Low Effectiveness of Mid-Infrared Spectroscopy Prediction Models of Mediterranean Italian Buffalo Bulk Milk Coagulation Traits
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bulk Milk Sampling and Analysis
2.2. Chemometric Analysis
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Prediction Models Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pantoja, L.S.G.; Amante, E.R.; da Cruz Rodrigues, A.M.; da Silva, L.H.M. World scenario for the valorization of byproducts of buffalo milk production chain. J. Clean. Prod. 2022, 364, 132605. [Google Scholar] [CrossRef]
- Mejares, C.T.; Huppertz, T.; Chandrapala, J. Thermal processing of buffalo milk–A review. Int. Dairy J. 2022, 129, 105311. [Google Scholar] [CrossRef]
- FAOSTAT. The Food and Agriculture Organization Corporate Statistical Database. Available online: www.fao.org/faostat/en/ (accessed on 5 March 2019).
- Manuelian, C.L.; Boselli, C.; Vigolo, V.; Giangolini, G.; De Marchi, M. Effects of animal versus vegetal rennet on milk coagulation traits in Mediterranean buffalo bulk milk. J. Dairy Sci. 2020, 103, 4958–4964. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.H.R.; Silva, G.J.; Jesus, J.C.D.; Conceição, D.G.; Santos, L.S.; Ferrão, S.P. Fast verification of buffalo’s milk authenticity by mid-infrared spectroscopy, analytical measurements and multivariate calibration. J. Braz. Chem. Soc. 2020, 31, 1453–1460. [Google Scholar] [CrossRef]
- Sen, S.; Dundar, Z.; Uncu, O.; Ozen, B. Potential of Fourier-transform infrared spectroscopy in adulteration detection and quality assessment in buffalo and goat milks. Microchem. J. 2021, 166, 106207. [Google Scholar] [CrossRef]
- Spina, A.A.; Ceniti, C.; Piras, C.; Tilocca, B.; Britti, D.; Morittu, V.M. Mid-infrared (MIR) spectroscopy for the detection of cow’s milk in buffalo milk. J. Anim. Sci. Technol. 2022, 64, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Dadousis, C.; Cipolat-Gotet, C.; Stocco, G.; Ferragina, A.; Dettori, M.L.; Pazzola, M.; do Nascimento Rangel, A.H. Goat farm variability affects milk Fourier-transform infrared spectra used for predicting coagulation properties. J. Dairy Sci. 2020, 104, 3927–3935. [Google Scholar] [CrossRef]
- Cellesi, M.; Correddu, F.; Manca, M.G.; Serdino, J.; Gaspa, G.; Dimauro, C.; Macciotta, N.P.P. Prediction of milk coagulation properties and individual cheese yield in sheep using partial least squares regression. Animals 2019, 9, 663. [Google Scholar] [CrossRef] [PubMed]
- Chessa, S.; Bulgari, O.; Rizzi, R.; Calamari, L.; Bani, P.; Biffani, S.; Caroli, A.M. Selection for milk coagulation properties predicted by Fourier transform infrared spectroscopy in the Italian Holstein-Friesian breed. J. Dairy Sci. 2014, 97, 8137–8145. [Google Scholar] [CrossRef]
- Manuelian, C.L.; Visentin, G.; Boselli, C.; Giangolini, G.; Cassandro, M.; De Marchi, M. Short Communication: Prediction of milk coagulation and acidity traits in Mediterranean buffalo milk using Fourier-transform mid-infrared spectroscopy. J. Dairy Sci. 2017, 100, 7083–7087. [Google Scholar] [CrossRef] [PubMed]
- Osborne, B.G.; Fearn, T.; Hindle, P.H. Practical NIR Spectroscopy with Application in Food and Beverage Analysis; Longman Scientific & Technical: London, UK, 1993; p. 236. [Google Scholar]
- Shenk, J.S.; Westerhaus, M.O. Calibration de ISI way. In Near Infrared Spectroscopy: The Future Waves, 1st ed.; Davies, A.M.C., Williams, P., Eds.; NIR publications: Chichester, UK, 1996; pp. 198–202. [Google Scholar]
- Shenk, J.S.; Westerhaus, M.O.; Abrams, S. Protocol for NIR calibrations: Monitoring analysis results and recalibration. In Near Infrared Spectroscopy (NIRS): Analysis of Forage Quality; Martens, G.C., Shenk, J.S., Barton, F.E., Eds.; USDA Agriculture Handbook No 643 (Revised with Supplements); U.S. Department of Agriculture: Washington, DC, USA, 1989; pp. 104–110. [Google Scholar]
- Marten, G.C.; Shenk, J.S.; Barton, F.E. Near Infrared Reflectance Spectroscopy (NIRS): Analysis of Forage Quality; United States Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1985. [Google Scholar]
