Influence of Oleacein, an Olive Oil and Olive Mill Wastewater Phenolic Compound, on Caenorhabditis elegans Longevity and Stress Resistance
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Oleacein Stability during Lifespan Trials in C. elegans
3.2. Oleacein Effect on the Lifespan of (N2) Wild-Type C. elegans
3.3. Oleacein Is More Effective Than Hydroxytyrosol in Extending the Longevity of (N2) Wild-Type C. elegans
3.4. The Effect of Oleacein on the C. elegans Daf-16 Mutant
3.5. Oleacein Effect on Nuclear Translocation of DAF-16 Transcription Factor
3.6. Oleacein Effect on C. elegans Daf-2 Mutant
3.7. Oleacein Effect on C. elegans Sir-2.1 Mutant
3.8. Oleacein Effect on C. elegans Resistance to Thermal and Oxidative Stress
3.9. Biological Pathway Involved
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parkinson, L.; Cicerale, S. The Health Benefiting Mechanisms of Virgin Olive Oil Phenolic Compounds. Molecules 2016, 21, 1734. [Google Scholar] [CrossRef] [PubMed]
- Celano, R.; Piccinelli, A.L.; Pugliese, A.; Carabetta, S.; di Sanzo, R.; Rastrelli, L.; Russo, M. Insights into the Analysis of Phenolic Secoiridoids in Extra Virgin Olive Oil. J. Agric. Food Chem. 2018, 66, 6053–6063. [Google Scholar] [CrossRef] [PubMed]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Wolfram, R.; Richard, D.; Abdullah, M.I.C.B.; Crea, R. Olive Phenolics Increase Glutathione Levels in Healthy Volunteers. J. Agric. Food Chem. 2009, 57, 1793–1796. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, Z.; Feng, Z.; Hao, J.; Shen, W.; Li, X.; Sun, L.; Sharman, E.; Wang, Y.; Wertz, K.; et al. Hydroxytyrosol Protects against Oxidative Damage by Simultaneous Activation of Mitochondrial Biogenesis and Phase II Detoxifying Enzyme Systems in Retinal Pigment Epithelial Cells. J. Nutr. Biochem. 2010, 21, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Muriana, F.J.G.; la Paz, S.M.; Lucas, R.; Bermudez, B.; Jaramillo, S.; Morales, J.C.; Abia, R.; Lopez, S. Tyrosol and Its Metabolites as Antioxidative and Anti-Inflammatory Molecules in Human Endothelial Cells. Food Funct. 2017, 8, 2905–2914. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xia, Y.; Yang, B.; Su, X.; Chen, J.; Li, W.; Jiang, T. Protective Effects of Tyrosol against LPS-Induced Acute Lung Injury via Inhibiting NF-κB and AP-1 Activation and Activating the HO-1/Nrf2 Pathways. Biol. Pharm. Bull. 2017, 40, 583–593. [Google Scholar] [CrossRef]
- Aparicio-Soto, M.; Sánchez-Hidalgo, M.; Cárdeno, A.; González-Benjumea, A.; Fernández-Bolaños, J.G.; Alarcón-de-la-Lastra, C. Dietary Hydroxytyrosol and Hydroxytyrosyl Acetate Supplementation Prevent Pristane-Induced Systemic Lupus Erythematous in Mice. J. Funct. Foods 2017, 29, 84–92. [Google Scholar] [CrossRef]
- Gutierrez, M.B.; Magiatis, P.; Nieto, C.M.L. Use of Secoiridoids for the Treatment of Optic Neuritis. WO2020136221 A1, 2 July 2020. [Google Scholar]
- Vougogiannopoulou, K.; Lemus, C.; Halabalaki, M.; Pergola, C.; Werz, O.; Smith, A.B.; Michel, S.; Skaltsounis, L.; Deguin, B. One-Step Semisynthesis of Oleacein and the Determination as a 5-Lipoxygenase Inhibitor. J. Nat. Prod. 2014, 77, 441–445. [Google Scholar] [CrossRef]
