholar] [CrossRef] [PubMed]
- Kunzelmann, K.; Sun, J.; Schreiber, R.; Konig, J. Effects of dietary lectins on ion transport in epithelia. Br. J. Pharmacol. 2004, 142, 1219–1226. [Google Scholar] [CrossRef]
- Li, Z.; Li, D.; Qiao, S.; Zhu, X.; Huang, C. Anti-nutritional effects of a moderate dose of soybean agglutinin in the rat. Arch. Tierernahr. 2003, 57, 267–277. [Google Scholar] [CrossRef]
- Brune, M.F.S.S.; Pinto, M.d.O.; Peluzio, M.d.C.G.; Moreira, M.A.; Barros, E.G.d. Avaliação bioquímico-nutricional de uma linhagem de soja livre do inibidor de tripsina Kunitz e de lectinas. Ciência Tecnol. Aliment. 2010, 30, 657–663. [Google Scholar] [CrossRef]
- Fasina, Y.O.; Classen, H.L.; Garlich, J.D.; Black, B.L.; Ferket, P.R.; Uni, Z.; Olkowski, A.A. Response of turkey poults to soybean lectin levels typically encountered in commercial diets. 2. Effect on intestinal development and lymphoid organs. Poult. Sci. 2006, 85, 870–877. [Google Scholar] [CrossRef]
- Pita-Lopez, W.; Gomez-Garay, M.; Blanco-Labra, A.; Aguilera-Barreyro, A.; Reis-de Souza, T.C.; Olvera-Ramirez, A.; Ferriz-Martinez, R.; Garcia-Gasca, T. Tepary bean (Phaseolus acutifolius) lectin fraction provokes reversible adverse effects on rats’ digestive tract. Toxicol. Res. 2020, 9, 714–725. [Google Scholar] [CrossRef]
- Kassegn, H.H.; Atsbha, T.W.; Weldeabezgi, L.T.; Yildiz, F. Effect of germination process on nutrients and phytochemicals contents of faba bean (Vicia faba L.) for weaning food preparation. Cogent Food Agric. 2018, 4, 1545738. [Google Scholar] [CrossRef]
- Ramakrishna, V.; Jhansi Rani, P.; Ramakrishna Rao, P. Changes in anti-nutritional factors in Indian bean (Dolichos lablab L.) seeds during germination and their behaviour during cooking. Nutr. Food Sci. 2008, 38, 6–14. [Google Scholar] [CrossRef]
Indicators | Methods | Reasons | References |
---|---|---|---|
particle size distribution | (1) Zeta potentiometer. (2) Laser particle size analyzer | The larger the average particle size of the enzymolysis, the higher the degree of molecular aggregation, the larger the molecular weight of the unenzymolysis, and the more peptides involved in the polymerization | [10,56] |
degree of hydrolysis | (1) Fluorescent amine method. (2) OPA method | The release of free amino acids was measured | [58] |
Surface hydrophobic index | ANS fluorescent probe method | The intestinal transporter carrier PepT1 is the main mode of proteolytic peptide transport in the gastrointestinal tract, and the hydrophobicity of the peptide determines its affinity for PepT1. | [55,56,59] |
SDS-PAGE | SDS-PAGE | The protein in the digestive fluid was isolated and quantified. | [10,60] |
molecular mass | (1) HPLC. (2) 18-angle laser particle size analyzer | Peptides with large molecular weight are difficult to absorb, so the more small peptides in the enzymatic hydrolysis products, the easier it is to be digested and absorbed by the human body. | [55,57] |
Amino acid score (AAS) | AAS = Nitrogen or protein amino acid content (mg) per gram of food protein under test/Nitrogen or protein amino acid content (mg) per gram of reference protein × 100 | A widely used method for evaluating the nutritional value of food proteins. | [8,61,62,63] |
Protein digestibility corrected amino acid score (PDCAAS) | PCDAAS = Amino acid score × true digestibility | The US Food and Drug Administration (FDA) has come up with a new approach. | [8,61,62,63] |
