Physico-Chemical, Microbiological and Sensory Properties of Water Kefir Drinks Produced from Demineralized Whey and Dimrit and Shiraz Grape Varieties
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparing of Grape Juice and Raisins
2.2. Preparing of Water Kefir Drinks
2.3. Physico-Chemical Analyzes
2.4. Microbiological Analyzes
2.5. Sensory Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Composition
3.2. Microbiological Properties
3.3. Sensory Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chakravorty, S.; Bhattacharya, S.; Chatzinotas, A.; Chakraborty, W.; Bhattacharya, D.; Gachhui, R. Kombucha Tea Fermentation: Microbial and Biochemical Dynamics. Int. J. Food Microbiol. 2016, 220, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, W.; Corona, O.; Guarcello, R.; Francesca, N.; Germanà, M.A.; Erten, H.; Moschetti, G.; Settanni, L. Development of New Non-Dairy Beverages from Mediterranean Fruit Juices Fermented with Water Kefir Microorganisms. Food Microbiol. 2016, 54, 40–51. [Google Scholar] [CrossRef]
- Çevik, T.; Aydoğdu, S.; Özdemir, N.; Kök Taş, T.; Daneleri, S.K.; Farklı, Ü.; Etkisi, Ş.; Makalesi, A. The Effect of Different Sugars on Water Kefir Grains. Turkish J. Agric. -Food Sci. Technol. 2019, 7, 40–45. [Google Scholar] [CrossRef]
- Fiorda, F.A.; de Melo Pereira, G.V.; Thomaz-Soccol, V.; Rakshit, S.K.; Pagnoncelli, M.G.B.; de Souza Vandenberghe, L.P.; Soccol, C.R. Microbiological, Biochemical, and Functional Aspects of Sugary Kefir Fermentation—A Review. Food Microbiol. 2017, 66, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Gamba, R.R.; Yamamoto, S.; Sasaki, T.; Michihata, T.; Mahmoud, A.H.; Koyanagi, T.; Enomoto, T. Microbiological and Functional Characterization of Kefir Grown in Different Sugar Solutions. Food Sci. Technol. Res. 2019, 25, 303–312. [Google Scholar] [CrossRef]
- Egea, M.B.; Santos, D.C.D.; Oliveira Filho, J.G.D.; Ores, J.D.C.; Takeuchi, K.P.; Lemes, A.C. A Review of Nondairy Kefir Products: Their Characteristics and Potential Human Health Benefits. Crit. Rev. Food Sci. Nutr. 2022, 62, 1536–1552. [Google Scholar]
- Akın, N.; Gündüz, A.; Konak, Ç. Lactose Conversion Technology in Dairy Products and Lactose Intolerance. Acad. Food J. 2012, 10, 77–84. [Google Scholar]
- Yerlİkaya, O.; Kınık, Ö.; Akbulut, N. Functional Properties of Whey and New Generation Dairy Products Manufactured with Whey. GIDA -J. Food 2010, 35, 289–296. [Google Scholar]
- Kilara, A. Whey and Whey Products. In Dairy Processing and Quality Assurance, 2nd ed.; Chandan, R.C., Kilara, A., Shah, N.P., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2008; pp. 349–366. [Google Scholar]
- Durlu-Özkaya, F.; Gün, İ.; Durlu-Özkaya, F.; Gün, İ. Aroma Compounds of Some Traditional Turkish Cheeses and Their Importance for Turkish Cuisine. Food Nutr. Sci. 2014, 5, 425–434. [Google Scholar] [CrossRef]
- Hernandez-Mendoza, A.; Robles, V.J.; Angulo, J.O.; De, J.; Cruz, L.; Garcia, H.S. Preparation of a Whey-Based Probiotic Product with Lactobacillus Reuteri and Bifidobacterium Bifidum. Food Technol. Biotechnol. 2007, 45, 27–31. [Google Scholar]
