Risk Factors and Effects of Climate Lag on Vibrio Parahaemolyticus Infection in Eastern Coastal Cities of China: A Study Based on Hangzhou City
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Data Analysis
2.3.1. Spatial Analysis and Epidemiological Statistics
2.3.2. Risk Factor Analysis
2.3.3. Distributed Lag Non-Linear Model
3. Results
3.1. Epidemiologic Observations and Trends
3.2. Analysis of Influencing Factors
3.3. Climate Lag Effect
4. Discussion
4.1. Impact Factors
4.2. Temperature Lag
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tauxe, R.V.; Doyle, M.P.; Kuchenmüller, T.; Schlundt, J.; Stein, C.E. Evolving public health approaches to the global challenge of foodborne infections. Int. J. Food Microbiol. 2010, 139, S16–S28. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Shi, Z.; Wei, J.; Ma, Z. A brief review of foodborne zoonoses in China. Epidemiol. Infect. 2011, 139, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Zhang, W. Understanding China’s food safety problem: An analysis of 2387 incidents of acute foodborne illness. Food Control 2013, 30, 311–317. [Google Scholar] [CrossRef]
- Wang, S.; Duan, H.; Zhang, W.; Li, J.W. Analysis of bacterial foodborne disease outbreaks in China between 1994 and 2005. FEMS Immunol. Med. Microbiol. 2007, 51, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Pires, S.M.; Liu, Z.; Ma, X.; Liang, J.; Jiang, Y.; Chen, J.; Liang, J.; Wang, S.; Wang, L.; et al. Surveillance of foodborne disease outbreaks in China, 2003–2017. Food Control 2020, 118, 107359. [Google Scholar] [CrossRef]
- Honda, T.; Iida, T. The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct haemolysin and related haemolysins. Rev. Med. Microbiol. 1993, 4, 106–113. [Google Scholar] [CrossRef]
- Su, Y.-C.; Liu, C. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiol. 2007, 24, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Raghunath, P.; Acharya, S.; Bhanumathi, A.; Karunasagar, I.; Karunasagar, I. Detection and molecular characterization of Vibrio parahaemolyticus isolated from seafood harvested along the southwest coast of India. Food Microbiol. 2008, 25, 824–830. [Google Scholar] [CrossRef]
- Moy, G.G.; Han, F. History of Food Safety and Related Sciences: History of Foodborne Disease in Asia—Examples from China, India, and Japan. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Academic Press: Waltham, MA, USA, 2014; pp. 22–27. [Google Scholar]
- Wong, H.C.; Chen, M.C.; Liu, S.H.; Liu, D.P. Incidence of highly genetically diversified Vibrio parahaemolyticus in seafood imported from Asian countries. Int. J. Food Microbiol. 1999, 52, 181–188. [Google Scholar] [CrossRef]
- Urquhart, E.A.; Jones, S.H.; Yu, J.W.; Schuster, B.M.; Marcinkiewicz, A.L.; Whistler, C.A.; Cooper, V.S. Environmental Conditions Associated with Elevated Vibrio parahaemolyticus Concentrations in Great Bay Estuary, New Hampshire. PLoS ONE 2016, 11, e0155018. [Google Scholar] [PubMed]
- Ndraha, N.; Hsiao, H.-I. Influence of climatic factors on the temporal occurrence and distribution of total and pathogenic Vibrio parahaemolyticus in oyster culture environments in Taiwan. Food Microbiol. 2021, 98, 103765. [Google Scholar] [PubMed]