Digestible Essential Amino Acid Score (DIAAS) | DIAAS = mg digestible amino acids per gram of dietary protein/mg digestible amino acids per gram of reference protein × 100 | The content of all digestible essential amino acids in the protein is compared with the content of these digestible amino acids in the reference protein. | [8,61,62,63] |
Protein digestibility | The nitrogen value was determined by the AOAC(2005) method, and IVPD was the percentage of protein in the supernatant/the total protein content of the sample | Digestibility reflects the degree of protein degradation at different stages of the process. | [7,21] |
Name | Reduction (%) | References | Effect on Protein Digestibility | References |
---|---|---|---|---|
Tannins | Reduced by 20% to 75% | [18,67,68,69,70,131,132] | (1) Binding with protein to form a complex. (2) Binding with digestive enzymes and inhibiting digestive enzyme activity. | [58,109] |
trypsin inhibitors | Reduced by 10% to 80% | [34,74,76,77,115] | (1) Blocking protease hydrolysis. (2) Acting on the pancreas itself, it stimulates the pancreas to secrete a lot of pancreatic enzymes in a compensatory response, causing hyperfunction. | [13,116,117] |
phytic acid | Reduced by 36% to 82% | [67,82,85,121] | (1) Binding with proteins or enzymes to form phytate-protein complexes and phytate-enzyme complexes. (2) Inhibit sodium pump activity and interfere with intestinal digestion of proteins as well as amino acid absorption. (3) Phytate interacts with protein. | [118,121,122] |
lectins | Reduced by 7% to 85% | [49,76,87] | Specific recognition with N-acetylgalactosamine and galactose in intestinal epithelial cells damages the intestine, interferes with the secretion of intestinal digestive enzymes, and inhibits protein digestion. | [126] |
References | Germination Conditions | Varieties | Value of Increase in Protein Digestibility In Vitro (%) |
---|---|---|---|
[29] | Soak at 22–25 °C for 12 h, germinate at room temperature under the wet cotton cloth for 24 h | Mung beans (Phaseolus aureus) | 19.2% |
Cowpea (Vigna catjang) | 14.3% | ||
Lentil (Lens culinaris) | 14.5% | ||
Chickpea (Cicer arietinum) | 14.3% | ||
[5] | Germinated in the dark at ambient temperature for 72 h | Yellow pea (CDC Amarillo) | 1.7% |
faba bean (CDC Snowdrop) | 3% | ||
[6] | Germinated in a seed germinator at 25 °C and 70% relative humidity for 20 h. | Mung bean | 25% |
Chickpea | 16.7% | ||
Cowpea | 16.9% | ||
[31] | Germinated at 28 ± 3 °C for 90 h | Chickpea (NIFA-2005) | 55.9% |
[35] | Germinated for 72 h at 30 °C at dark | Yellow field peas (Pisum sativum L., CDC Centennial Cultivars) | 4% |
[28] | placed on germination trays in a dark chamber set at 20 °C and 92% relative humidity for five days | Black beans (Phaseolus vulgaris) | 13.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Fan, B.; Li, Y.; Fei, C.; Xiong, Y.; Li, L.; Liu, Y.; Tong, L.; Huang, Y.; Wang, F. Effect of Germination on the Digestion of Legume Proteins. Foods 2024, 13, 2655. https://doi.org/10.3390/foods13172655
Wang X, Fan B, Li Y, Fei C, Xiong Y, Li L, Liu Y, Tong L, Huang Y, Wang F. Effect of Germination on the Digestion of Legume Proteins. Foods. 2024; 13(17):2655. https://doi.org/10.3390/foods13172655
Chicago/Turabian StyleWang, Xinrui, Bei Fan, Yang Li, Chengxin Fei, Yangyang Xiong, Lin Li, Yanfang Liu, Litao Tong, Yatao Huang, and Fengzhong Wang. 2024. "Effect of Germination on the Digestion of Legume Proteins" Foods 13, no. 17: 2655. https://doi.org/10.3390/foods13172655
APA StyleWang, X., Fan, B., Li, Y., Fei, C., Xiong, Y., Li, L., Liu, Y., Tong, L., Huang, Y., & Wang, F. (2024). Effect of Germination on the Digestion of Legume Proteins. Foods, 13(17), 2655. https://doi.org/10.3390/foods13172655