- Jeličić, I.; Božanić, R.; Tratnik, L. Whey Based Beverages—New Generation of Dairy Products. Mljekarstvo Časopis Za Unaprjeđenje Proizv. I Prerade Mlijeka 2008, 58, 257–274. [Google Scholar]
- Seyhan, E.; Yaman, H.; Özer, B. Production of a Whey-Based Functional Beverage Supplemented with Soy Isoflavones and Phytosterols. Int. J. Dairy Technol. 2016, 69, 114–121. [Google Scholar] [CrossRef]
- Rako, A.; Tudor Kalit, M.; Kalit, S.; Soldo, B.; Ljubenkov, I. Nutritional Characteristics of Croatian Whey Cheese (Bračka Skuta) Produced in Different Stages of Lactation. LWT 2018, 96, 657–662. [Google Scholar] [CrossRef]
- Marshall, K. Therapeutic Applications of Whey Protein. Altern. Med. Rev. 1996, 9, 136–156. [Google Scholar]
- Kandemir, A. Treatment of Whey by Electrocoagulation Method; Anadolu University: Eskişehir, Türkiye, 2011. [Google Scholar]
- Yamahata, N.; Toyotake, Y.; Kunieda, S.; Wakayama, M. Application of Multiple Sensory Evaluations to Produce Fermented Beverages Made from Sole Whey Using Kluyveromyces Marxianus. Int. J. Food Sci. Technol. 2020, 55, 1698–1704. [Google Scholar] [CrossRef]
- Moretti, A.F.; Moure, M.C.; Quiñoy, F.; Esposito, F.; Simonelli, N.; Medrano, M.; León-Peláez, Á. Water Kefir, a Fermented Beverage Containing Probiotic Microorganisms: From Ancient and Artisanal Manufacture to Industrialized and Regulated Commercialization. Futur. Foods 2022, 5, 100123. [Google Scholar] [CrossRef]
- Laureys, D.; Aerts, M.; Vandamme, P.; De Vuyst, L. The Buffer Capacity and Calcium Concentration of Water Influence the Microbial Species Diversity, Grain Growth, and Metabolite Production During Water Kefir Fermentation. Front. Microbiol. 2019, 10, 2876. [Google Scholar] [CrossRef]
- Zannini, E.; Lynch, K.M.; Nyhan, L.; Sahin, A.W.; O’Riordan, P.; Luk, D.; Arendt, E.K. Influence of Substrate on the Fermentation Characteristics and Culture-Dependent Microbial Composition of Water Kefir. Fermentation 2022, 9, 28. [Google Scholar] [CrossRef]
- Lynch, K.M.; Wilkinson, S.; Daenen, L.; Arendt, E.K. An Update on Water Kefir: Microbiology, Composition and Production. Int. J. Food Microbiol. 2021, 345, 109128. [Google Scholar] [CrossRef] [PubMed]
- Official Methods of Analysis of AOAC International | WorldCat.Org. Available online: https://www.worldcat.org/title/official-methods-of-analysis-of-aoac-international/oclc/44761301 (accessed on 14 March 2023).
- Ertekin, B.; Guzel-Seydim, Z.B. Effect of Fat Replacers on Kefir Quality. J. Sci. Food Agric. 2010, 90, 543–548. [Google Scholar] [CrossRef] [PubMed]
- TS 13359; Determination of Fructose, Glucose, Saccharose, Turanose and Maltose of Honey by High Performance Liquid Chramatography (HPLC). Turkish Standards Institute: Ankara, Türkiye, 2008.
- Cemeroğlu, B. Food Analyses; Ankara Food Technology Association Publications: Ankara, Türkiye, 2007. [Google Scholar]