- Sobrinho, P.d.S.C.; Destro, M.T.; Franco, B.D.G.M.; Landgraf, M. Correlation between Environmental Factors and Prevalence of Vibrio parahaemolyticus in Oysters Harvested in the Southern Coastal Area of Sao Paulo State, Brazil. Appl. Environ. Microbiol. 2010, 76, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Miles, D.W.; Ross, T.; Olley, J.; McMeekin, T.A. Development and evaluation of a predictive model for the effect of temperature and water activity on the growth rate of Vibrio parahaemolyticus. Int. J. Food Microbiol. 1997, 38, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Paranjpye, R.N.; Nilsson, W.B.; Liermann, M.; Hilborn, E.D.; George, B.J.; Li, Q.; Bill, B.D.; Trainer, V.L.; Strom, M.S.; Sandifer, P.A. Environmental influences on the seasonal distribution of Vibrio parahaemolyticus in the Pacific Northwest of the USA. FEMS Microbiol. Ecol. 2015, 91, fiv121. [Google Scholar]
- Yan, W.X.; Dai, Y.; Zhou, Y.J.; Liu, H.; Duan, S.G.; Han, H.H.; Chen, Y. Risk factors for sporadic Vibrio parahaemolyticus gastroenteritis in east China: A matched case-control study. Epidemiol. Infect. 2015, 143, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Sun, Y.-M.; Luo, J.-Y.; Wang, H.-H. A case-control study on risk factors of vibrio parahaemolyticus sporadic infection. J. Prev. Med. 2017, 12, 1123–1126. [Google Scholar]
- Tuyet, D.T.; Thiem, V.D.; von Seidlein, L.; Chowdhury, A.; Park, E.; Canh, D.G.; Chien, B.T.; Van Tung, T.; Naficy, A.; Rao, M.R.; et al. Clinical, Epidemiological, and Socioeconomic Analysis of an Outbreak of Vibrio parahaemolyticus in Khanh Hoa Province, Vietnam. J. Infect. Dis. 2002, 186, 1615–1620. [Google Scholar] [CrossRef]
- Xu, H.; Liu, J.; Yuan, M.; Tian, C.; Lin, T.; Liu, J.; Osaris Caridad, O.C.; Pan, Y.; Zhao, Y.; Zhang, Z. Risk Reduction Assessment of Vibrio parahaemolyticus on Shrimp by a Chinese Eating Habit. Int. J. Environ. Res. Public Health 2023, 20, 317. [Google Scholar] [CrossRef]
- Brumfield Kyle, D.; Chen Arlene, J.; Gangwar, M.; Usmani, M.; Hasan Nur, A.; Jutla Antarpreet, S.; Huq, A.; Colwell Rita, R. Environmental Factors Influencing Occurrence of Vibrio parahaemolyticus and Vibrio vulnificus. Appl. Environ. Microbiol. 2023, 89, e00307–e00323. [Google Scholar] [CrossRef]
- Liao, Y.; Li, Y.; Wu, S.; Mou, J.; Xu, Z.; Cui, R.; Klena, J.D.; Shi, X.; Lu, Y.; Qiu, Y.; et al. Risk Factors for Vibrio parahaemolyticus Infection in a Southern Coastal Region of China. Foodborne Pathog. Dis. 2015, 12, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Del Ponte, E.; Fernandes, J.M.; Pavan, W.; Baethgen, W. A Model-Based Assessment of the Impacts of Climate Variability on Fusarium Head Blight Seasonal Risk in Southern Brazil. J. Phytopathol. 2009, 157, 675–681. [Google Scholar] [CrossRef]
- DaMatta, F.M.; Grandis, A.; Arenque, B.C.; Buckeridge, M.S. Impacts of climate changes on crop physiology and food quality. Food Res. Int. 2010, 43, 1814–1823. [Google Scholar] [CrossRef]
- Paz, S.; Bisharat, N.; Paz, E.; Kidar, O.; Cohen, D. Climate change and the emergence of Vibrio vulnificus disease in Israel. Environ. Res. 2007, 103, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.-C.; Wu, J.-L.; Wang, Y.-C.; Huang, H.; Sung, F.-C.; Chuang, C.-Y. Modeling the impact of climate variability on diarrhea-associated diseases in Taiwan (1996–2007). Sci. Total Environ. 2010, 409, 43–51. [Google Scholar] [CrossRef]