- Pu, Y.Y.; O’Donnell, C.; Tobin, J.T.; O’Shea, N. Review of near-infrared spectroscopy as a process analytical technology for real-time product monitoring in dairy processing. Int. Dairy J. 2020, 103, 104623. [Google Scholar] [CrossRef]
- Næs, T.; Isaksson, T.; Fearn, T.; Davies, T. A User-Friendly Guide to Multivariate Calibration and Classification; NIR Publications: Chichester, UK, 2002; p. 347. [Google Scholar]
- Barłowska, J.; Szwajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Bonfatti, V.; Gervaso, M.; Rostellato, R.; Coletta, A.; Carnier, P. Protein composition affects variation in coagulation properties of buffalo milk. J. Dairy Sci. 2013, 96, 4182–4190. [Google Scholar] [CrossRef] [PubMed]
- Grelet, J.A.; Fernández Pierna, J.A.; Dardenne, P.; Baeten, V.; Dehareng, F. Standardization of milk mid-infrared spectra from a European dairy network. J. Dairy Sci. 2015, 98, 2150–2160. [Google Scholar] [CrossRef]
- Williams, P.; Dardenne, P.; Flinn, P. Tutorial: Items to be included in a report on a near infrared spectroscopy project. J. Near Infrared Spectrosc. 2017, 25, 85–90. [Google Scholar] [CrossRef]
- Agelet, L.E.; Hurburgh, C.R., Jr. A tutorial on near infrared spectroscopy and its calibration. Crit. Rev. Anal. Chem. 2010, 40, 246–260. [Google Scholar] [CrossRef]
- Williams, P. Implementation of Near Infrared technology. In Near-Infrared Technology in the Agricultural and Food Industries, 2nd ed.; Williams, P., Norris, K., Eds.; American Association of Cereal Chemists International: Eagan, MN, USA, 2001; pp. 145–170. [Google Scholar]
Trait 2 | N | Mean | SD | CV | Minimum | Maximum |
---|---|---|---|---|---|---|
Calibration set | ||||||
RCT, min | 1259 | 17.71 | 3.75 | 21.18 | 7.37 | 29.45 |
k20, min | 1168 | 3.29 | 1.14 | 34.52 | 0.37 | 7.15 |
a30, mm | 1260 | 38.83 | 14.01 | 36.09 | 0.98 | 70.20 |
Fat, % | 1281 | 7.87 | 1.19 | 15.08 | 3.99 | 11.86 |
Protein, % | 1302 | 4.64 | 0.35 | 7.64 | 3.15 | 7.53 |
Casein, % | 1296 | 3.68 | 0.36 | 9.83 | 2.54 | 4.89 |
Lactose, % | 696 | 4.64 | 0.18 | 3.87 | 3.69 | 5.18 |
SCC, cell/µL | 1302 | 181.54 | 274.08 | 150.98 | 11.00 | 3486.00 |
Validation set | ||||||
RCT, min | 419 | 17.71 | 3.71 | 20.94 | 8.00 | 29.30 |
k20, min | 389 | 3.31 | 1.13 | 34.05 | 1.15 | 7.15 |
a30, mm | 420 | 38.92 | 13.96 | 35.86 | 2.00 | 73.84 |
Fat, % | 426 | 7.87 | 1.17 | 14.92 | 4.19 | 11.75 |
Protein, % | 434 | 4.64 | 0.37 | 7.89 | 3.57 | 7.53 |
Casein, % | 431 | 3.68 | 0.36 | 9.72 | 2.63 | 4.81 |
Lactose, % | 231 | 4.64 | 0.17 | 3.70 | 4.03 | 5.06 |
SCC, cell/µL | 433 | 178.07 | 251.58 | 141.28 | 16.00 | 2734.00 |
Calibration Set | Validation Set | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Trait | N | Scatter Correction | Mathematical Treatment | LF | SEC | R2CrV | N | Bias | Slope | SEP | R2ExV | RPD |
RCT, min | 1204 | SNV | 1,4,4,1 | 11 | 2.83 | 0.40 | 419 | 0.03 | 0.92 | 2.90 | 0.40 | 1.29 |
k20, min | 1096 | Detrend | 0,0,1,1 | 6 | 0.82 | 0.39 | 389 | 0.07 | 1.08 | 0.88 | 0.41 | 1.30 |
a30, mm | 1199 | SNV | 0,0,1,1 | 13 | 8.60 | 0.61 | 420 | 0.02 | 0.93 | 9.08 | 0.57 | 1.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra, A.; Boselli, C.; Galli, T.; Ciofi, L.; Fichi, G.; Marchi, M.D.; Manuelian, C.L. Low Effectiveness of Mid-Infrared Spectroscopy Prediction Models of Mediterranean Italian Buffalo Bulk Milk Coagulation Traits. Foods 2024, 13, 1957. https://doi.org/10.3390/foods13131957
Guerra A, Boselli C, Galli T, Ciofi L, Fichi G, Marchi MD, Manuelian CL. Low Effectiveness of Mid-Infrared Spectroscopy Prediction Models of Mediterranean Italian Buffalo Bulk Milk Coagulation Traits. Foods. 2024; 13(13):1957. https://doi.org/10.3390/foods13131957
Chicago/Turabian StyleGuerra, Alberto, Carlo Boselli, Tiziana Galli, Letizia Ciofi, GianLuca Fichi, Massimo De Marchi, and Carmen L. Manuelian. 2024. "Low Effectiveness of Mid-Infrared Spectroscopy Prediction Models of Mediterranean Italian Buffalo Bulk Milk Coagulation Traits" Foods 13, no. 13: 1957. https://doi.org/10.3390/foods13131957
APA StyleGuerra, A., Boselli, C., Galli, T., Ciofi, L., Fichi, G., Marchi, M. D., & Manuelian, C. L. (2024). Low Effectiveness of Mid-Infrared Spectroscopy Prediction Models of Mediterranean Italian Buffalo Bulk Milk Coagulation Traits. Foods, 13(13), 1957. https://doi.org/10.3390/foods13131957