Investigating Taste Perception of Maltodextrins Using Lactisole and Acarbose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Sensory Stimuli
2.4. Sensory Methods
2.5. Statistical Analysis
3. Results
3.1. Effect of Tastant on Taste Perception
3.1.1. Differences between LCM and SCM Samples
3.1.2. Differences between LCM and SCM Samples, Glucose, and Maltose
3.2. Effect of Concentration on Complex Carbohydrate Taste Perception
3.3. Effect of Lactisole on Taste Perception
3.3.1. Effect of Lactisole on Overall Sweetness
3.3.2. Effect of Lactisole on Complex Carbohydrate Taste Perception
3.4. Effect of Acarbose on Complex Carbohydrate Taste Perception
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasileska, A.; Rechkoska, G. Global and Regional Food Consumption Patterns and Trends. Procedia Soc. Behav. Sci. 2012, 44, 363–369. [Google Scholar] [CrossRef]
- World Health Organization. Carbohydrates in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation, Rome, 14–18 April 1997; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; National Health and Medical Research Council: Melbourne, VIC, Australia, 2006.
- Lim, J.; Pullicin, A. Oral carbohydrate sensing: Beyond sweet taste. Physiol. Behav. 2019, 202, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Holesh, J.E.; Aslam, S.; Martin, A. Physiology, Carbohydrates. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- American Chemical Society. Maltodextrin. Available online: https://www.acs.org/content/acs/en/molecule-of-the-week/archive/m/maltodextrin.html (accessed on 7 April 2020).
- Veldhuizen, M.G.; Babbs, R.K.; Patel, B.; Fobbs, W.; Kroemer, N.B.; Garcia, E.; Yeomans, M.R.; Small, D.M. Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward. Curr. Biol. 2017, 27, 2476–2485.e6. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Srisuthep, R. Physical and Chemical Properties of Oligosaccharides. Cereal Chem. 1975, 52, 70–78. [Google Scholar]
- Nelson, G.; Hoon, M.A.; Chandrashekar, J.; Zhang, Y.; Ryba, N.J.; Zuker, C.S. Mammalian sweet taste receptors. Cell 2001, 106, 381–390. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Zhang, Y.; Hoon, M.A.; Chandrashekar, J.; Erlenbach, I.; Ryba, N.J.; Zuker, C.S. The receptors for mammalian sweet and umami taste. Cell 2003, 115, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Feigin, M.B.; Sclafani, A.; Sunday, S.R. Species differences in polysaccharide and sugar taste preferences. Neurosci. Biobehav. Rev. 1987, 11, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Hettinger, T.P.; Frank, M.E.; Myers, W.E. Are the tastes of polycose and monosodium glutamate unique? Chem. Senses 1996, 21, 341–347. [Google Scholar] [CrossRef]
- Lapis, T.J.; Penner, M.H.; Lim, J. Evidence that humans can taste glucose polymers. Chem. Senses 2014, 39, 737–747. [Google Scholar] [CrossRef]
