Pomegranate Fruit Cracking during Maturation: From Waste to Valuable Fruits
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Samples
2.3. Hydroalcoholic Extraction
2.4. Anthocyanin Extraction
2.5. Colorimetric Analysis and Accelerated Test of Food Shelf-Life
2.6. HPLC-DAD Analysis
2.7. HS-SPME/GC-MS Analysis
2.8. Enzyme Inhibitory Activity
3. Results and Discussion
3.1. Polyphenols Extraction
3.2. Colorimetric Analysis
3.3. HPLC-DAD Analysis
3.4. HS-SPME/GC-MS Analysis
3.5. Enzyme Inhibitory Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrara, G.; Giancaspro, A.; Mazzeo, A.; Giove, S.L.; Matarrese, A.M.S.; Pacucci, C.; Punzi, R.; Trani, A.; Gambacorta, G.; Blanco, A.; et al. Characterization of pomegranate (Punica granatum L.) genotypes collected in Puglia region, Southeastern Italy. Sci. Hortic. 2014, 178, 70–78. [Google Scholar] [CrossRef]
- Adiletta, G.; Petriccione, M.; Liguori, L.; Pizzolongo, F.; Romano, R.; Di Matteo, M. Study of pomological traits and physico-chemical quality of pomegranate (Punica granatum L.) genotypes grown in Italy. Eur. Food Res. Technol. 2018, 244, 1427–1438. [Google Scholar] [CrossRef]
- Ramlagan, P.; Labib, R.M.; Farag, M.A.; Neergheen, V.S. Advances towards the analysis, metabolism and health benefits of punicalagin, one of the largest ellagitannin from plants, with future perspectives. Phytomed. Plus 2022, 2, 100313. [Google Scholar] [CrossRef]
- Alfei, S.; Turrini, F.; Catena, S.; Zunin, P.; Grilli, M.; Pittaluga, A.M.; Boggia, R. Ellagic acid a multi-target bioactive compound for drug discovery in CNS? A narrative review. Eur. J. Med. Chem. 2019, 183, 111724. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.F.; Chen, X.E.; Li, D. Conjugated linolenic acids and their bioactivities: A review. Food Funct. 2014, 5, 1360–1368. [Google Scholar]
- Aruna, P.; Venkataramanamma, D.; Singh, A.K.; Singh, R.P. Health benefits of punicic acid: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 16–27. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, S.; Saroj, P.L.; Mishra, D.S.; Yadav, V.; Kumar, R. Cultivation of underutilized fruit crops in hot semi-arid regions: Developments and challenges—A review. Curr. Hortic. 2020, 8, 12–23. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Martínez-Zamora, L.; Castillejo, N.; Artés-Hernández, F. From Pomegranate Byproducts Waste to Worth: A Review of Extraction Techniques and Potential Applications for Their Revalorization. Foods 2022, 11, 2596. [Google Scholar] [CrossRef]
- Altieri, F.; Cairone, F.; Giamogante, F.; Carradori, S.; Locatelli, M.; Chichiarelli, S.; Cesa, S. Influence of ellagitannins extracted by pomegranate fruit on disulfide isomerase PDIA3 activity. Nutrients 2019, 11, 186. [Google Scholar] [CrossRef][Green Version]
- Yilmaz, F.M.; Karaaslan, M.; Vardin, H. Optimization of extraction parameters on the isolation of phenolic compounds from sour cherry (Prunus cerasus L.) pomace. J. Food Sci. Technol. 2015, 52, 2851–2859. [Google Scholar] [CrossRef][Green Version]