- Akin, S.-M.; Martens, P.; Huynen, M.M. Climate Change and Infectious Disease Risk in Western Europe: A Survey of Dutch Expert Opinion on Adaptation Responses and Actors. Int. J. Environ. Res. Public Health 2015, 12, 9726–9749. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; Trinanes, J.A.; Taylor, N.G.H.; Hartnell, R.; Siitonen, A.; Martinez-Urtaza, J. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Chang. 2013, 3, 73–77. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Trinanes, J.A.; Salmenlinna, S.; Löfdahl, M.; Siitonen, A.; Taylor, N.G.; Martinez-Urtaza, J. Heat Wave-Associated Vibriosis, Sweden and Finland, 2014. Emerg. Infect. Dis. 2016, 22, 1216–1220. [Google Scholar] [CrossRef] [PubMed]
- Takemura, A.F.; Chien, D.M.; Polz, M.F. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 2014, 5, 38. [Google Scholar] [CrossRef]
- McLaughlin Joseph, B.; DePaola, A.; Bopp Cheryl, A.; Martinek Karen, A.; Napolilli Nancy, P.; Allison Christine, G.; Murray Shelley, L.; Thompson Eric, C.; Bird Michele, M.; Middaugh John, P. Outbreak of Vibrio parahaemolyticus Gastroenteritis Associated with Alaskan Oysters. N. Engl. J. Med. 2005, 353, 1463–1470. [Google Scholar] [CrossRef]
- Gooch, J.A.; Depaola, A.; Bowers, J.; Marshall, D.L. Growth and Survival of Vibrio parahaemolyticus in Postharvest American Oysters. J. Food Prot. 2002, 65, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.-I.; Jan, M.-S.; Chi, H.-J. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan. Int. J. Environ. Res. Public Health 2016, 13, 188. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.-H.; Park, M.S.; Kim, H.-Y.; Bahk, G.J. Growth prediction and time–temperature criteria model of Vibrio parahaemolyticus on traditional Korean raw crab marinated in soy sauce (ganjang-gejang) at different storage temperatures. Food Control 2019, 98, 187–193. [Google Scholar] [CrossRef]
- Yoon, K.S.; Min, K.J.; Jung, Y.J.; Kwon, K.Y.; Lee, J.K.; Oh, S.W. A model of the effect of temperature on the growth of pathogenic and nonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea. Food Microbiol. 2008, 25, 635–641. [Google Scholar] [CrossRef]
- Fernandez-Piquer, J.; Bowman John, P.; Ross, T.; Tamplin Mark, L. Predictive Models for the Effect of Storage Temperature on Vibrio parahaemolyticus Viability and Counts of Total Viable Bacteria in Pacific Oysters (Crassostrea gigas). Appl. Environ. Microbiol. 2011, 77, 8687–8695. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.W.; Lee, S.H.; Hwang, I.G.; Yoon, K.S. Effect of Temperature on Growth of Vibrio paraphemolyticus and Vibrio vulnificus in Flounder, Salmon Sashimi and Oyster Meat. Int. J. Environ. Res. Public Health 2012, 9, 4662–4675. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Guo, J.; Yao, S.; Liu, T.; Hou, H.; Ren, H. Comprehensive Dynamic Influence of Multiple Meteorological Factors on the Detection Rate of Bacterial Foodborne Diseases under Spatio-Temporal Heterogeneity. Int. J. Environ. Res. Public Health 2023, 20, 4321. [Google Scholar] [CrossRef]
- Andhikaputra, G.; Sapkota, A.; Lin, Y.-K.; Chan, T.-C.; Gao, C.; Deng, L.-W.; Wang, Y.-C. The impact of temperature and precipitation on all-infectious-, bacterial-, and viral-diarrheal disease in Taiwan. Sci. Total Environ. 2023, 862, 160850. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, J.; Ma, Y.; Ma, X.; Chen, Y. Epidemiology of foodborne disease outbreaks caused by Vibrio parahaemolyticus, China, 2003–2008. Food Control 2014, 46, 197–202. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, R.; Qi, X.; Zhou, B.; Wang, J.; Chen, Y.; Zhang, H. Epidemiology of foodborne disease outbreaks caused by Vibrio parahaemolyticus during 2010–2014 in Zhejiang Province, China. Food Control 2017, 77, 110–115. [Google Scholar] [CrossRef]