- Dorota Martysiak-Żurowska, W.W. A Comparison of ABTS and DPPH Methods for Assessing the Total Antioxidant Capacity of Human Milk. Acta Sci. Pol. Technol. Aliment. 2012, 11, 83–89. [Google Scholar]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A Novel Method for Measuring Antioxidant Capacity and Its Application to Monitoring the Antioxidant Status in Premature Neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Guneser, O.; Yuceer, Y.K. Characterisation of Aroma-Active Compounds, Chemical and Sensory Properties of Acid-Coagulated Cheese: Circassian Cheese. Int. J. Dairy Technol. 2011, 64, 517–525. [Google Scholar] [CrossRef]
- Spencer, J.F.T.; Ragout de Spencer, A.L. (Eds.) Food Microbiology Protocols; Humana Press: Totowa, NJ, USA, 2001. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food; Chapman and Hall: New York, NY, USA, 1998. [Google Scholar]
- Silva, K.R.; Rodrigues, S.A.; Filho, L.X.; Lima, Á.S. Antimicrobial Activity of Broth Fermented with Kefir Grains. Appl. Biochem. Biotechnol. 2009, 152, 316–325. [Google Scholar] [CrossRef]
- Santos, D.C.; Oliveira Filho, J.G.; Andretta, J.R.; Silva, F.G.; Egea, M.B. Challenges in Maintaining the Probiotic Potential in Alcoholic Beverage Development. Food Biosci. 2023, 52, 102485. [Google Scholar] [CrossRef]
- Dwiloka, B.; Rizqiati, H.; Setiani, B.E. Physicochemical and Sensory Characteristics of Green Coconut (Cocos nucifera L.) Water Kefir. Int. J. Food Stud. 2020, 9, 346–359. [Google Scholar] [CrossRef]
- Polat, Ş. Determination of Resveratrol and Mineral Element Contents of Fresh Grapes and Grape Products Growth by Organic and Conventional Agricultural Techniques; Dicle University Institute of Science and Technology: Diyarbakır, Türkiye, 2019. [Google Scholar]
- Pocock, K.F.; Hayasaka, Y.; Peng, Z.; Williams, P.J.; Waters, E.J. The Effect of Mechanical Harvesting and Long-Distance Transport on the Concentration of Haze-Forming Proteins in Grape Juice. Aust. J. Grape Wine Res. 1998, 4, 23–29. [Google Scholar] [CrossRef]
- Ozcelik, F.; Akan, E.; Kinik, O. Use of Cornelian Cherry, Hawthorn, Red Plum, Roseship and Pomegranate Juices in the Production of Water Kefir Beverages. Food Biosci. 2021, 42, 101219. [Google Scholar] [CrossRef]
- Gökırmaklı, Ç. Optimization of Water Kefır Production, Investigation of Its Microbiota and Probiotic Properties; Suleyman Demirel University: Isparta, Türkiye, 2023. [Google Scholar]
- Şen, İ.; Karagül Yüceer, Y. Production and Characterization of Whey Beverage by Using Grain or Lyophilized Kefir Cultures. Acad. Food J. 2019, 17, 362–370. [Google Scholar]
- Chirife, J.; Fontan, C.F.; Benmergui, E.A. The Prediction of Water Activity in Aqueous Solutions in Connection with Intermediate Moisture Foods IV. AW Prediction in Aqueous Non Electrolyte Solutions. Int. J. Food Sci. Technol. 1980, 15, 59–70. [Google Scholar] [CrossRef]
- Atinç, M.; Kalkan, I. Flavonoidler ve Sağlık Üzerine Etkileri. Aydın Gastron. 2018, 2, 31–38. [Google Scholar]
- Yüce, H. Changes in Antioxidant Quantity and Bioavailability of Sour Cherry, Black Grape and Pomegranate Juices Fermented with Water Kefir Grain; Istanbul Technical University: Istanbul, Türkiye; Institute of Science and Technology: Kansas City, MO, USA, 2015. [Google Scholar]
- Azi, F.; Tu, C.; Rasheed, H.A.; Dong, M. Comparative Study of the Phenolics, Antioxidant and Metagenomic Composition of Novel Soy Whey-Based Beverages Produced Using Three Different Water Kefir Microbiota. Int. J. Food Sci. Technol. 2020, 55, 1689–1697. [Google Scholar] [CrossRef]