- Recinella, L.; Chiavaroli, A.; Masciulli, F.; Fraschetti, C.; Filippi, A.; Cesa, S.; Cairone, F.; Gorica, E.; De Leo, M.; Braca, A.; et al. Protective effects induced by a hydroalcoholic Allium sativum extract in isolated mouse heart. Nutrients 2021, 13, 2332. [Google Scholar] [CrossRef] [PubMed]
- Nicolescu, A.; Babotă, M.; Zhang, L.; Bunea, C.I.; Gavrilaș, L.; Vodnar, D.C.; Mocan, A.; Crișan, G.; Rocchetti, G. Optimized Ultrasound-Assisted Enzymatic Extraction of Phenolic Compounds from Rosa canina L. Pseudo-Fruits (Rosehip) and Their Biological Activity. Antioxidants 2022, 11, 1123. [Google Scholar] [CrossRef] [PubMed]
- Balli, D.; Cecchi, L.; Khatib, M.; Bellumori, M.; Cairone, F.; Carradori, S.; Zengin, G.; Cesa, S.; Innocenti, M.; Mulinacci, N. Characterization of arils juice and peel decoction of fifteen varieties of Punica granatum L.: A focus on anthocyanins, ellagitannins and polysaccharides. Antioxidants 2020, 9, 238. [Google Scholar] [PubMed][Green Version]
- Samanta, A.K.; Konar, A. Dyeing of textiles with natural dyes. Nat. Dyes 2011, 3, 30–56. [Google Scholar]
- Mena, P.; Vegara, S.; Martí, N.; García-Viguera, C.; Saura, D.; Valero, M. Changes on indigenous microbiota, colour, bioactive compounds and antioxidant activity of pasteurised pomegranate juice. Food Chem. 2013, 141, 2122–2129. [Google Scholar] [CrossRef] [PubMed]
- Cesa, S.; Carradori, S.; Bellagamba, G.; Locatelli, M.; Casadei, M.A.; Masci, A.; Paolicelli, P. Evaluation of processing effects on anthocyanin content and colour modifications of blueberry (Vaccinium spp.) extracts: Comparison between HPLC-DAD and CIELAB analyses. Food Chem. 2017, 232, 114–123. [Google Scholar] [CrossRef]
- Perez, S.M. Physicochemical Characterization of Pomegranate (Punica Granatum L.) Native to Jordan During Different Maturity Stages: Color Evaluation Using the Cielab and Cielch Systems. J. Ecol. Eng. 2021, 22, 214–221. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Lee, R.P.; Henning, S.M.; Heber, D. Absence of pomegranate ellagitannins in the majority of commercial pomegranate extracts: Implications for standardization and quality control. J. Agric. Food Chem. 2009, 57, 7395–7400. [Google Scholar] [CrossRef]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef]
- Ghimire, B.K.; Seo, J.W.; Kim, S.H.; Ghimire, B.; Lee, J.G.; Yu, C.Y.; Chung, I.M. Influence of Harvesting Time on Phenolic and Mineral Profiles and Their Association with the Antioxidant and Cytotoxic Effects of Atractylodes japonica Koidz. Agron. 2021, 11, 1327. [Google Scholar] [CrossRef]
- Heidari, G.; Sohrabi, Y.; Esmailpoor, B. Influence of harvesting time on yield and yield components of sugar beet. J. Agric. Soc. Sci. 2008, 4, 69–73. [Google Scholar]
- Scazzocchio, F.; Mondì, L.; Ammendolia, M.G.; Goldoni, P.; Comanducci, A.; Marazzato, M.; Conte, M.P.; Rinaldi, F.; Crestoni, M.E.; Fraschetti, C.; et al. Coriander (Coriandrum sativum) essential oil: Effect on multidrug resistant uropathogenic Escherichia coli. Nat. Prod. Commun. 2017, 12, 623–626. [Google Scholar] [PubMed]