- Lapis, T.J.; Penner, M.H.; Lim, J. Humans Can Taste Glucose Oligomers Independent of the hT1R2/hT1R3 Sweet Taste Receptor. Chem. Senses 2016, 41, 755–762. [Google Scholar] [CrossRef]
- Low, J.Y.; Lacy, K.E.; McBride, R.L.; Keast, R.S.J. Evidence supporting oral sensitivity to complex carbohydrates independent of sweet taste sensitivity in humans. PLoS ONE 2017, 12, e0188784. [Google Scholar] [CrossRef] [PubMed]
- Low, J.Y.; Lacy, K.E.; McBride, R.L.; Keast, R.S.J. Carbohydrate Taste Sensitivity Is Associated with Starch Intake and Waist Circumference in Adults. J. Nutr. 2017, 147, 2235–2242. [Google Scholar] [CrossRef] [PubMed]
- Towers, N. The Effectiveness of Dietary Learning on Hedonic Responses to a Novel, Initially Disliked Vegetable. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2013. [Google Scholar]
- Hofman, D.L.; van Buul, V.J.; Brouns, F.J.P.H. Nutrition, Health, and Regulatory Aspects of Digestible Maltodextrins. Crit. Rev. Food Sci. Nutr. 2016, 56, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- BeMiller, J.N. 19—Carbohydrate and Noncarbohydrate Sweeteners. In Carbohydrate Chemistry for Food Scientists, 3rd ed.; BeMiller, J.N., Ed.; AACC International Press: St. Paul, MN, USA, 2019; pp. 371–399. [Google Scholar]
- Birch, G.G.; Azudin, M.N.; Grigor, J.M. Solution Properties and Composition of Dextrins; ACS Publications: Washington, DC, USA, 1991. [Google Scholar]
- Marchal, L.M.; Beeftink, H.H.; Tramper, J. Towards a rational design of commercial maltodextrins. Trends Food Sci. Technol. 1999, 10, 345–355. [Google Scholar] [CrossRef]
- Liu, Q. Understanding Starches and Their Role in Foods. In Food Carbohydrates: Chemistry, Physical Properties and Applications; Taylor & Francis Group: Boca Raton, FL, USA, 2005. [Google Scholar]
- Singh, N.; Singh, J.; Kaur, L.; Singh Sodhi, N.; Singh Gill, B. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- BeMiller, J.N.; Whistler, R.L. Carboydrates, 3rd ed.; Eagan Press: St. Paul, MN, USA, 1996; pp. 157–224. [Google Scholar]
- Martin, L.E.; Andrewson, T.S.; Penner, M.H.; Lim, J. Taste Detection of Maltooligosaccharides with Varying Degrees of Polymerization. J. Agric. Food Chem. 2023, 71, 6699–6705. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Cui, M.; Zhao, B.; Liu, Z.; Snyder, L.A.; Benard, L.M.; Osman, R.; Margolskee, R.F.; Max, M. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J. Biol. Chem. 2005, 280, 15238–15246. [Google Scholar] [CrossRef] [PubMed]
- Pullicin, A.J.; Penner, M.H.; Lim, J. Human taste detection of glucose oligomers with low degree of polymerization. PLoS ONE 2017, 12, e0183008. [Google Scholar] [CrossRef]
- Galindo-Cuspinera, V.; Winnig, M.; Bufe, B.; Meyerhof, W.; Breslin, P.A.S. A TAS1R receptor-based explanation of sweet ‘water-taste’. Nature 2006, 441, 354–357. [Google Scholar] [CrossRef]