- Darvishzadeh, P.; Orsat, V.; Faucher, S.P. Encapsulation of Russian Olive Water Kefir as an Innovative Functional Drink with High Antioxidant Activity. Plant Foods Hum. Nutr. 2021, 76, 161–169. [Google Scholar] [CrossRef]
- Calo, A.; Tomasi, D.; Crespan, M.; Costacurta, A. Relationship between Environmental Factors and the Dynamics of Growth and Composition of the Grapevine. Acta Hortic. 1996, 427, 217–231. [Google Scholar] [CrossRef]
- Meler, K. Nutrient Removal by Yield and Pruning in Different Wine Grape Varieties (Chardonnay, Kalecik Karasi and Shiraz) Located in Denizli Province; Ege University Institute of Science and Technology: Bornova, Türkiye, 2018. [Google Scholar]
- Mulyani, S.; Melati Faizun Sunarko, K.; Etza Setiani, B.; Studi Teknologi Pangan, P.; Peternakan dan Pertanian, F. Pengaruh Lama Fermentasi Terhadap Total Asam, Total Bakteri Asam Laktat Dan Warna Kefir Belimbing Manis (Averrhoa Carambola). J. Ilm. SAINS 2021, 21, 113–118. [Google Scholar] [CrossRef]
- Pinto, T.; Vilela, A.; Cosme, F. Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. Beverages 2022, 8, 33. [Google Scholar] [CrossRef]
- Laureys, D.; Leroy, F.; Hauffman, T.; Raes, M.; Aerts, M.; Vandamme, P.; De Vuyst, L. The Type and Concentration of Inoculum and Substrate as Well as the Presence of Oxygen Impact the Water Kefir Fermentation Process. Front. Microbiol. 2021, 12, 628599. [Google Scholar] [CrossRef] [PubMed]
- Stadie, J.; Gulitz, A.; Ehrmann, M.A.; Vogel, R.F. Metabolic Activity and Symbiotic Interactions of Lactic Acid Bacteria and Yeasts Isolated from Water Kefir. Food Microbiol. 2013, 35, 92–98. [Google Scholar] [CrossRef]
- Subardjo, K.M.V. Black Tea Water Kefır Beverage; Massey University: Palmerston North, New Zealand, 2017. [Google Scholar]
- Kaya, Y. Metagenomic Analysis of Water Kefir Grain Consortium Activated in Protein Medium and Development of Water Kefir Beverages; Suleyman Demirel University: Isparta, Türkiye, 2022. [Google Scholar]
- Laureys, D.; De Vuyst, L. Microbial Species Diversity, Community Dynamics, and Metabolite Kinetics of Water Kefir Fermentation. Appl. Environ. Microbiol. 2014, 80, 2564. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.H.; Tan, J.P.; Börner, R.A.; Zhang, S.J.; Priour, S.; Lima, A.; Ngom-Bru, C.; Cotter, P.D.; Duboux, S. A Temporal View of the Water Kefir Microbiota and Flavour Attributes. Innov. Food Sci. Emerg. Technol. 2022, 80, 103084. [Google Scholar] [CrossRef]
- Egea, M.B.; Bertolo, M.R.V.; Filho, J.G.D.O.; Lemes, A.C. A Narrative Review of the Current Knowledge on Fruit Active Aroma Using Gas Chromatography-Olfactometry (GC-O) Analysis. Molecules 2021, 26, 5181. [Google Scholar] [CrossRef]
- Garofalo, C.; Ferrocino, I.; Reale, A.; Sabbatini, R.; Milanović, V.; Alkić-Subašić, M.; Boscaino, F.; Aquilanti, L.; Pasquini, M.; Trombetta, M.F.; et al. Study of Kefir Drinks Produced by Backslopping Method Using Kefir Grains from Bosnia and Herzegovina: Microbial Dynamics and Volatilome Profile. Food Res. Int. 2020, 137, 109369. [Google Scholar] [CrossRef]