- Xia, M.; Zhong, Y.; Peng, Y.; Qian, C. Olive Oil Consumption and Risk of Cardiovascular Disease and All-Cause Mortality: A Meta-Analysis of Prospective Cohort Studies. Front. Nutr. 2022, 9, 1041203. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Sayón-Orea, C.; Bullón-Vela, V.; Bes-Rastrollo, M.; Rodríguez-Artalejo, F.; Yusta-Boyo, M.J.; García-Solano, M. Effect of Olive Oil Consumption on Cardiovascular Disease, Cancer, Type 2 Diabetes, and All-Cause Mortality: A Systematic Review and Meta-Analysis. Clin. Nutr. 2022, 41, 2659–2682. [Google Scholar] [CrossRef] [PubMed]
- Boronat, A.; Serreli, G.; Rodríguez-Morató, J.; Deiana, M.; de la Torre, R. Olive Oil Phenolic Compounds’ Activity against Age-Associated Cognitive Decline: Clinical and Experimental Evidence. Antioxidants 2023, 12, 1472. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sánchez, A.; Martínez-Ortega, A.J.; Remón-Ruiz, P.J.; Piñar-Gutiérrez, A.; Pereira-Cunill, J.L.; García-Luna, P.P. Therapeutic Properties and Use of Extra Virgin Olive Oil in Clinical Nutrition: A Narrative Review and Literature Update. Nutrients 2022, 14, 1440. [Google Scholar] [CrossRef] [PubMed]
- Foscolou, A.; Critselis, E.; Tyrovolas, S.; Chrysohoou, C.; Sidossis, L.S.; Naumovski, N.; Matalas, A.-L.; Rallidis, L.; Polychronopoulos, E.; Ayuso-Mateos, J.L.; et al. The Effect of Exclusive Olive Oil Consumption on Successful Aging: A Combined Analysis of the ATTICA and MEDIS Epidemiological Studies. Foods 2019, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Fernández del Río, L.; Gutiérrez-Casado, E.; Varela-López, A.; Villalba, J.M. Olive Oil and the Hallmarks of Aging. Molecules 2016, 21, 163. [Google Scholar] [CrossRef]
- Riolo, R.; De Rosa, R.; Simonetta, I.; Tuttolomondo, A. Olive Oil in the Mediterranean Diet and Its Biochemical and Molecular Effects on Cardiovascular Health through an Analysis of Genetics and Epigenetics. Int. J. Mol. Sci. 2022, 23, 16002. [Google Scholar] [CrossRef] [PubMed]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. An Overview on Olive Mill Wastes and Their Valorisation Methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Kitsati, N.; Mantzaris, M.D.; Galaris, D. Hydroxytyrosol Inhibits Hydrogen Peroxide-Induced Apoptotic Signaling via Labile Iron Chelation. Redox Biol. 2016, 10, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Das, S.; Rao, S.B.S. Hydroxytyrosol, a Dietary Phenolic Compound Forestalls the Toxic Effects of Methylmercury-Induced Toxicity in IMR-32 Human Neuroblastoma Cells. Environ. Toxicol. 2016, 31, 1264–1275. [Google Scholar] [CrossRef]
- Özbek, N.; Bali, E.; Karasu, C. Quercetin and Hydroxytyrosol Attenuates Xanthine/Xanthine Oxidase-Induced Toxicity in H9c2 Cardiomyocytes by Regulation of Oxidative Stress and Stress-Sensitive Signaling Pathways. Gen. Physiol. Biophys. 2015, 34, 407–414. [Google Scholar] [CrossRef]
- Nardi, M.; Bonacci, S.; De Luca, G.; Maiuolo, J.; Oliverio, M.; Sindona, G.; Procopio, A. Biomimetic Synthesis and Antioxidant Evaluation of 3,4-DHPEA-EDA [2-(3,4-Hydroxyphenyl) Ethyl (3S,4E)-4-Formyl-3-(2-Oxoethyl)Hex-4-Enoate]. Food Chem. 2014, 162, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Paiva-Martins, F.; Fernandes, J.; Santos, V.; Silva, L.; Borges, F.; Rocha, S.; Belo, L.; Santos-Silva, A. Powerful Protective Role of 3,4-Dihydroxyphenylethanol−elenolic Acid Dialdehyde against Erythrocyte Oxidative-Induced Hemolysis. J. Agric. Food Chem. 2010, 58, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Parzonko, A.; Czerwińska, M.E.; Kiss, A.K.; Naruszewicz, M. Oleuropein and Oleacein May Restore Biological Functions of Endothelial Progenitor Cells Impaired by Angiotensin II via Activation of Nrf2/Heme Oxygenase-1 Pathway. Phytomedicine 2013, 20, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Morelló, J.