Effects of Physicochemical and Biological Treatment on Structure, Functional and Prebiotic Properties of Dietary Fiber from Corn Straw
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Microbial Stains, Enzymes and Chemicals
2.2. Preparation of SDF and IDF from Corn Straw
2.3. Corn Straw Treatments
2.3.1. Alkali Oxidation Treatment
2.3.2. Enzymatic Hydrolysis
2.3.3. Microbial Fermentation
2.3.4. Microbial Fermentation Plus Enzymatic Hydrolysis
2.4. Experimental Design
2.5. Structural Characteristics
2.5.1. Scanning Electron Microscope (SEM)
2.5.2. X-ray Diffraction (XRD)
2.5.3. Fourier Transform Infrared (FT-IR) Spectroscopy
2.6. Functional Property Analysis
2.6.1. Water-Holding Capacity (WHC)
2.6.2. Oil-Holding Capacity (OHC)
2.6.3. Water Solubility (WS)
2.6.4. Cholesterol Absorption Capacity (CAC)
2.6.5. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Radical Scavenging Activity
2.7. Determination of Short-Chain Fatty Acids (SCFAs) by Cecal Microbial Fermentation In Vitro
2.7.1. Preparation of Fermentation Inoculum
2.7.2. Cecal Microbial Fermentation In Vitro
2.7.3. Determination of SCFAs
2.8. Antibacterial Activity of Dietary Fiber and Lactobacillus plantarum Fermentation Liquid
2.9. Statistical Analyses
3. Results and Discussion
3.1. Effect of Different Treatments on the Contents of SDF and IDF in Corn Straw
3.2. Structural Characteristics
3.2.1. SEM
3.2.2. XRD
3.2.3. FT-IR
3.3. Functional Characteristics
3.3.1. WHC, OHC and WS
3.3.2. CAC
3.3.3. DPPH Radical Scavenging Activity
3.4. Production of SCFAs from In Vitro Fermentation
3.5. Effect of Dietary Fiber on the Antibacterial Activity of Lactobacillus plantarum
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Jia, M.Y.; Chen, J.J.; Liu, X.Z.; Xie, M.Y.; Nie, S.P.; Chen, Y.; Xie, J.H.; Yu, Q. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocoll. 2019, 94, 468–474. [Google Scholar] [CrossRef]
- Chen, J.J.; Huang, H.R.; Chen, Y.; Xie, J.H.; Song, Y.M.; Chang, X.X.; Liu, S.Q.; Wang, Z.P.; Hu, X.B.; Yu, Q. Effects of fermentation on the structural characteristics and in vitro binding capacity of soluble dietary fiber from tea residues. LWT 2020, 131, 109818. [Google Scholar] [CrossRef]
- Ma, W.J.; Liang, Y.T.; Lin, H.S.; Chen, Y.; Xie, J.H.; Ai, F.L.; Yan, Z.W.; Hu, X.B.; Yu, Q. Fermentation of grapefruit peel by an efficient cellulose-degrading strain, (Penicillium YZ-1): Modification, structure and functional properties of soluble dietary fiber. Food Chem. 2023, 420, 136123. [Google Scholar] [CrossRef]
- Cao, H.R.; Sun, J.; Wang, K.Q.; Zhu, G.Y.; Li, X.X.; Lv, Y.W.; Wang, Z.J.; Feng, Q.; Feng, J. Performance of bioelectrode based on different carbon materials in bioelectrochemical anaerobic digestion for ethanation of maize straw. Sci. Total Environ. 2022, 832, 154997. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.M.; Zhao, X.L.; Yin, F.; Yang, H.; Wu, K.; Liang, C.Y.; Yang, B.; Zhang, W.D. Bioethanol production from corn straw pretreated with deep eutectic solvents. Electron. J. Biotechnol. 2023, 62, 27–35. [Google Scholar] [CrossRef]
- Lv, J.S.; Liu, X.Y.; Zhang, X.P.; Wang, L.S. Chemical composition and functional characteristics of dietary fiber-rich powder obtained from core of maize straw. Food Chem. 2017, 227, 383–389. [Google Scholar] [CrossRef]