- Hernández-Granados, M.J.; Franco-Robles, E. Postbiotics in Human Health: Possible New Functional Ingredients? Food Res. Int. 2020, 137, 109660. [Google Scholar] [CrossRef]
- Tu, C.; Azi, F.; Huang, J.; Xu, X.; Xing, G.; Dong, M. Quality and Metagenomic Evaluation of a Novel Functional Beverage Produced from Soy Whey Using Water Kefir Grains. LWT 2019, 113, 108258. [Google Scholar] [CrossRef]
Code | Sample |
---|---|
2WK | Water kefir with 2% lactose (control group) |
2RD | Water kefir drink with 2% lactose + Raisins of the Dimrit grape variety |
2JD | Water kefir drink with 2% lactose + Grape juice of the Dimrit grape variety |
2RS | Water kefir drink with 2% lactose + Raisins of the Shiraz grape variety |
2JS | Water kefir drink with 2% lactose + Grape juice of the Shiraz grape variety |
5WK | Water kefir with 5% lactose (control group) |
5RD | Water kefir drink with 5% lactose + Raisins of the Dimrit grape variety |
5JD | Water kefir drink with 5% lactose + Grape juice of the Dimrit grape variety |
5RS | Water kefir drink with 5% lactose + Raisins of the Shiraz grape variety |
5JS | Water kefir drink with 5% lactose + Grape juice of the Shiraz grape variety |
Parameter | dWhey (2% Lactose) | dWhey (5% Lactose) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2WK | 2RD | 2JD | 2RS | 2JS | 5WK | 5RD | 5JD | 5RS | 5JS | |
pH | 3.71 ± 0.01 aA | 3.67 ± 0.00 bA | 3.66 ± 0.01 bA | 3.66 ± 0.01 bA | 3.56 ± 0.02 cA | 3.68 ± 0.01 aA | 3.61 ± 0.02 abA | 3.59 ± 0.02 bB | 3.62 ± 0.01 abA | 3.43 ± 0.02 cB |
Total Solid (%) | 4.88 ± 0.01 cB | 5.12 ± 0.01 bA | 5.22 ± 0.02 aA | 4.87 ± 0.01 cB | 5.18 ± 0.01 bB | 4.95 ± 0.01 cA | 5.18 ± 0.02 baA | 5.25 ± 0.01 aA | 5.18 ± 0.01 bA | 5.26 ± 0.02 aA |
Protein (%) | 0.12 ± 0.03 dB | 0.16 ± 0.03 cB | 0.20 ± 0.03 bB | 0.19 ± 0.03 bB | 0.30 ± 0.03 aB | 0.19 ± 0.03 cA | 0.30 ± 0.03 bA | 0.38 ± 0.03 aA | 0.30 ± 0.03 bA | 0.41 ± 0.04 aA |
Ash (%) | 0.43 ± 0.01 bA | 0.44 ± 0.02 aB | 0.46 ± 0.01 aB | 0.46 ± 0.01 aB | 0.48 ± 0.01 aB | 0.44 ± 0.01 bA | 0.50 ± 0.02 aA | 0.51 ± 0.01 aA | 0.51 ± 0.02 aA | 0.53 ± 0.01 aA |
TSS (°Bx) | 2.11 ± 0.01 eB | 3.12 ± 0.02 cB | 3.23 ± 0.02 bB | 2.51 ± 0.01 dB | 4.02 ± 0.02 aB | 5.12 ± 0.02 dA | 6.12 ± 0.01 aA | 6.03 ± 0.01 bA | 5.08 ± 0.02 dA | 5.80 ± 0.01 cA |
Viscosity (cP) | 10.32 ± 0.2 cB | 12.02 ± 0.3 bA | 14.40 ± 0.2 aA | 10.20 ± 0.3 cB | 12.40 ± 0.2 bB | 11.20 ± 0.4 dA | 11.60 ± 0.2 dB | 14.80 ± 0.3 aA | 12.40 ± 0.2 cA | 13.20 ± 0.1 bA |
aw | 0.920 ± 0.01 aA | 0.919 ± 0.02 aA | 0.921 ± 0.01 aA | 0.920 ± 0.01 aA | 0.921 ± 0.02 aA | 0.912 ± 0.02 aB | 0.912 ± 0.01 aB | 0.913 ± 0.01 aB | 0.912 ± 0.01 aB | 0.914 ± 0.01 aB |
TPC | 24.1 ± 0.5 dB | 26.2 ± 0.1 cB | 28.3 ± 0.3 abB | 27.1 ± 0.2 bB | 29.6 ± 0.3 aB | 27.6 ± 0.2 cA | 27.5 ± 0.3 cA | 31.2 ± 0.2 bA | 30.6 ± 0.5 bA | 33.1 ± 0.2 aA |
DPPH | 10.4 ± 0.6 eA | 13.4 ± 0.3 dA | 15.62 ± 0.5 bA | 14.2 ± 0.2 cA | 16.3 ± 0.1 aB | 11.2 ± 0.2 dA | 13.8 ± 0.3 cA | 14.9 ± 0.2 bA | 14.5 ± 0.1 bA | 17.3 ± 0.3 aA |
TEAC | 12.44 ± 1.3 dB | 16.2 ± 0.7 cB | 18.6 ± 0.5 bA | 18.3 ± 0.8 bB | 24.8 ± 1.1 aA | 13.2 ± 0.5 aA | 17.3 ± 0.7 cA | 19.3 ± 0.5 bA | 21.2 ± 1.3 bA | 23.5 ± 0.4 aB |