-R.; Vuorela, S.; Romero, M.-P.; Motilva, M.-J.; Heinonen, M. Antioxidant Activity of Olive Pulp and Olive Oil Phenolic Compounds of the Arbequina Cultivar. J. Agric. Food Chem. 2005, 53, 2002–2008. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Miranda, B.; Gallardo, I.; Melliou, E.; Cabero, I.; Álvarez, Y.; Magiatis, P.; Hernández, M.; Nieto, M.L. Oleacein Attenuates the Pathogenesis of Experimental Autoimmune Encephalomyelitis through Both Antioxidant and Anti-Inflammatory Effects. Antioxidants 2020, 9, 1161. [Google Scholar] [CrossRef] [PubMed]
- Nikou, T.; Liaki, V.; Stathopoulos, P.; Sklirou, A.D.; Tsakiri, E.N.; Jakschitz, T.; Bonn, G.; Trougakos, I.P.; Halabalaki, M.; Skaltsounis, L.A. Comparison Survey of EVOO Polyphenols and Exploration of Healthy Aging-Promoting Properties of Oleocanthal and Oleacein. Food Chem. Toxicol. 2019, 125, 403–412. [Google Scholar] [CrossRef]
- Kenyon, C.J. The Genetics of Ageing. Nature 2010, 464, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Château, M.-T.; Araiz, C.; Descamps, S.; Galas, S. Klotho Interferes with a Novel FGF-Signalling Pathway and Insulin/Igf-like Signalling to Improve Longevity and Stress Resistance in Caenorhabditis elegans. Aging 2010, 2, 567–581. [Google Scholar] [CrossRef]
- Stanfel, M.N.; Shamieh, L.S.; Kaeberlein, M.; Kennedy, B.K. The TOR Pathway Comes of Age. Biochim. Biophys. Acta 2009, 1790, 1067–1074. [Google Scholar] [CrossRef]
- Imai, S.; Guarente, L. NAD+ and Sirtuins in Aging and Disease. Trends Cell Biol. 2014, 24, 464–471. [Google Scholar] [CrossRef]
- Johnson, T.E. Advantages and Disadvantages of Caenorhabditis elegans for Aging Research. Exp. Gerontol. 2003, 38, 1329–1332. [Google Scholar] [CrossRef] [PubMed]
- Artal-Sanz, M.; de Jong, L.; Tavernarakis, N. Caenorhabditis elegans: A Versatile Platform for Drug Discovery. Biotechnol. J. 2006, 1, 1405–1418. [Google Scholar] [CrossRef] [PubMed]
- Weinkove, D.; Zavagno, G. Applying C. elegans to the Industrial Drug Discovery Process to Slow Aging. Front. Aging 2021, 2, 740582. [Google Scholar] [CrossRef] [PubMed]
- Papaevgeniou, N.; Chondrogianni, N. Anti-Aging and Anti-Aggregation Properties of Polyphenolic Compounds in C. elegans. Curr. Pharm. Des. 2018, 24, 2107–2120. [Google Scholar] [CrossRef] [PubMed]
- Saul, N.; Pietsch, K.; Stürzenbaum, S.R.; Menzel, R.; Steinberg, C.E.W. Diversity of Polyphenol Action in Caenorhabditis elegans: Between Toxicity and Longevity. J. Nat. Prod. 2011, 74, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.A.; Shukitt-Hale, B.; Kalt, W.; Ingram, D.K.; Joseph, J.A.; Wolkow, C.A. Blueberry Polyphenols Increase Lifespan and Thermotolerance in Caenorhabditis elegans. Aging Cell 2006, 5, 59–68. [Google Scholar] [CrossRef]
- Brunetti, G.; Di Rosa, G.; Scuto, M.; Leri, M.; Stefani, M.; Schmitz-Linneweber, C.; Calabrese, V.; Saul, N. Healthspan Maintenance and Prevention of Parkinson’s-like Phenotypes with Hydroxytyrosol and Oleuropein Aglycone in C. elegans. Int. J. Mol. Sci. 2020, 21, 2588. [Google Scholar] [CrossRef] [PubMed]