- Di Giacomo, S.; Mariano, A.; Gullì, M.; Fraschetti, C.; Vitalone, A.; Filippi, A.; Mannina, L.; Scotto D’Abusco, A.; Di Sotto, A. Role of caryophyllane sesquiterpenes in the entourage effect of Felina 32 hemp inflorescence phytocomplex in triple negative MDA-MB-468 breast cancer cells. Molecules 2021, 26, 6688. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhang, F.; Zhou, C.; Lin, M.; Kan, J. Comparison of flavor compounds in fresh and pickled bamboo shoots by GC-MS and GC-olfactometry. Food Sci. Technol. Res. 2014, 20, 129–138. [Google Scholar] [CrossRef][Green Version]
- Grimm, C.C.; Champagne, E.T. Analysis of volatile compounds in the headspace of rice using SPME/GC/MS. In Flavor, Fragrance, and Odor Analysis; CRC Press: Boca Raton, FL, USA, 2001; Volume 115, p. 229. [Google Scholar]
- Kam, A.; Li, K.M.; Razmovski-Naumovski, V.; Nammi, S.; Shi, J.; Chan, K.; Li, G.Q. A comparative study on the inhibitory effects of different parts and chemical constituents of pomegranate on α-amylase and α-glucosidase. Phytother. Res. 2013, 27, 1614–1620. [Google Scholar] [CrossRef]
- Çam, M.; İçyer, N.C. Phenolics of pomegranate peels: Extraction optimization by central composite design and alpha glucosidase inhibition potentials. J. Food Sci. Technol. 2015, 52, 1489–1497. [Google Scholar] [CrossRef][Green Version]
- Bellesia, A.; Verzelloni, E.; Tagliazucchi, D. Pomegranate ellagitannins inhibit α-glucosidase activity in vitro and reduce starch digestibility under simulated gastro-intestinal conditions. Int. J. Food Sci. Nutr. 2015, 66, 85–92. [Google Scholar] [CrossRef][Green Version]
- Liu, Y.; Kong, K.W.; Wu, D.T.; Liu, H.Y.; Li, H.B.; Zhang, J.R.; Gan, R.Y. Pomegranate peel-derived punicalagin: Ultrasonic-assisted extraction, purification, and its α-glucosidase inhibitory mechanism. Food Chem. 2022, 374, 131635. [Google Scholar] [CrossRef]
- Les, F.; Arbonés-Mainar, J.M.; Valero, M.S.; López, V. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. J. Ethnopharmacol. 2018, 220, 67–74. [Google Scholar] [CrossRef]
- Çam, M.; İçyer, N.C.; Erdoğan, F. Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT-Food Sci. Technol. 2014, 55, 117–123. [Google Scholar] [CrossRef]
L* | a* | b* | Cab* | hab | |
---|---|---|---|---|---|
W intact | 44.58 ± 2.90 | 21.20 ± 0.11 | 17.90 ± 0.18 | 27.66 ± 0.85 | 40.53 ± 1.23 |
W split | 43.63 ± 4.51 | 20.99 ± 0.86 | 19.06 ± 1.88 | 26.56 ± 0.85 | 40.23 ± 1.05 |
J intact | 12.41 ± 0.11 | 34.85 ± 2.17 | 15.29 ± 2.24 | 39.24 ± 1.06 | 22.81 ± 1.03 |
J split | 19.51 ± 0.49 | 38.26 ± 0.57 | 17.84 ± 1.34 | 40.14 ± 1.23 | 24.11 ± 2.07 |
HAW intact | 53.36 ± 2.66 | 25.98 ± 1.29 | 48.14 ± 2.41 | 54.73 ± 2.74 | 61.85 ± 3.09 |
HAW split | 41.39 ± 2.07 | 28.86 ± 1.44 | 32.11 ± 1.61 | 43.78 ± 2.19 | 48.58 ± 2.43 |
HAP split | 63.96 ± 3.19 | −1.66 ± 0.08 | 62.59 ± 3.12 | 62.62 ± 1.87 | 91.52 ± 2.74 |
HAJ intact | 55.61 ± 2.78 | 7.79 ± 0.39 | 0.29 ± 0.01 | 7.93 ± 0.39 | 12.93 ± 0.65 |
HAJ split | 47.29 ± 2.36 | 14.83 ± 0.74 | 1.79 ± 0.08 | 16.15 ± 0.81 | 31.20 ± 1.56 |
JS | 16.40 ± 0.49 | 11.00 ± 0.33 | 18.26 ± 0.55 | 21.32 ± 0.64 | 58.93 ± 1.76 |