Mineral | dWhey (2% Lactose) | dWhey (5% Lactose) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2WK | 2RD | 2JD | 2RS | 2JS | 5WK | 5RD | 5JD | 5RS | 5JS | |
Zn | 16.47 ± 0.21 aA | 14.86 ± 0.42 aA | 8.33 ± 0.08 bB | 9.94 ± 0.03 bB | 6.22 ± 0.61 cB | 13.69 ± 0.47 aB | 10.69 ± 0.27 bB | 12.68 ± 0.61 abA | 12.50 ± 0.21 abA | 10.18 ± 0.11 bA |
P | 75.35 ± 2.13 cB | 192.21 ± 3.51 aA | 76.19 ± 0.67 cB | 161.23 ± 3.21 bA | 51.25 ± 0.49 dB | 121.35 ± 1.21 bA | 121.74 ± 6.21 bB | 93.78 ± 3.27 cA | 154.09 ± 6.15 aB | 86.48 ± 2.60 cA |
Mn | 0.05 ± 0.03 cA | 0.191 ± 0.04 bB | 0.05 ± 0.03 cA | 0.243 ± 0.02 aA | 0.02 ± 0.01 cB | 0.05 ± 0.01 dA | 1.36 ± 0.03 aA | 0.09 ± 0.02 cA | 0.06 ± 0.03 cdB | 0.25 ± 0.04 bA |
Fe | 6.80 ± 0.06 dA | 40.02 ± 0.16 aB | 11.13 ± 0.05 cB | 21.37 ± 0.63 bA | 13.71 ± 0.27 cA | 6.38 ± 0.19 cA | 82.35 ± 0.41 aA | 19.78 ± 1.13 bA | 18.80 ± 2.06 bA | 15.60 ± 3.31 bA |
Mg | 35.46 ± 3.56 cB | 105.64 ± 3.41 aA | 40.11 ± 2.62 cA | 86.91 ± 1.33 bA | 27.19 ± 0.68 dA | 66.15 ± 2.33 aA | 15.34 ± 1.63 cB | 7.78 ± 0.41 dB | 20.35 ± 0.52 bB | 9.33 ± 0.73 dB |
Ca | 158.9 ± 4.27 bB | 108.33 ± 3.12 dA | 168.52 ± 2.45 bA | 280.83 ± 6.54 aA | 121.10 ± 2.86 cB | 201.35 ± 4.91 aA | 38.50 ± 1.45 dB | 47.86 ± 2.78 dB | 112.21 ± 3.14 cB | 170.95 ± 2.14 bA |
Cu | 26.64 ± 0.32 aA | 18.19 ± 0.57 bA | 18.61 ± 0.62 bA | 23.62 ± 0.36 aA | 21.86 ± 2.49 aA | 14.15 ± 0.47 aB | 6.20 ± 0.08 dB | 10.48 ± 0.38 cB | 11.85 ± 0.73 bcB | 12.14 ± 0.17 abB |
Na | 92.50 ± 1.45 cB | 309.02 ± 3.62 aA | 96.29 ± 0.95 cB | 257.11 ± 3.41 bA | 55.40 ± 0.62 dA | 190.90 ± 2.35 aA | 125.25 ± 6.63 cB | 175.82 ± 3.13 bA | 20.50 ± 0.65 eB | 61.35 ± 0.39 dA |
K | 207.85 ± 6.28 cA | 450.34 ± 5.31 aA | 166.63 ± 1.85 dB | 333.87 ± 7.12 bA | 107.40 ± 6.24 eB | 241.25 ± 5.43 bA | 260.85 ± 7.84 bB | 234.66 ± 4.29 bA | 330.26 ± 9.45 aA | 351.70 ± 7.03 aA |
Parameter | dWhey (2% Lactose) | dWhey (5% Lactose) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2WK | 2RD | 2JD | 2RS | 2JS | 5WK | 5RD | 5JD | 5RS | 5JS | |
L* | 21.99 ± 1.23 eA | 22.27 ± 0.82 cA | 22.69 ± 1.21 aA | 22.50 ± 0.16 bA | 22.17 ± 0.45 dA | 21.87 ± 0.52 bA | 21.68 ± 0.42 cB | 22.67 ± 0.31 aA | 22.06 ± 0.28 bB | 21.62 ± 0.19 cB |
a* | 0.15 ± 0.03 bA | −0.11 ± 0.02 eA | −0.07 ± 0.01 dA | −0.03 ± 0.03 cA | 0.53 ± 0.02 aA | −0.08 ± 0.01 bB | −0.32 ± 0.02 dB | −0.53 ± 0.06 eB | −0.23 ± 0.05 cB | 0.04 ± 0.01 aB |
b* | 0.08 ± 0.04 cA | 0.64 ± 0.02 bA | 1.31 ± 0.03 aA | 0.10 ± 0.05 cA | 0.59 ± 0.08 bA | 0.13 ± 0.03 dA | 0.53 ± 0.07 aB | 0.35 ± 0.06 cB | 0.03 ± 0.01 eB | 0.48 ± 0.09 bB |
dWhey (2% Lactose) | dWhey (5% Lactose) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RT | Volatile Compounds | 2WK | 2RD | 2JD | 2RS | 2JS | 5WK | 5RD | 5JD | 5RS | 5JS |
3.860 | Carbon dioxide | 6.39 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
4.081 | Ethyl Hydrogene Oxalate | n.d. | n.d. | n.d. | n.d. | 16.92 | n.d. | n.d. | n.d. | n.d. | n.d. |
4.434 | n-Hyx Methylamine | n.d. | n.d. | n.d. | n.d. | 2.77 | n.d. | n.d. | n.d. | n.d. | n.d. |
5.836 | Acetaldehyde | n.d. | n.d. | 2.39 | n.d. | 4.64 | 50.35 | n.d. | 3.76 | n.d. | n.d. |