- Gao, L.L.; Zhang, L.; Liu, H.; Hu, J.L. In vitro gastrointestinal digestion of whole grain noodles supplemented with soluble dietary fiber and their effects on children fecal microbiota. Food Biosci. 2023, 53, 102600. [Google Scholar] [CrossRef]
- Bai, X.L.; He, Y.; Quan, B.Y.; Xia, T.; Zhang, X.L.; Wang, Y.Q.; Zheng, Y.; Wang, M. Physicochemical properties, structure, and ameliorative effects of insoluble dietary fiber from tea on slow transit constipation. Food Chem. X 2022, 14, 100340. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Yuan, F.; Pan, Q.Y.; Fan, R.; Gao, Y.X. Physicochemical characterization of five types of citrus dietary fibers. Biocatal. Agric. Biotech. 2015, 4, 250–258. [Google Scholar] [CrossRef]
- Wang, J.Y.; He, S.M.; Tao, S.H.; Ma, S.Z.; Luo, Y.F.; Wu, M.C.; Zhou, M.Z. Structural, physicochemical, prebiotic properties of guava pulp insoluble dietary fiber and its quality enhancement ability on cow/goat yogurt: Impacts of ultrasound-assisted enzyme treatment. Food Biosci. 2024, 58, 103797. [Google Scholar] [CrossRef]
- Huang, H.R.; Chen, J.J.; Chen, Y.; Xie, J.H.; Liu, S.; Sun, N.; Hu, X.B.; Yu, Q. Modification of tea residue dietary fiber by high-temperature cooking assisted enzymatic method: Structural, physicochemical and functional properties. LWT 2021, 145, 111314. [Google Scholar] [CrossRef]
- Sangnark, A.; Noomhorm, A. Chemical, physical and baking properties of dietary fiber prepared from rice straw. Food Res. Int. 2004, 37, 66–74. [Google Scholar] [CrossRef]
- Meng, X.M.; Liu, F.; Xiao, Y.; Cao, J.W.; Wang, M.; Duan, X.C. Alterations in physicochemical and functional properties of buckwheat straw insoluble dietary fiber by alkaline hydrogen peroxide treatment. Food Chem. X 2019, 3, 100029. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.Y.; Wang, C.; Wang, C.S.; Xie, C.F.; Hang, F.X.; Li, K.; Shi, C.R. Effect of alkaline hydrogen peroxide assisted with two modification methods on the physicochemical, structural and functional properties of bagasse insoluble dietary fiber. Front. Nutr. 2023, 9, 1110706. [Google Scholar] [CrossRef]
- Si, J.Y.; Yang, C.R.; Chen, Y.; Xie, J.H.; Tian, S.L.; Cheng, Y.A.; Hu, X.B.; Yu, Q. Structural properties and adsorption capacities of Mesona chinensis Benth residues dietary fiber repared by cellulase modification assisted by Aspergillus niger or Trichoderma reesei. Food Chem. 2023, 407, 135149. [Google Scholar] [CrossRef]
- Xi, H.H.; Wang, A.X.; Qin, W.Y.; Nie, M.Z.; Chen, Z.Y.; He, Y.; Wang, L.L.; Liu, L.Y.; Huang, Y.T.; Wang, F.Z.; et al. The structural and functional properties of dietary fibre extracts obtained from highland barley bran through different steam explosion-assisted modifications. Food Chem. 2023, 406, 135025. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liu, C.Q.; Chang, J.; Yin, Q.Q.; Huang, W.W.; Liu, Y.; Dang, X.W.; Gao, T.Z.; Lu, F.S. Effect of physicochemical pretreatments plus enzymatic hydrolysis on the composition and morphologic structure of corn straw. Renew. Energy 2019, 138, 502–508. [Google Scholar] [CrossRef]
- Qiao, C.C.; Zeng, F.K.; Wu, N.N.; Tan, B. Functional, physicochemical and structural properties of soluble dietary fiber from rice bran with extrusion cooking modification. Food Hydrocoll. 2021, 121, 107057. [Google Scholar] [CrossRef]
- Dong, W.J.; Wang, D.D.; Hu, R.S.; Long, Y.Z.; Lv, L.S. Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods. Food Res. Int. 2020, 136, 109497. [Google Scholar] [CrossRef]