- Gems, D.; Partridge, L. Stress-Response Hormesis and Aging: “That Which Does Not Kill Us Makes Us Stronger”. Cell Metab. 2008, 7, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Le Bourg, E.; Rattan, S. Mild Stress and Healthy Aging: Applying Hormesis in Aging Research and Interventions; Springer: Berlin/Heidelberg, Germany, 2008; p. 187. [Google Scholar]
- Rattan, S.I.S. Hormetins as Novel Components of Cosmeceuticals and Aging Interventions. Cosmetics 2015, 2, 11–20. [Google Scholar] [CrossRef]
- Le Bourg, E.; Rattan, S. (Eds.) Hormesis in Health and Disease; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-0-429-17107-9. [Google Scholar]
- Mattson, M.P. Hormesis Defined. Ageing Res. Rev. 2008, 7, 1–7. [Google Scholar] [CrossRef]
- Calabrese, E.J. Converging Concepts: Adaptive Response, Preconditioning, and the Yerkes–Dodson Law Are Manifestations of Hormesis. Ageing Res. Rev. 2008, 7, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Cypser, J.R.; Tedesco, P.; Johnson, T.E. Hormesis and Aging in Caenorhabditis elegans. Exp. Gerontol. 2006, 41, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Cypser, J.R.; Johnson, T.E. Hormesis in Caenorhabditis elegans Dauer-Defective Mutants. Biogerontology 2003, 4, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, K.; Heidler, T.; Moch, J.; Daniel, H.; Wenzel, U. Feeding a ROS-Generator to Caenorhabditis elegans Leads to Increased Expression of Small Heat Shock Protein HSP-16.2 and Hormesis. Genes Nutr. 2009, 4, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Senchuk, M.M.; Dues, D.J.; Schaar, C.E.; Johnson, B.K.; Madaj, Z.B.; Bowman, M.J.; Winn, M.E.; Van Raamsdonk, J.M. Activation of DAF-16/FOXO by Reactive Oxygen Species Contributes to Longevity in Long-Lived Mitochondrial Mutants in Caenorhabditis elegans. PLoS Genet. 2018, 14, e1007268. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C.; Chang, J.; Gensch, E.; Rudner, A.; Tabtiang, R. A C. elegans Mutant That Lives Twice as Long as Wild Type. Nature 1993, 366, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, A.; Oh, S.W.; Tissenbaum, H.A. Worming Pathways to and from DAF-16/FOXO. Exp. Gerontol. 2006, 41, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, M.; Kim, S.K.; Berdichevsky, A.; Guarente, L. A Role for SIR-2.1 Regulation of ER Stress Response Genes in Determining C. elegans Life Span. Dev. Cell 2005, 9, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Berdichevsky, A.; Viswanathan, M.; Horvitz, H.R.; Guarente, L. C. elegans SIR-2.1 Interacts with 14-3-3 Proteins to Activate DAF-16 and Extend Life Span. Cell 2006, 125, 1165–1177. [Google Scholar] [CrossRef]
- Wang, Y.; Tissenbaum, H.A. Overlapping and Distinct Functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev. 2006, 127, 48–56. [Google Scholar] [CrossRef]
- Stiernagle, T. Maintenance of C. elegans. In WormBook; The C. elegans Research Community, Ed.; WormBook Research Community: Pasadena, CA, USA, 2006. [Google Scholar]
- Brenner, S. The Genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guo, P.; Wang, P.; Zheng, S.; Qu, Z.; Liu, N. The Review of Anti-Aging Mechanism of Polyphenols on Caenorhabditis elegans. Front. Bioeng. Biotechnol. 2021, 9, 635768. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.I.; Pincus, Z.; Slack, F.J. Longevity and Stress in Caenorhabditis elegans. Aging 2011, 3, 733–753. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, K.; Saul, N.; Chakrabarti, S.; Stürzenbaum, S.R.; Menzel, R.; Steinberg, C.E.W. Hormetins, Antioxidants and Prooxidants: Defining Quercetin, Caffeic Acid and Rosmarinic Acid-Mediated Life Extension in C. elegans. Biogerontology 2011, 12, 329–347. [Google Scholar] [CrossRef] [PubMed]