- Green, B.; Nachtigal, D. The effects of temperature on sequential and mixture interactions between sucrose and saccharin. Chem. Senses 2013, 38, 655. [Google Scholar]
- Kim, M.J.; Lee, S.B.; Lee, H.S.; Lee, S.Y.; Baek, J.S.; Kim, D.; Moon, T.W.; Robyt, J.F.; Park, K.H. Comparative study of the inhibition of alpha-glucosidase, alpha-amylase, and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosine-glucose. Arch. Biochem. Biophys. 1999, 371, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Robyt, J.F. Study of the inhibition of four alpha amylases by acarbose and its 4IV-α-maltohexaosyl and 4IV-α-maltododecaosyl analogues. Carbohydr. Res. 2003, 338, 1969–1980. [Google Scholar] [CrossRef] [PubMed]
- Oppenheim, F.G.; Salih, E.; Siqueira, W.L.; Zhang, W.; Helmerhorst, E.J. Salivary Proteome and Its Genetic Polymorphisms. Ann. N. Y. Acad. Sci. 2007, 1098, 22–50. [Google Scholar] [CrossRef] [PubMed]
- Hoebler, C.; Karinthi, A.; Devaux, M.F.; Guillon, F.; Gallant, D.J.G.; Bouchet, B.; Melegari, C.; Barry, J.L. Physical and chemical transformations of cereal food during oral digestion in human subjects. Br. J. Nutr. 1998, 80, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Mandel, A.L.; Peyrot des Gachons, C.; Plank, K.L.; Alarcon, S.; Breslin, P.A.S. Individual Differences in AMY1 Gene Copy Number, Salivary α-Amylase Levels, and the Perception of Oral Starch. PLoS ONE 2010, 5, e13352. [Google Scholar] [CrossRef] [PubMed]
- Green, B.G.; Shaffer, G.S.; Gilmore, M.M. Derivation and evaluation of a semantic scale of oral sensation magnitude with apparent ratio properties. Chem. Senses 1993, 18, 683–702. [Google Scholar] [CrossRef]
- Hartley, C.; Keast, R.S.J.; Bredie, W.L.P. Investigating the Effect of Maltodextrins and Degree of Polymerisation on Individual Complex Carbohydrate Taste Sensitivity. Food Sci. Nutr. 2024; submitted. [Google Scholar]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D. Taste Perception in Humans, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2001. [Google Scholar]
- Henney, J.E.; Taylor, C.L.; Boon, C.S. Taste and Flavor Roles of Sodium in Foods: A Unique Challenge to Reducing Sodium Intake; National Academies Press (US): Washington, DC, USA, 2010; Volume 3. [Google Scholar]
- Deck, C.M.; Behrens, M.; Wendelin, M.; Ley, J.P.; Krammer, G.E.; Lieder, B. Impact of lactisole on the time-intensity profile of selected sweeteners in dependence of the binding site. Food Chem. X 2022, 15, 100446. [Google Scholar] [CrossRef]
Stimuli | Concentration (%w/v) | |
---|---|---|
Low | High | |
Glucose | 5.3 | 21.2 |
Maltose | 2.7 | 8.1 |
Maltodextrin (SCM) | 3.6 | 11.2 |
Maltodextrin (LCM) | 3.6 | 11.2 |
Perception | Stimuli Concentration | SCM Mean ± SEM | LCM Mean ± SEM | p Value |
---|---|---|---|---|