5.997 | Ethyl Acetate | n.d. | 21.74 | n.d. | n.d. | 69.2 | 1581.5 | n.d. | 35.6 | n.d. | n.d. |
6.732 | Ethanol | 147.23 | 298.11 | 77.06 | 142.5 | 6519.6 | 127.3 | 3.02 | 45.6 | 1.45 | 41.34 |
7.322 | Formic Acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 12.2 | n.d. | 39.4 | n.d. |
7.828 | Diisoamyl Oxalate | n.d. | n.d. | n.d. | 0.09 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
8.119 | Oxalic Acid | n.d. | n.d. | n.d. | 7.04 | n.d. | n.d. | 74.6 | 178.6 | 288.2 | 115.19 |
8.349 | Isoprophyl 5-Methyl Hexen-2-On | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 5.82 | n.d. | n.d. |
9.045 | Butanoic Acid 2-Methyl | n.d. | n.d. | 169.8 | n.d. | 103.3 | 9140.4 | n.d. | n.d. | n.d. | n.d. |
9.373 | Ethyl Methyl Acethylchloride | n.d. | 0.77 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
9.536 | Disulfide Dimethyl | n.d. | 3.33 | n.d. | 1.03 | n.d. | 59.9 | n.d. | n.d. | n.d. | n.d. |
9.546 | 2-Furan Metanol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
10.08 | 1-Propanol 2-Methyl | n.d. | 15.9 | 3.95 | 2.52 | n.d. | 713.9 | n.d. | n.d. | n.d. | n.d. |
10.26 | 4-Heptanone 2-Methyl | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 2.28 | n.d. | 1.7 | n.d. |
10.61 | 1-Butanol- 3 Methyl | n.d. | n.d. | n.d. | 5.45 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
10.64 | 1-Butanol 3-Methil Acetate | n.d. | n.d. | 6.61 | n.d. | 9.36 | n.d. | 0.33 | 3.69 | n.d. | n.d. |
10.66 | 1-Butanol 2-Methyl | 57.03 | 6.76 | n.d. | n.d. | 9.49 | 363.3 | n.d. | n.d. | 0.32 | 7.14 |
10.67 | Butanoic Acid 2-Methyl | n.d. | 513.7 | n.d. | 3.86 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
10.69 | Toluen | n.d. | 50.75 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
12.43 | 2-Heptanone | n.d. | 2.69 | n.d. | 2.78 | n.d. | 138.1 | n.d. | n.d. | n.d. | n.d. |
13.12 | 1-Heptanol | n.d. | 40.11 | 4.49 | 93.86 | 353.5 | n.d. | n.d. | n.d. | n.d. | n.d. |
13.96 | 3-Octanone | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.72 |
13.98 | Hexanoic Acid | n.d. | 1302.6 | 950 | 123.4 | 8787.1 | 93,112.1 | 33.75 | 1.21 | n.d. | n.d. |
14.96 | 4-Octanone | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.6 | 1.92 | n.d. |
15.89 | 2-Butanone | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.24 | n.d. | n.d. |
15.90 | 2-Prophenol 1-Metoxy | n.d. | 6.18 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
16.40 | 2-Propanoic Acid | n.d. | 715.8 | 14.63 | 62.8 | 2.14 | n.d. | 1237.5 | n.d. | n.d. | 32.07 |
16.45 | 2-Propionic Acid | 256.4 | n.d. | n.d. | 11.78 | n.d. | n.d. | n.d. | 46.75 | n.d. | n.d. |
16.45 | Pentanoic Acid | 11,040 | 12.66 | 630.1 | 2.1 | 783.4 | 12,765.5 | 25.43 | n.d. | n.d. | n.d. |
16.90 | Methoxyacetic Acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 10.77 |
17.63 | Heptanoic Acid | n.d. | 843.7 | n.d. | 4.34 | 1239.1 | n.d. | n.d. | 11.64 | n.d. | n.d. |
17.77 | 2-Pentene | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 1.38 | n.d. | 0.34 | n.d. |
21.96 | Octanoic Acid | 1019.7 | n.d. | 7017.2 | 216.7 | n.d. | n.d. | 125.7 | n.d. | n.d. | 20.21 |
22.91 | Acetic Acid | n.d. | 623.9 | 231.6 | 63.4 | n.d. | 8402.9 | 84.37 | n.d. | 131.9 | 137.15 |