- Morgado, M.E.; Brumfield, K.D.; Mitchell, C.; Boyle, M.M.; Colwell, R.R.; Sapkota, A.R. Increased incidence of vibriosis in Maryland, U.S.A., 2006–2019. Environ. Res. 2024, 244, 117940. [Google Scholar] [CrossRef] [PubMed]
- Daniels, N.A.; MacKinnon, L.; Bishop, R.; Altekruse, S.; Ray, B.; Hammond, R.M.; Thompson, S.; Wilson, S.; Bean, N.H.; Griffin, P.M.; et al. Vibrio parahaemolyticus Infections in the United States, 1973–1998. J. Infect. Dis. 2000, 181, 1661–1666. [Google Scholar] [CrossRef] [PubMed]
- Logar-Henderson, C.; Ling, R.; Tuite, A.R.; Fisman, D.N. Effects of large-scale oceanic phenomena on non-cholera vibriosis incidence in the United States: Implications for climate change. Epidemiol. Infect. 2019, 147, e243. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S.; Jacobs, J.; Ozbay, G.; Chintapenta Lathadevi, K.; Almuhaideb, E.; Meredith, J.; Ossai, S.; Abbott, A.; Grant, A.Q.; Brohawn, K.; et al. Seasonal and Geographical Differences in Total and Pathogenic Vibrio parahaemolyticus and Vibrio vulnificus Levels in Seawater and Oysters from the Delaware and Chesapeake Bays Determined Using Several Methods. Appl. Environ. Microbiol. 2020, 86, e01581-20. [Google Scholar] [PubMed]
- Rosenblatt, M. A Central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 1956, 42, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Parzen, E. On Estimation of a Probability Density Function and Mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman & Hall: London, UK, 1986. [Google Scholar]
- Yang, L.; Sun, Y.B.; Zhong, Q.; Duan, D.S.; Liu, S.Q.; Zhang, Y. Epidemiological Characteristics and Spatio-temporal Patterns of Foodborne Diseases in Jinan, Northern China. Biomed. Environ. Sci. 2019, 32, 309–313. [Google Scholar]
- Gasparrini, A.; Armstrong, B.; Kenward, M.G. Distributed lag non-linear models. Stat. Med. 2010, 29, 2224–2234. [Google Scholar] [CrossRef] [PubMed]
- Schober, P.; Vetter, T.R. Logistic Regression in Medical Research. Anesth. Analg. 2021, 132, 365–366. [Google Scholar] [CrossRef]
- Han, N.; Mizan, M.F.R.; Jahid, I.K.; Ha, S.-D. Biofilm formation by Vibrio parahaemolyticus on food and food contact surfaces increases with rise in temperature. Food Control 2016, 70, 161–166. [Google Scholar] [CrossRef]
- Kubota, K.; Kasuga, F.; Iwasaki, E.; Shunichiinagaki; Sakurai, Y.; Komatsu, M.; Toyofuku, H.; Angulo, F.J.; Scallan, E.; Morikawa, K. Estimating the Burden of Acute Gastroenteritis and Foodborne Illness Caused by Campylobacter, Salmonella, and Vibrio parahaemolyticus by Using Population-Based Telephone Survey Data, Miyagi Prefecture, Japan, 2005 to 2006. J. Food Prot. 2011, 74, 1592–1598. [Google Scholar]
- Chen, Y.; Yan, W.-X.; Zhou, Y.-J.; Zhen, S.-Q.; Zhang, R.-H.; Chen, J.; Liu, Z.-H.; Cheng, H.-Y.; Liu, H.; Duan, S.-G.; et al. Burden of self-reported acute gastrointestinal illness in China: A population-based survey. BMC Public Health 2013, 13, 456. [Google Scholar] [CrossRef]