- Nageena, Q.; Wang, S.X.; Qin, Y.T.; Wang, R.L.; Shuang, W.; Mohamedelfatieh, I.; Xin, L. Characterization of short-chain fatty acid-producing and cholesterol assimilation potential probiotic lactic acid bacteria from Chinese fermented rice. Food Biosci. 2023, 52, 102404. [Google Scholar] [CrossRef]
- Lu, J.K.; Li, J.J.; Jin, R.C.; Li, S.F.; Yi, J.J.; Huang, J.Y. Extraction and characterization of pectin from Premna microphylla Turcz leaves. Int. J. Biol. Macromol. 2019, 131, 323–328. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Yao, D.; Wu, M.n.; Dong, Y.; Ma, L.X.; Wang, X.Y.; Xu, L.; Yu, Q.R.; Zheng, X.Q. In vitro fermentation of fructooligosaccharide and galactooligosaccharide and their effects on gut microbiota and SCFAs in infants. J. Funct. Foods 2022, 99, 105329. [Google Scholar] [CrossRef]
- Xiang, Y.Z.; Li, X.Y.; Zheng, H.L.; Chen, J.Y.; Lin, L.B.; Zhang, Q.L. Purification and antibacterial properties of a novel bacteriocin against Escherichia coli from Bacillus subtilis isolated from blueberry ferments. LWT 2021, 146, 111456. [Google Scholar] [CrossRef]
- Deng, Z.Z.; Wu, N.; Wang, J.; Zhang, Q.B. Dietary fibers extracted from Saccharina japonica can improve metabolic syndrome and meliorate gut microbiota dysbiosis induced by high fat diet. J. Funct. Foods 2021, 85, 104642. [Google Scholar] [CrossRef]
- Wang, P.; Chang, J.; Yin, Q.Q.; Wang, E.Z.; Zhu, Q.; Song, A.D.; Lu, F.S. Effects of thermo-chemical pretreatment plus microbial fermentation and enzymatic hydrolysis on saccharification and lignocellulose degradation of corn straw. Bioresour. Technol. 2015, 194, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Liao, J.S.; Qi, J.R.; Jiang, W.X.; Yang, X.Q. Structural and physicochemical properties of pectin-rich dietary fiber prepared from citrus peel. Food Hydrocoll. 2021, 110, 106140. [Google Scholar] [CrossRef]
- Dong, Y.F.; Li, Q.; Guo, Y.H.; Zhao, Y.H.; Cao, J.X. Comparison of physicochemical and in vitro hypoglycemic activity of bamboo shoot dietary fibers from different regions of Yunnan. Front. Nutr. 2023, 9, 1102671. [Google Scholar] [CrossRef]
- Du, X.J.; Wang, L.; Huang, X.; Jing, H.J.; Ye, X.; Gao, W.; Bai, X.P.; Wang, H.X. Effects of different extraction methods on structure and properties of soluble dietary fiber from defatted coconut flour. LWT 2021, 143, 111031. [Google Scholar] [CrossRef]
- Jasmine, A.; Rajendran, M.; Kavin, T.; Abinandan, S.; Vaidyanathan, V.K.; Krishnamurthi, T. Microwave-assisted alkali pre-modification medium for fractionation of rice straw and catalytic conversion to value-added 5-hydroxymethyl furfural and lignin production. Int. J. Biol. Macromol. 2023, 236, 123999. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. Isolation, purification and physicochemical properties of polysaccharide from fruiting body of Hericium erinaceus and its effect on colonic health of mice. Int. J. Biol. Macromol. 2018, 107, 1310–1319. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, B.; Chen, H.; Yu, J.; Yan, H.; Luo, Y.H.; He, J.; Huang, Z.Q.; Zheng, P.; Mao, X.B.; et al. Comparisons of the micronization, steam explosion, and gamma irradiation modification on chemical composition, structure, physicochemical properties, and in vitro digestibility of dietary fiber from soybean hulls. Food Chem. 2022, 366, 130618. [Google Scholar] [CrossRef] [PubMed]