Sweetness | Low | 1.3 ± 0.1 | 1.1 ± 0.1 | 0.139 |
Starchiness | Low | 1.3 ± 0.2 | 1.4 ± 0.2 | 0.176 |
Mouthfeel | Low | 1.4 ± 0.2 | 1.4 ± 0.2 | 0.881 |
Intensity | Low | 5.0 ± 0.7 | 4.6 ± 0.7 | 0.619 |
Sweetness | High | 1.8 ± 0.2 | 1.3 ± 0.1 | 0.004 * |
Starchiness | High | 1.6 ± 0.2 | 1.7 ± 0.2 | 0.582 |
Mouthfeel | High | 1.8 ± 0.2 | 2.0 ± 0.2 | 0.249 |
Intensity | High | 10.7 ± 1.3 | 6.2 ± 0.8 | 0.0004 * |
Perception | Stimuli Concentration | LCM Mean ± SEM | Glucose Mean ± SEM | p Value |
---|---|---|---|---|
Sweetness | Low | 1.1 ± 0.1 | 4.4 ± 0.3 | 0.0001 * |
Starchiness | Low | 1.4 ± 0.2 | 1.8 ± 0.2 | 0.027 * |
Mouthfeel | Low | 1.4 ± 0.2 | 2.1 ± 0.3 | 0.0002 * |
Intensity | Low | 4.6 ± 0.7 | 21.8 ± 1.9 | 0.0001 * |
Sweetness | High | 1.3 ± 0.1 | 9.0 ± 0.3 | 0.0001 * |
Starchiness | High | 1.7 ± 0.2 | 1.9 ± 0.3 | 0.349 |
Mouthfeel | High | 2.0 ± 0.2 | 2.6 ± 0.3 | 0.022 * |
Intensity | High | 6.2 ± 0.8 | 57.9 ± 2.7 | 0.0001 * |
Perception | Stimuli Concentration | SCM Mean ± SEM | Glucose Mean ± SEM | p Value |
---|---|---|---|---|
Sweetness | Low | 1.3 ± 0.1 | 4.4 ± 0.3 | 0.0001 * |
Starchiness | Low | 1.3 ± 0.2 | 1.8 ± 0.2 | 0.002 * |
Mouthfeel | Low | 1.4 ± 0.2 | 2.1 ± 0.3 | 0.0001 * |
Intensity | Low | 5.0 ± 0.7 | 21.8 ± 1.9 | 0.0001 * |
Sweetness | High | 1.8 ± 0.2 | 9.0 ± 0.3 | 0.0001 * |
Starchiness | High | 1.6 ± 0.2 | 1.9 ± 0.3 | 0.197 |
Mouthfeel | High | 1.8 ± 0.3 | 2.6 ± 0.3 | 0.0004 * |
Intensity | High | 10.7 ± 1.3 | 57.9 ± 2.7 | 0.0001 * |
Perception | Stimuli Concentration | LCM Mean ± SEM | Maltose Mean ± SEM | p Value |
---|---|---|---|---|
Sweetness | Low | 1.1 ± 0.1 | 1.9 ± 0.2 | 0.0001 * |
Starchiness | Low | 1.4 ± 0.2 | 1.6 ± 0.2 | 0.236 |
Mouthfeel | Low | 1.4 ± 0.2 | 1.5 ± 0.2 | 0.288 |
Intensity | Low | 4.6 ± 0.7 | 8.1 ± 1.0 | 0.001 * |
Sweetness | High | 1.3 ± 0.1 | 4.9 ± 0.3 | 0.0001 * |
Starchiness | High | 1.7 ± 0.2 | 1.7 ± 0.2 | 0.883 |
Mouthfeel | High | 2.0 ± 0.2 | 2.1 ± 0.3 | 0.537 |
Intensity | High | 6.2 ± 0.8 | 22.9 ± 2.0 | 0.0001 * |
Perception | Stimuli Concentration | SCM Mean ± SEM | Maltose Mean ± SEM | p Value |
---|---|---|---|---|
Sweetness | Low | 1.3 ± 0.1 | 1.9 ± 0.2 | 0.0001 * |
Starchiness | Low | 1.3 ± 0.2 | 1.6 ± 0.2 | 0.041 * |
Mouthfeel | Low | 1.4 ± 0.2 | 1.5 ± 0.2 | 0.253 |
Intensity | Low | 5.0 ± 0.7 | 8.1 ± 1.0 | 0.0005 * |
Sweetness | High | 1.8 ± 0.2 | 4.9 ± 0.3 | 0.0001 * |
Starchiness | High | 1.6 ± 0.2 | 1.7 ± 0.2 | 0.688 |
Mouthfeel | High | 1.8 ± 0.2 | 2.1 ± 0.3 | 0.062 |
Intensity | High | 10.7 ± 1.3 | 22.9 ± 2.0 | 0.0001 * |
Perception | Stimuli | Stimuli at Low Concentration Mean ± SEM | Stimuli at High Concentration Mean ± SEM | p Value |
---|---|---|---|---|
Sweetness | SCM | 1.3 ± 0.1 | 1.8 ± 0.2 | 0.001 * |
Starchiness | SCM | 1.3 ± 0.2 | 1.6 ± 0.2 | 0.021 * |