- Chen, J.; Alifu, X.; Qi, X.; Zhang, R.; Chen, L.; Wang, J.; Yu, Y. Estimating the health burden of foodborne gastroenteritis caused by non-typhoidal Salmonella enterica and Vibrio parahaemolyticus in Zhejiang province, China. Risk Anal. 2023, 44, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Y.; Ding, K.; Wang, X.; Chen, X.; Liu, Y.; Chen, Y. Analysis of Bacterial Pathogens Causing Acute Diarrhea on the Basis of Sentinel Surveillance in Shanghai, China, 2006–2011. Jpn. J. Infect. Dis. 2014, 67, 264–268. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Yu, F.; Wu, M.; Wang, R.; Zheng, S.; Han, D.; Yang, Q.; Kong, H.; Zhou, F.; et al. Serology, virulence, antimicrobial susceptibility and molecular characteristics of clinical Vibrio parahaemolyticus strains circulating in southeastern China from 2009 to 2013. Clin. Microbiol. Infect. 2016, 22, 258.e9–258.e16. [Google Scholar]
- Chen, X.; Zhu, Q.; Liu, Y.; Wang, R.; Xie, H.; Chen, J.; Cheng, Y.; Zhang, H.; Cao, L.; Chen, Y. Pathogenic Characteristics of and Variation in Vibrio parahaemolyticus Isolated from Acute Diarrhoeal Patients in Southeastern China from 2013 to 2017. Infect. Drug Resist. 2020, 13, 1307–1318. [Google Scholar] [CrossRef]
- Yujie, C.; Shenggang, D.; Hong, L. Analysis of the epidemic characteristics of diarrhea cases with Vibrio parahaemolyticus infection in Shanghai from 2017 to 2018. Shanghai J. Prev. Med. 2022, 34, 205–209. [Google Scholar]
- Brumfield, K.D.; Usmani, M.; Chen, K.M.; Gangwar, M.; Jutla, A.S.; Huq, A.; Colwell, R.R. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ. Microbiol. 2021, 23, 7314–7340. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Chowdhury Wasimul, B.; Bhuiyan, N.A.; Islam, A.; Hasan Nur, A.; Nair, G.B.; Watanabe, H.; Siddique, A.K.; Huq, A.; Sack, R.B.; et al. Serogroup, Virulence, and Genetic Traits of Vibrio parahaemolyticus in the Estuarine Ecosystem of Bangladesh. Appl. Environ. Microbiol. 2009, 75, 6268–6274. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wei, L.; Pei, J. Application of Bayesian statistics to model Incidence of Vibrio parahaemolyticus associated with fishery products and their geographical distribution in China. LWT 2020, 130, 109662. [Google Scholar] [CrossRef]
- Odeyemi, O.A. Public health implications of microbial food safety and foodborne diseases in developing countries. Food Nutr. Res. 2016, 60, 29819. [Google Scholar] [CrossRef] [PubMed]
- Broner, S.; Torner, N.; Dominguez, A.; Martínez, A.; Godoy, P. Sociodemographic inequalities and outbreaks of foodborne diseases: An ecologic study. Food Control 2010, 21, 947–951. [Google Scholar] [CrossRef]
- Younus, M.; Hartwick, E.; Siddiqi, A.A.; Wilkins, M.; Davies, H.D.; Rahbar, M.; Funk, J.; Saeed, M. The role of neighborhood level socioeconomic characteristics in Salmonella infections in Michigan (1997–2007): Assessment using geographic information system. Int. J. Health Geogr. 2007, 6, 56. [Google Scholar] [CrossRef] [PubMed]
- Soltan Dallal, M.M.; Mohammadi, M.R.; Rajabi, Z.; Mirbagheri, S.Z. Investigating the epidemiology and etiology of foodborne diarrhea in Semnan province, Iran. Rev. Res. Med. Microbiol. 2024, 35, 112–118. [Google Scholar]
- Duan, J.; Su, Y.-C. Occurrence of Vibrio parahaemolyticus in Two Oregon Oyster-growing Bays. J. Food Sci. 2005, 70, M58–M63. [Google Scholar] [CrossRef]
- Xu, X.; Cheng, J.; Wu, Q.; Zhang, J.; Xie, T. Prevalence, characterization, and antibiotic susceptibility of Vibrio parahaemolyticus isolated from retail aquatic products in North China. BMC Microbiol. 2016, 16, 32. [Google Scholar] [PubMed]
- Ding, G.; Zhao, L.; Xu, J.; Cheng, J.; Cai, Y.; Du, H.; Xiao, G.; Zhao, F. Quantitative Risk Assessment of Vibrio parahaemolyticus in Shellfish from Retail to Consumption in Coastal Cities of Eastern China. J. Food Prot. 2022, 85, 1320–1328. [Google Scholar] [CrossRef]