- Qadir, N.; Wani, I.A. Physicochemical and functional characterization of dietary fibres from four Indian temperate rice cultivars. Bioact. Carbohydr. Diet. Fibre 2022, 28, 100336. [Google Scholar] [CrossRef]
- Yang, R.H.; Ye, Y.; Liu, W.T.; Liang, B.; He, H.J.; Li, X.L.; Ji, C.J.; Sun, C.C. Modification of pea dietary fibre by superfine grinding assisted enzymatic modification: Structural, physicochemical, and functional properties. Int. J. Biol. Macromol. 2024, 267, 131408. [Google Scholar] [CrossRef]
- Kang, J.; Yin, S.J.; Liu, J.; Li, C.R.; Wang, N.F.; Sun, J.; Li, W.W.; He, J.; Guo, Q.B.; Cui, S.W. Fermentation models of dietary fibre in vitro and in vivo-A review. Food Hydrocoll. 2022, 131, 107685. [Google Scholar] [CrossRef]
- Liu, X.; Suo, K.K.; Wang, P.; Li, X.; Hao, L.M.; Zhu, J.Q.; Yi, J.J.; Kang, Q.Z.; Huang, J.R.; Lu, J.K. Modification of wheat bran insoluble and soluble dietary fibers with snail enzyme. Food Sci. Hum. Well 2021, 10, 356–361. [Google Scholar] [CrossRef]
- Qiao, H.Z.; Shao, H.M.; Zheng, X.J.; Liu, J.W.; Liu, J.Q.; Huang, J.; Zhang, C.Y.; Liu, Z.; Wang, J.R.; Guan, W.T. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion. Food Chem. 2021, 335, 127522. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, M.; Bai, T.M.; Chen, D.W.; Zhang, Q.; Lin, D.R.; Liu, Y.T.; Liu, A.P.; Huang, Z.Q.; Qin, W. Comparative study on the structure, physicochemical, and functional properties of dietary fiber extracts from quinoa and wheat. LWT 2021, 149, 111816. [Google Scholar] [CrossRef]
- Abdel-Wahhab, M.A.; El-Nekeety, A.A.; Hathout, A.S.; Salman, A.S.; Abdel-Aziem, S.H.; Sabry, B.A.; Hassan, N.S.; Abdel-Aziz, S.E.; Jaswir, I. Bioactive compounds from Aspergillus niger extract enhance the antioxidant activity and prevent the genotoxicity in aflatoxin B1-treated rats. Toxicon 2020, 181, 57–58. [Google Scholar] [CrossRef]
- Rasouli-Saravani, A.; Jahankhani, K.; Moradi, S.; Gorgani, M.; Shafaghat, Z.; Mirsanei, Z.; Mehmandar, A.; Mirzaei, R. Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomed. Pharmacother. 2023, 162, 114620. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Oliveira, C.; Alves, S.; Chaves, S.R.; Coutinho, O.P.; Côrte-Real, M.; Preto, A. Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release. Cell Death Dis. 2013, 4, e507. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, Y.; Ma, F.; Sun, M.; Mu, G.; Tuo, Y. The ameliorative effect of Lactobacillus plantarum Y44 oral administration on inflammation and lipid metabolism in obese mice fed with a high fat diet. Food Funct. 2020, 11, 5024–5039. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.T.; Dong, X.W.; Tang, J.; Chen, Y.; Xie, J.H.; Cheng, Y.A.; Zheng, B.; Hu, X.B.; Yu, Q. Comparative analysis of dietary fibers from grapefruit peel prepared by ultrafine grinding: Structural properties, adsorption capacities, in vitro prebiotic activities. Food Biosci. 2023, 56, 103163. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Wang, J.G.; Zheng, W.B.; Zhao, S.; Yang, Q.L.; Yu, D.X.; Zhu, Y.L. Antibacterial activity and mechanism of a novel bacteriocin produced by Lactiplantibacillus plantarum against Escherichia coli and Staphylococcus aureus. Int. J. Food Sci. Tech. 2022, 58, 181–193. [Google Scholar] [CrossRef]
- Ma, Q.W.; Yu, Y.; Zhou, Z.K.; Wang, L.L.; Cao, R.G. Effects of different treatments on composition, physicochemical and biological properties of soluble dietary fiber in buckwheat bran. Food Biosci. 2023, 53, 102517. [Google Scholar] [CrossRef]