- Saul, N.; Pietsch, K.; Menzel, R.; Stürzenbaum, S.R.; Steinberg, C.E.W. The Longevity Effect of Tannic Acid in Caenorhabditis elegans: Disposable Soma Meets Hormesis. J. Gerontol. 2010, 65A, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Schlernitzauer, A.; Oiry, C.; Hamad, R.; Galas, S.; Cortade, F.; Chabi, B.; Casas, F.; Pessemesse, L.; Fouret, G.; Feillet-Coudray, C.; et al. Chicoric Acid Is an Antioxidant Molecule That Stimulates AMP Kinase Pathway in L6 Myotubes and Extends Lifespan in Caenorhabditis elegans. PLoS ONE 2013, 8, e78788. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.-Q.; Huang, X.-B.; Xing, T.-K.; Ding, A.-J.; Wu, G.-S.; Luo, H.-R. Chlorogenic Acid Extends the Lifespan of Caenorhabditis elegans via Insulin/IGF-1 Signaling Pathway. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Cañuelo, A.; Gilbert-López, B.; Pacheco-Liñán, P.; Martínez-Lara, E.; Siles, E.; Miranda-Vizuete, A. Tyrosol, a Main Phenol Present in Extra Virgin Olive Oil, Increases Lifespan and Stress Resistance in Caenorhabditis elegans. Mech. Ageing Dev. 2012, 133, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Hou, B.-H.; Xie, G.-L.; Shao, Y.-T.; Yang, J.; Xu, C. Transient Inhibition of Mitochondrial Function by Chrysin and Apigenin Prolong Longevity via Mitohormesis in C. elegans. Free Radic. Biol. Med. 2023, 203, 24–33. [Google Scholar] [CrossRef]
- Büchter, C.; Ackermann, D.; Havermann, S.; Honnen, S.; Chovolou, Y.; Fritz, G.; Kampkötter, A.; Wätjen, W. Myricetin-Mediated Lifespan Extension in Caenorhabditis elegans Is Modulated by DAF-16. Int. J. Mol. Sci. 2013, 14, 11895–11914. [Google Scholar] [CrossRef]
Treatment | 50th Percentile (Days) | Mean Lifespan (Days ± SD) | Max Lifespan (Days) | Code | Statistics (KM Analysis) | N (Censored) |
---|---|---|---|---|---|---|
p = 0.520 (B) | ||||||
p < 0.0001 (C) | ||||||
Control S-base | 15 | 15.8 ± 0.4 | 30 | A | p < 0.0001 (D) p = 0.401 (E) p = 0.375 (F) p < 0.0001 (G) | 153 (1) |
p = 0.520 (A) | ||||||
p < 0.0001 (C) | ||||||
Control DMSO | 14 | 15.4 ± 0.4 | 36 | B | p < 0.0001 (D) p = 0.530 (E) p = 0.256 (F) p < 0.0001 (G) | 151 (3) |
p < 0.0001 (A) | ||||||
p < 0.0001 (B) | ||||||
30 µg/mL | 9 | 8.5 ± 0.2 | 15 | C | p < 0.0001 (D) p < 0.0001 (E) p < 0.0001 (F) p < 0.0001 (G) | 151 (0) |
p < 0.0001 (A) | ||||||
p < 0.0001 (B) | ||||||
20 µg/mL | 10 | 11.5 ± 0.4 | 29 | D | p < 0.0001 (C) p < 0.0001 (E) p < 0.0001 (F) p < 0.0001 (G) | 151 (0) |
p = 0.401 (A) | ||||||
p = 0.530 (B) | ||||||
15 µg/mL | 14 | 14.8 ± 0.5 | 35 | E | p < 0.0001 (C) p < 0.0001 (D) p = 0.102 (F) p < 0.0001 (G) | 154 (2) |
p = 0.375 (A) | ||||||
p = 0.256 (B) | ||||||
10 µg/mL | 15 | 15.9 ± 0.6 | 41 | F | p < 0.0001 (C) p < 0.0001 (D) p = 0.102 (E) p = 0.007 (G) | 153 (1) |
p < 0.0001 (A) | ||||||
p < 0.0001 (B) | ||||||
5 µg/mL | 20 | 19.1 ± 0.4 | 34 | G | p < 0.0001 (C) p < 0.0001 (D) p < 0.0001 (E) p = 0.007 (F) | 151 (3) |
Treatment | 50th Percentile (Days) | Mean Lifespan (Days ± SD) | Max Lifespan (Days) | Code | Statistics (KM Analysis) | N (Censored) |
---|---|---|---|---|---|---|
25 | p = 0.577 (B) | |||||