23.38 | 7-Octene-2-Ol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.29 |
24.39 | 1-Hexanol 2- Ethyl | n.d. | 52.62 | n.d. | 4.76 | 17.78 | n.d. | 2.05 | 0.97 | 1.54 | 3.26 |
26.23 | Benzaldehyde | n.d. | 23.45 | 1.58 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
26.78 | Nonanoic acid | 270.03 | 1725.2 | 136 | n.d. | n.d. | n.d. | 26.65 | n.d. | n.d. | n.d. |
28.28 | 2-Heptanol | n.d. | n.d. | n.d. | n.d. | n.d. | 60.9 | n.d. | n.d. | n.d. | n.d. |
29.84 | 1-Octanal | 17.44 | n.d. | n.d. | n.d. | 4.23 | n.d. | n.d. | n.d. | n.d. | 0.2 |
30.67 | 1-Hexene | n.d. | n.d. | n.d. | 2.11 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
31.60 | 1-Pentene | n.d. | n.d. | n.d. | n.d. | 1.08 | 5.02 | n.d. | 0.72 | 0.34 | 0.26 |
31.42 | 6-Methy l-Octanal | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.98 | n.d. | 0.93 | n.d. |
33.57 | 1-Nonanol | n.d. | n.d. | n.d. | 3.36 | n.d. | n.d. | n.d. | 0.33 | 0.45 | 0.15 |
33.76 | Butanoic Acid | n.d. | 201.6 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
35.17 | Ethyl 9-Decenoate | n.d. | n.d. | 1.04 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
37.00 | 2-Nonane | n.d. | n.d. | n.d. | 0.38 | 0.78 | 21.6 | n.d. | n.d. | 0.42 | n.d. |
38.47 | Benzoic Acid | n.d. | 673.4 | 51.58 | 1.74 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
45.85 | Butylated Hydroxytoluen | 7.99 | n.d. | 7.05 | 3.73 | n.d. | n.d. | 1.06 | 0.35 | 1.07 | 0.37 |
46.39 | 1-4-Butanediol | n.d. | 2.09 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
73.58 | Dibuthylphytalate | n.d. | n.d. | n.d. | 0.27 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
87.39 | n-Hexadecanoic Acid | n.d. | n.d. | n.d. | n.d. | 2.46 | n.d. | n.d. | n.d. | n.d. | n.d. |
88.64 | 2-Hexanal | n.d. | n.d. | n.d. | n.d. | 0.87 | n.d. | n.d. | n.d. | n.d. | n.d. |
88.76 | Propene | n.d. | n.d. | n.d. | n.d. | n.d. | 0.45 | n.d. | n.d. | 0.99 | 0.49 |
93.23 | Squalene | n.d. | n.d. | n.d. | n.d. | n.d. | 14.18 | n.d. | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şafak, H.; Gün, İ.; Tudor Kalit, M.; Kalit, S. Physico-Chemical, Microbiological and Sensory Properties of Water Kefir Drinks Produced from Demineralized Whey and Dimrit and Shiraz Grape Varieties. Foods 2023, 12, 1851. https://doi.org/10.3390/foods12091851
Şafak H, Gün İ, Tudor Kalit M, Kalit S. Physico-Chemical, Microbiological and Sensory Properties of Water Kefir Drinks Produced from Demineralized Whey and Dimrit and Shiraz Grape Varieties. Foods. 2023; 12(9):1851. https://doi.org/10.3390/foods12091851
Chicago/Turabian StyleŞafak, Havva, İlhan Gün, Milna Tudor Kalit, and Samir Kalit. 2023. "Physico-Chemical, Microbiological and Sensory Properties of Water Kefir Drinks Produced from Demineralized Whey and Dimrit and Shiraz Grape Varieties" Foods 12, no. 9: 1851. https://doi.org/10.3390/foods12091851
APA StyleŞafak, H., Gün, İ., Tudor Kalit, M., & Kalit, S. (2023). Physico-Chemical, Microbiological and Sensory Properties of Water Kefir Drinks Produced from Demineralized Whey and Dimrit and Shiraz Grape Varieties. Foods, 12(9), 1851. https://doi.org/10.3390/foods12091851