- Kovats, R.S.; Edwards, S.J.; Hajat, S.; Armstrong, B.G.; Ebi, K.L.; Menne, B. The effect of temperature on food poisoning: A time-series analysis of salmonellosis in ten European countries. Epidemiol. Infect. 2004, 132, 443–453. [Google Scholar] [CrossRef]
Variable | β | S.E | Waldχ2 | p | OR | |
---|---|---|---|---|---|---|
Age | ≤15 | 57.301 | <0.001 *** | Reference | ||
16~24 | 2.563 | 0.365 | 49.337 | <0.001 *** | 12.970 | |
25~44 | 2.468 | 0.384 | 41.222 | <0.001 *** | 11.798 | |
45~64 | 2.410 | 0.396 | 37.062 | <0.001 *** | 11.134 | |
≥65 | 1.859 | 0.436 | 18.193 | <0.001 *** | 6.416 | |
Careers | Students | 27.728 | <0.001 *** | Reference | ||
Migrant workers | 0.922 | 0.263 | 12.261 | <0.001 *** | 2.514 | |
Cadres and staff | 0.816 | 0.236 | 11.905 | <0.001 *** | 2.261 | |
Houseworkers and the unemployed | 1.138 | 0.262 | 18.865 | <0.001 *** | 3.120 | |
Others | 1.147 | 0.241 | 22.612 | <0.001 *** | 3.149 | |
Suspected exposure food groups | Cereal products | 30.640 | <0.001 *** | Reference | ||
Meat products | 0.459 | 0.205 | 5.005 | 0.025 * | 1.582 | |
Vegetable products | –0.341 | 0.259 | 1.733 | 0.188 | 0.711 | |
Aquatic products | 0.644 | 0.193 | 11.079 | <0.001 *** | 1.904 | |
Dairy products | 0.207 | 0.349 | 0.351 | 0.553 | 1.230 | |
Others | 0.559 | 0.186 | 9.042 | 0.003 ** | 1.749 | |
Suspected exposed food-eating places | Retail markets | 154.437 | <0.001*** | Reference | ||
Home | 0.582 | 0.335 | 3.008 | 0.083 | 1.789 | |
Collective canteens | 1.879 | 0.434 | 18.721 | <0.001 *** | 6.544 | |
Catering services | 1.259 | 0.347 | 13.165 | <0.001 *** | 3.523 | |
Others | 1.818 | 0.332 | 29.997 | <0.001 *** | 6.162 | |
Socioeconomic factors | Road density (km/km2) | 0.0004 | 0.0001 | 37.345 | <0.001 *** | 1.000 |
Per capita GDP | 0.029 | 0.009 | 9.351 | 0.002 ** | 1.029 | |
Number of food and beverage outlets | 0.0003 | 0.0002 | 3.738 | 0.053 | 1.000 | |
Meteorological factors | Relative humidity (%) | 0.020 | 0.005 | 17.553 | <0.001 *** | 1.020 |
Daily mean temperature (°C) | 0.179 | 0.012 | 237.099 | <0.001 *** | 1.196 | |
Total precipitation (mm) | –0.011 | 0.006 | 4.004 | 0.045 * | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Liu, T.; Hou, H.; Qi, X.; Fang, L.; Yang, Y.; Ma, R. Risk Factors and Effects of Climate Lag on Vibrio Parahaemolyticus Infection in Eastern Coastal Cities of China: A Study Based on Hangzhou City. Foods 2024, 13, 2116. https://doi.org/10.3390/foods13132116
Ren H, Liu T, Hou H, Qi X, Fang L, Yang Y, Ma R. Risk Factors and Effects of Climate Lag on Vibrio Parahaemolyticus Infection in Eastern Coastal Cities of China: A Study Based on Hangzhou City. Foods. 2024; 13(13):2116. https://doi.org/10.3390/foods13132116
Chicago/Turabian StyleRen, Hangqi, Ting Liu, Hao Hou, Xiaojuan Qi, Lei Fang, Yinyi Yang, and Rong Ma. 2024. "Risk Factors and Effects of Climate Lag on Vibrio Parahaemolyticus Infection in Eastern Coastal Cities of China: A Study Based on Hangzhou City" Foods 13, no. 13: 2116. https://doi.org/10.3390/foods13132116
APA StyleRen, H., Liu, T., Hou, H., Qi, X., Fang, L., Yang, Y., & Ma, R. (2024). Risk Factors and Effects of Climate Lag on Vibrio Parahaemolyticus Infection in Eastern Coastal Cities of China: A Study Based on Hangzhou City. Foods, 13(13), 2116. https://doi.org/10.3390/foods13132116