JL | 33.25 ± 0.99 | 22.75 ± 0.68 | 31.81 ± 0.95 | 39.11 ± 1.17 | 54.42 ± 1.63 |
Gallic Acid | Punicalin (α + β) * | Punicalagin (α + β) | Ellagic Acid | Anthocyanins ** | |
---|---|---|---|---|---|
HAW intact | 1.10 ± 0.05 | NI | 20.83 ± 1.04 | 1.71 ± 0.09 | 7.87 ± 0.44 |
HAW split | 0.41 ± 0.03 | NI | 31.75 ± 1.89 | 0.58 ± 0.002 | 23.87 ± 3.11 |
HAP split | NI | NI | 76.84 ± 3.84 | 2.36 ± 0.10 | 0.95 ± 0.01 |
HAJ intact | 0.01 ± 0.001 | NI | 3.24 ± 0.02 | NI | 13.25 ± 0.87 |
HAJ split | 0.01 ± 0.001 | NI | 2.91± 0.03 | NI | 37.13 ± 4.14 |
JS | 0.92 ± 0.07 | 10.02 ± 0.83 | 16.76 ± 1.70 | 1.12 ± 0.07 | NI |
JL | NI | NI | 1.89 ± 0.05 | 0.08 ± 0.007 | NI |
Compound | Class | Area % | RI | RIL a | ||
---|---|---|---|---|---|---|
Split | Intact | Split | Intact | |||
Hexanal b | Aldehyde | - | 7.5 | - | - | - |
Furfural b | Aldehyde | 12.9 | 15.2 | - | - | - |
Methoxy phenyl oxime b | Other | 17.7 | 17.1 | 935 | 939 | - |
Octanal | Aldehyde | 2.6 | 2.5 | 1013 | 1013 | 1006 |
2-Ethyl hexanol | Alcohol | - | 1.6 | - | 1044 | 1030 |
Nonanal | Aldehyde | 6.4 | 11.2 | 1113 | 1113 | 1107 |
Dodecene | Alkene | 2.6 | 1.2 | 1196 | 1196 | 1191 |
Decanal | Aldehyde | 7.2 | 12.4 | 1214 | 1214 | 1208 |
Tetradecene | Alkene | 7.0 | 4.5 | 1396 | 1396 | 1392 |
Dodecanal | Aldehyde | - | 0.7 | - | 1418 | 1410 |
Diisopropyladipate | FAE | 4.1 | - | 1465 | - | 1464 |
2,4-bis(1,1-dimethylethyl)-phenol | Alcohol | 3.1 | 2.3 | 1528 | 1529 | 1521 |
Tridecanol | Alcohol | 7.5 | 7.0 | 1597 | 1597 | 1580 |
Octyl octanoate | FAE | 2.7 | 0.9 | 1787 | 1788 | 1781 |
Octadecene | Alkene | 4.8 | 3.8 | 1798 | 1798 | 1793 |
Diisobutyl phthalate | Other | 9.4 | 2.1 | 1885 | 1888 | 1868 |
Eicosene | Alkene | - | 1.0 | - | 1999 | 2000 |
Unknown | 12.0 | 8.5 | ||||
Class | ||||||
Alcohol | 10.6 | 10.9 | ||||
Aldehyde | 29.1 | 49.5 | ||||
Alkene | 14.4 | 10.5 | ||||
FAE | 6.8 | 0.9 |
Compound | Class | Area % | RI | RIL a | ||
---|---|---|---|---|---|---|
Split | Intact | Split | Intact | |||
Methoxy phenyl oxime b | Other | 7.5 | - | 940 | - | - |
6-Methyl-hept-5-en-2-one | Ketone | 3.3 | - | 986 | - | 975 |
Octanal | Aldehyde | 3.7 | - | 1013 | - | 1006 |
2-Ethyl-hexanol | Alcohol | - | 8.0 | - | 1044 | 1030 |
3,4-Dimethyl-2-cyclohexen-1-one b | Ketone | - | 2.3 | - | 1091 | - |
Nonanal | Aldehyde | 11.6 | 7.4 | 1112 | 1113 | 1107 |
Dodecene | Alkene | 2.0 | 5.1 | 1196 | 1196 | 1191 |
Dodecane | Alkane | - | 0.9 | - | 1204 | 1200 |
Decanal | Aldehyde | 15.9 | 6.1 | 1213 | 1214 | 1208 |
Carvacrol | Alcohol | - | 43.2 | 1320 | - | 1317 |
Tetradecene | Alkene | 17.9 | 12.3 | 1396 | 1396 | 1392 |
Diisopropyladipate | FAE | 2.4 | - | 1465 | - | 1464 |
Dodecanal | Aldehyde | - | 2.7 | - | 1418 | 1410 |
Dodecanol | Alcohol | 1.3 | - | 1486 | - | 1476 |
Tridecanol | Alcohol | 5.5 | 6.7 | 1597 | 1597 | 1580 |
Octyl octanoate | FAE | 21.9 | - | 1787 | - | 1781 |
Octadecene | Alkene | 0.6 | - | 1798 | - | 1793 |
Diisobutyl phthalate | Other | 1.6 | - | 1885 | - | 1868 |
Unknown | 4.9 | 5.3 | ||||
Class | ||||||
Alcohol | 6.8 | 57.9 | ||||
Aldehyde | 15.9 | 16.2 | ||||