Control S-base | 13 | 13.5 ± 0.3 | A | p < 0.0001 (C) | 158 (2) | |
p = 0.504 (D) | ||||||
25 | p = 0.577 (A) | |||||
Control DMSO | 13 | 13.7 ± 0.3 | B | p < 0.0001 (C) | 155 (4) | |
p = 0.238 (D) | ||||||
41 | p < 0.0001 (A) | |||||
Oleacein 5 µg/mL | 16 | 16.7 ± 0.4 | C | p < 0.0001 (B) | 160 (4) | |
p < 0.0001 (D) | ||||||
23 | p = 0.504 (A) | |||||
Hydroxytyrosol 5 µg/mL | 13 | 13.3 ± 0.3 | D | p = 0.238 (B) | 154 (1) | |
p < 0.0001 (C) |
Strain | Treatment | 50th Percentile (Days) | Mean Lifespan (Days ± SD) | Max Lifespan (Days) | Code | Statistics (KM Analysis) | N (Censored) |
---|---|---|---|---|---|---|---|
28 | p = 0.711 (B) | ||||||
Daf-16 (mgDf50) | Control S-base | 14 | 12.9 ± 0.4 | A | p < 0.0001 (C) | 153 (3) | |
p = 0.128 (D) | |||||||
28 | p = 0.711 (A) | ||||||
Daf-16 (mgDf50) | Control DMSO | 14 | 13.1 ± 0.4 | B | p < 0.0001 (C) | 151 (1) | |
p = 0.291 (D) | |||||||
20 | p < 0.0001 (A) | ||||||
Daf-16 (mgDf50) | 20 µg/mL | 8 | 8.60 ± 0.28 | C | p < 0.0001 (B) | 152 (1) | |
p < 0.0001 (D) | |||||||
28 | p = 0.128 (A) | ||||||
Daf-16 (mgDf50) | 5 µg/mL | 15 | 14.1 ± 0.4 | D | p = 0.291 (B) | 153 (1) | |
p < 0.0001 (C) | |||||||
74 | p = 0.250 (B) | ||||||
Daf-2 (e1370) | Control S-base | 32 | 33.8 ± 1.3 | A | p = 0.916 (C) | 148 (2) | |
p = 0.0003 (D) | |||||||
65 | p = 0.250 (A) | ||||||
Daf-2 (e1370) | Control DMSO | 32 | 31.8 ± 1.2 | B | p = 0.382 (C) | 152 (6) | |
p < 0.0001 (D) | |||||||
p = 0.916 (A) | |||||||
Daf-2 (e1370) | 20 µg/mL | 32 | 33.9 ± 1.2 | 76 | C | p = 0.382 (B) | 154 (2) |
p = 0.0003 (D) | |||||||
76 | p = 0.0003 (A) | ||||||
Daf-2 (e1370) | 5 µg/mL | 43 | 39.6 ± 1.6 | D | p < 0.0001 (B) | 155 (11) | |
p = 0.0003 (C) | |||||||
31 | p = 0.544 (B) | ||||||
Sir-2.1 (ok434) | Control S-base | 17 | 15.7 ± 0.4 | A | p < 0.0001 (C) | 153 (2) | |
p = 0.811 (D) | |||||||
31 | p = 0.544 (A) | ||||||
Sir-2.1 (ok434) | Control DMSO | 14 | 15.3 ± 0.4 | B | p < 0.0001 (C) | 149 (4) | |
p = 0.454 (D) | |||||||
18 | p < 0.0001 (A) | ||||||
Sir-2.1 (ok434) | 20 µg/mL | 7 | 7.39 ± 0.30 | C | p < 0.0001 (B) | 151 (1) | |
p < 0.0001 (D) | |||||||
35 | p = 0.811 (A) | ||||||
Sir-2.1 (ok434) | 5 µg/mL | 17 | 15.3 ± 0.5 | D | p = 0.454 (B) | 149 (5) | |
p < 0.0001 (C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrara, M.; Richaud, M.; Cuq, P.; Galas, S.; Margout-Jantac, D. Influence of Oleacein, an Olive Oil and Olive Mill Wastewater Phenolic Compound, on Caenorhabditis elegans Longevity and Stress Resistance. Foods 2024, 13, 2146. https://doi.org/10.3390/foods13132146
Carrara M, Richaud M, Cuq P, Galas S, Margout-Jantac D. Influence of Oleacein, an Olive Oil and Olive Mill Wastewater Phenolic Compound, on Caenorhabditis elegans Longevity and Stress Resistance. Foods. 2024; 13(13):2146. https://doi.org/10.3390/foods13132146
Chicago/Turabian StyleCarrara, Morgane, Myriam Richaud, Pierre Cuq, Simon Galas, and Delphine Margout-Jantac. 2024. "Influence of Oleacein, an Olive Oil and Olive Mill Wastewater Phenolic Compound, on Caenorhabditis elegans Longevity and Stress Resistance" Foods 13, no. 13: 2146. https://doi.org/10.3390/foods13132146
APA StyleCarrara, M., Richaud, M., Cuq, P., Galas, S., & Margout-Jantac, D. (2024). Influence of Oleacein, an Olive Oil and Olive Mill Wastewater Phenolic Compound, on Caenorhabditis elegans Longevity and Stress Resistance. Foods, 13(13), 2146. https://doi.org/10.3390/foods13132146