- Mirzaei, R.; Dehkhodaie, E.; Bouzari, B.; Rahimi, M.; Gholestani, A.; Hosseini-Fard, S.R.; Keyvani, H.; Teimoori, A.; Karampoor, S. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed. Pharmacother. 2022, 145, 112352. [Google Scholar] [CrossRef]
Groups | TDF (%) | IDF (%) | SDF (%) | SDF/IDF (%) |
---|---|---|---|---|
1 | 78.88 ± 0.19 b | 76.24 ± 0.33 a | 2.64 ± 0.52 e | 3.46 ± 0.83 e |
2 | 76.38 ± 1.31 c | 70.95 ± 1.60 b | 5.43 ± 0.34 d | 7.65 ± 0.65 d |
3 | 80.89 ± 1.70 a | 75.30 ± 1.83 a | 5.59 ± 0.30 d | 7.42 ± 0.52 d |
4 | 74.33 ± 0.21 d | 63.45 ± 0.95 c | 10.88 ± 0.74 b | 17.15 ± 1.42 c |
5 | 66.41 ± 0.56 e | 55.09 ± 0.33 d | 11.32 ± 0.40 b | 20.55 ± 0.72 b |
6 | 50.33 ± 0.46 g | 41.96 ± 0.69 e | 8.37 ± 0.42 c | 19.95 ± 1.26 b |
7 | 67.89 ± 1.12 e | 55.74 ± 0.39 d | 12.15 ± 1.44 b | 21.80 ± 0.94 b |
8 | 60.73 ± 0.82 f | 43.59 ± 1.00 e | 17.15 ± 0.86 a | 39.34 ± 0.57 a |
Items | U-IDF | F-IDF | U-SDF | F-SDF |
---|---|---|---|---|
WHC (g/g) | 6.57 ± 0.26 b | 3.77 ± 0.19 c | 3.52 ± 0.16 c | 11.64 ± 0.24 a |
OHC (g/g) | 5.41 ± 0.10 a | 3.68 ± 0.30 b | 2.69 ± 0.09 d | 2.97 ± 0.06 c |
WS (%) | 6.08 ± 0.57 c | 3.08 ± 0.21 d | 40.16 ± 0.37 b | 92.69 ± 0.77 a |
CAC (mg/g) (pH 2) | 14.82 ± 0.08 d | 19.66 ± 0.42 c | 50.13 ± 5.63 b | 198.81 ± 6.12 a |
CAC (mg/g) (pH 7) | 29.66 ± 0.89 b | 88.45 ± 2.24 a | 85.24 ± 2.09 a | 88.93 ± 4.57 a |
DPPH (%) | 35.94 ± 1.52 d | 73.58 ± 2.74 a | 42.34 ± 0.65 c | 58.99 ± 2.04 b |
Items | Blank | U-IDF | F-IDF | U-SDF | F-SDF |
---|---|---|---|---|---|
Acetic acid (mmol/L) | 4.16 ± 0.28 e | 9.73 ± 0.43 d | 10.74 ± 0.40 c | 12.73 ± 0.47 b | 17.14 ± 0.14 a |
Propionic acid (mmol/L) | 0.75 ± 0.12 e | 1.20 ± 0.15 d | 1.80 ± 0.08 c | 3.90 ± 0.13 b | 4.21 ± 0.07 a |
Butyric acid (mmol/L) | 0.26 ± 0.04 d | 0.34 ± 0.08 c | 0.54 ± 0.05 b | 0.98 ± 0.05 a | 0.96 ± 0.02 a |
Valeric acid (mmol/L) | 0.10 ± 0.01 c | 0.11 ± 0.01 bc | 0.12 ± 0.02 ab | 0.13 ± 0.01 a | 0.12 ± 0.01 ab |
Isovaleric acid (mmol/L) | 0.08 ± 0.01 a | 0.06 ± 0.01 b | 0.06 ± 0.01 b | nd | nd |
Total SCAFs (mmol/L) | 5.35 ± 0.31 e | 11.44 ± 0.43 d | 13.26 ± 0.55 c | 17.74 ± 0.36 b | 22.43 ± 0.23 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Fan, X.; Gao, Y.; Wang, P.; Chang, J.; Liu, C.; Wang, L.; Yin, Q. Effects of Physicochemical and Biological Treatment on Structure, Functional and Prebiotic Properties of Dietary Fiber from Corn Straw. Foods 2024, 13, 1976. https://doi.org/10.3390/foods13131976
Qin Y, Fan X, Gao Y, Wang P, Chang J, Liu C, Wang L, Yin Q. Effects of Physicochemical and Biological Treatment on Structure, Functional and Prebiotic Properties of Dietary Fiber from Corn Straw. Foods. 2024; 13(13):1976. https://doi.org/10.3390/foods13131976
Chicago/Turabian StyleQin, Yijie, Xinyao Fan, Ya Gao, Ping Wang, Juan Chang, Chaoqi Liu, Lijun Wang, and Qingqiang Yin. 2024. "Effects of Physicochemical and Biological Treatment on Structure, Functional and Prebiotic Properties of Dietary Fiber from Corn Straw" Foods 13, no. 13: 1976. https://doi.org/10.3390/foods13131976
APA StyleQin, Y., Fan, X., Gao, Y., Wang, P., Chang, J., Liu, C., Wang, L., & Yin, Q. (2024). Effects of Physicochemical and Biological Treatment on Structure, Functional and Prebiotic Properties of Dietary Fiber from Corn Straw. Foods, 13(13), 1976. https://doi.org/10.3390/foods13131976