Alkane | - | 0.9 | ||||
Alkene | 20.5 | 17.4 | ||||
FAE | 24.3 | - | ||||
Ketone | 3.3 | 2.3 |
Compound | Class | Area % | RI | RIL a |
---|---|---|---|---|
Heptanal | Aldehyde | 2.2 | 913 | 906 |
Methoxy phenyl oxime b | Other | 2.7 | 940 | - |
1-Chloro-heptane | Other | 0.8 | 965 | 962 |
Benzaldehyde | Aldehyde | 2.8 | 976 | 960 |
6-Methyl-hept-5-en-2-one | Ketone | 1.1 | 1000 | 986 |
Octanal | Aldehyde | 10.3 | 1012 | 1006 |
α-terpinene | Terpene | 0.4 | 1022 | 1018 |
p-Cymene | Terpene | 1.1 | 1031 | 1025 |
5-Methyldecane | Alkane | 0.5 | 1062 | 1058 |
γ-Terpinene | Terpene | 0.9 | 1065 | 1058 |
1-Chloro-octane | Other | 1.4 | 1067 | 1066 |
Octanol | Alcohol | 0.6 | 1086 | 1076 |
3,4-Dimethyl-cyclohexen-1-one | Ketone | 1.2 | 1090 | 1100 |
Nonanal | Aldehyde | 23.5 | 1112 | 1107 |
1-Chlorononane | Other | 1.1 | 1169 | 1154 |
Dodecene | Alkene | 0.8 | 1196 | 1191 |
Decanal | Aldehyde | 23.8 | 1213 | 1208 |
2E-Decenal | Aldehyde | 1.6 | 1272 | 1265 |
Undecanal | Aldehyde | 0.7 | 1286 | 1286 |
8Z-Undecenal | Aldehyde | 1.5 | 1374 | 1365 |
Trans-α-bergamotene | Terpene | 0.6 | 1445 | 1432 |
Diisopropyladipate | FAE | 1.9 | 1466 | 1464 |
Dodecanol | Alcohol | 0.4 | 1486 | 1476 |
2,4-Bis(1,1-dimethylethyl)-phenol | Alcohol | 0.3 | 1529 | 1521 |
Tridecanol | Alcohol | 0.3 | 1597 | 1580 |
Diisopropylphthalate | Other | 0.3 | 1614 | 1633 |
Octyl octanoate | FAE | 13.1 | 1787 | 1781 |
Diisobutylphthalate | Other | 0.4 | 1885 | 1868 |
Unknown | 3.6 | |||
Class | ||||
Alcohol | 1.6 | |||
Aldehyde | 66.4 | |||
Alkane | 0.5 | |||
Alkene | 0.8 | |||
FAE | 15.0 | |||
Ketone | 2.3 | |||
Terpene | 2.1 |
α-Glucosidase | Acetylcholinesterase | Tyrosinase | |
---|---|---|---|
HAW intact | 4.58 | 259.8 | 609.2 |
HAW split | 5.68 | 379.2 | 722.2 |
HAP split | 2.20 | 309.8 | 416.2 |
HAJ intact | 294.25 | NI | NI |
HAJ split | 110.92 | NI | NI |
Positive control | Acarbose: 122.27 | Galantamine: 0.000185 | Kojic acid: 4.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraschetti, C.; Goci, E.; Nicolescu, A.; Cairone, F.; Carradori, S.; Filippi, A.; Palmieri, V.; Mocan, A.; Cesa, S. Pomegranate Fruit Cracking during Maturation: From Waste to Valuable Fruits. Foods 2023, 12, 1908. https://doi.org/10.3390/foods12091908
Fraschetti C, Goci E, Nicolescu A, Cairone F, Carradori S, Filippi A, Palmieri V, Mocan A, Cesa S. Pomegranate Fruit Cracking during Maturation: From Waste to Valuable Fruits. Foods. 2023; 12(9):1908. https://doi.org/10.3390/foods12091908
Chicago/Turabian StyleFraschetti, Caterina, Enkelejda Goci, Alexandru Nicolescu, Francesco Cairone, Simone Carradori, Antonello Filippi, Vincenzo Palmieri, Andrei Mocan, and Stefania Cesa. 2023. "Pomegranate Fruit Cracking during Maturation: From Waste to Valuable Fruits" Foods 12, no. 9: 1908. https://doi.org/10.3390/foods12091908
APA StyleFraschetti, C., Goci, E., Nicolescu, A., Cairone, F., Carradori, S., Filippi, A., Palmieri, V., Mocan, A., & Cesa, S. (2023). Pomegranate Fruit Cracking during Maturation: From Waste to Valuable Fruits. Foods, 12(9), 1908. https://doi.org/10.3390/foods12091908