Mouthfeel | SCM | 1.4 ± 0.2 | 1.8 ± 0.3 | 0.029 * |
Intensity | SCM | 5.0 ± 0.7 | 10.7 ± 1.3 | 0.0001 * |
Sweetness | LCM | 1.1 ± 0.1 | 1.3 ± 0.1 | 0.043 * |
Starchiness | LCM | 1.4 ± 0.2 | 1.7 ± 0.2 | 0.059 |
Mouthfeel | LCM | 1.4 ± 0.2 | 2.0 ± 0.2 | 0.001 * |
Intensity | LCM | 4.6 ± 0.7 | 6.2 ± 0.8 | 0.024 * |
Stimuli | Stimuli Concentration | Stimuli Mean ± SEM | Stimuli + Lactisole Mean ± SEM | p Value |
---|---|---|---|---|
SCM | Low | 1.3 ± 0.1 | 2.6 ± 0.3 | 0.0001 * |
LCM | Low | 1.1 ± 0.1 | 2.5 ± 0.3 | 0.0001 * |
Glucose | Low | 4.4 ± 0.3 | 2.3 ± 0.2 | 0.0001 * |
Maltose | Low | 1.9 ± 0.2 | 2.8 ± 0.3 | 0.017 * |
SCM | High | 1.8 ± 0.2 | 2.2 ± 0.2 | 0.161 |
LCM | High | 1.3 ± 0.1 | 2.2 ± 0.2 | 0.0007 * |
Glucose | High | 9.0 ± 0.3 | 4.8 ± 0.3 | 0.0001 * |
Maltose | High | 4.9 ± 0.3 | 2.0 ± 0.2 | 0.0001 * |
Stimuli | Stimuli Concentration | SCM Mean ± SEM | SCM + Acarbose Mean ± SEM | p Value |
---|---|---|---|---|
Sweetness | Low | 1.3 ± 0.1 | 1.2 ± 0.1 | 0.730 |
Starchiness | Low | 1.3 ± 0.2 | 1.8 ± 0.2 | 0.075 |
Mouthfeel | Low | 1.4 ± 0.2 | 1.5 ± 0.2 | 0.594 |
Intensity | Low | 5.0 ± 0.7 | 6.6 ± 0.9 | 0.135 |
Sweetness | High | 1.8 ± 0.2 | 2.5 ± 0.2 | 0.001 * |
Starchiness | High | 1.7 ± 0.2 | 2.4 ± 0.3 | 0.021 * |
Mouthfeel | High | 1.8 ± 0.2 | 1.9 ± 0.3 | 0.651 |
Intensity | High | 10.7 ± 1.3 | 12.4 ± 1.5 | 0.319 |
Stimuli | Stimuli Concentration | LCM Mean ± SEM | LCM + Acarbose Mean ± SEM | p Value |
---|---|---|---|---|
Sweetness | Low | 1.1 ± 0.1 | 0.9 ± 0.1 | 0.253 |
Starchiness | Low | 1.4 ± 0.2 | 1.6 ± 0.2 | 0.597 |
Mouthfeel | Low | 1.4 ± 0.2 | 1.4 ± 0.2 | 0.100 |
Intensity | Low | 4.6 ± 0.7 | 4.7 ± 0.7 | 0.958 |
Sweetness | High | 1.3 ± 0.1 | 1.1 ± 0.1 | 0.179 |
Starchiness | High | 1.7 ± 0.2 | 2.0 ± 0.2 | 0.343 |
Mouthfeel | High | 2.0 ± 0.2 | 1.9 ± 0.3 | 0.787 |
Intensity | High | 6.2 ± 0.8 | 6.4 ± 0.8 | 0.838 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartley, C.; Keast, R.S.J.; Carr, A.J.; Roberts, S.S.H.; Bredie, W.L.P. Investigating Taste Perception of Maltodextrins Using Lactisole and Acarbose. Foods 2024, 13, 2130. https://doi.org/10.3390/foods13132130
Hartley C, Keast RSJ, Carr AJ, Roberts SSH, Bredie WLP. Investigating Taste Perception of Maltodextrins Using Lactisole and Acarbose. Foods. 2024; 13(13):2130. https://doi.org/10.3390/foods13132130
Chicago/Turabian StyleHartley, Claudia, Russell S. J. Keast, Amelia J. Carr, Spencer S. H. Roberts, and Wender L. P. Bredie. 2024. "Investigating Taste Perception of Maltodextrins Using Lactisole and Acarbose" Foods 13, no. 13: 2130. https://doi.org/10.3390/foods13132130
APA StyleHartley, C., Keast, R. S. J., Carr, A. J., Roberts, S. S. H., & Bredie, W. L. P. (2024). Investigating Taste Perception of Maltodextrins Using Lactisole and Acarbose. Foods, 13(13), 2130. https://doi.org/10.3390/foods13132130