Cation-Exchange Resin Applied to Paralytic Shellfish Toxins Depuration from Bivalves Exposed to Gymnodinium catenatum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth of Toxic Microalgae
2.2. Resins Preparation and Their Characterization
2.3. Toxin Removal Studies Using Culture of G. catenatum
2.4. Toxin Removal Studies in Live Bivalves
2.4.1. Feeding with Toxic Microalgae
2.4.2. PST Depuration
2.5. Clean-Up, Fractioning, and Pre-Oxidation of Samples
2.6. HPLC-FLD Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Resins
3.1.1. X-ray Diffraction (XRD)
3.1.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.1.3. Optical Microscopy
3.2. PST Removal from G. catenatum Cultures
3.3. PST Removal from Bivalves
3.3.1. Time 0 and Natural Depuration
3.3.2. Depuration with H-Form and Na+-Form Resins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Cyanobacterial Toxins: Saxitoxins; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Hall, S.; Strichartz, G.; Moczydlowski, E.; Ravindran, A.; Reichardt, P.B. The Saxitoxins—Sources, Chemistry, and Pharmacology. In Marine Toxins—Origin, Structure, and Molecular Pharmacology; Hall, S., Strichartz, G., Eds.; American Chemical Society: New York, NY, USA, 1990; Volume 418, pp. 29–65. ISBN 0097-6156. [Google Scholar]
- Faber, S.C. Saxitoxin and the Induction of Paralytic Shellfish Poisoning. J. Young Investig. 2012, 23, 1–7. [Google Scholar]
- Lewis, A.M.; Coates, L.N.; Turner, A.D.; Percy, L.; Lewis, J. A Review of the Global Distribution of Alexandrium Minutum (Dinophyceae) and Comments on Ecology and Associated Paralytic Shellfish Toxin Profiles, with a Focus on Northern Europe. J. Phycol. 2018, 54, 581–598. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.R. Impact and Effects of Paralytic Shellfish Poisoning Toxins Derived from Harmful Algal Blooms to Marine Fish. Fish Fish. 2016, 17, 226–248. [Google Scholar] [CrossRef]
- Fernandes-Salvador, J.A.; Davidson, K.; Sourisseau, M.; Revilla, M.; Schmidt, W.; Clarke, D.; Miller, P.I.; Arce, P.; Fernández, R.; Maman, L.; et al. Current Status of Forecasting Toxic Harmful Algae for the North-East Atlantic Shellfish Aquaculture Industry. Front. Mar. Sci. 2021, 8, 656. [Google Scholar] [CrossRef]
- Mardones, J.I.; Holland, D.S.; Anderson, L.; le Bihan, V.; Gianella, F.; Clément, A.; Davidson, K.; Sakamoto, S.; Yoshida, T.; Trainer, V.L. Estimating and Mitigating the Economic Costs of Harmful Algal Blooms on Commercial and Recreational Shellfish Harvesters. PICES Sci. Rep. 2020, 59, 66–83. [Google Scholar]
- Leal, J.F.; Cristiano, M.L.S. Marine Paralytic Shellfish Toxins: Chemical Properties, Mode of Action, Newer Analogues, and Structure–Toxicity Relationship. Nat. Prod. Rep. 2022, 39, 33–57. [Google Scholar] [CrossRef]
- Martinez-Albores, A.; Lopez-Santamarina, A.; Rodriguez, J.A.; Ibarra, I.S.; del Carmen Mondragón, A.; Miranda, J.M.; Lamas, A.; Cepeda, A. Complementary Methods to Improve the Depuration of Bivalves: A Review. Foods 2020, 9, 129. [Google Scholar] [CrossRef]
- Melegari, S.P.; Matias, W.G. Preliminary Assessment of the Performance of Oyster Shells and Chitin Materials as Adsorbents in the Removal of Saxitoxin in Aqueous Solutions. Chem. Cent. J. 2012, 6, 86. [Google Scholar] [CrossRef]
- Li, J.; Song, X.; Zhang, Y.; Xu, X.; Yu, Z. Effect of Modified Clay on the Transition of Paralytic Shellfish Toxins within the Bay Scallop Argopecten Irradians and Sediments in Laboratory Trials. Aquaculture 2019, 505, 112–117. [Google Scholar] [CrossRef]
- Lu, G.; Song, X.; Yu, Z.; Cao, X.; Yuan, Y. Environmental Effects of Modified Clay Flocculation on Alexandrium Tamarense and Paralytic Shellfish Poisoning Toxins (PSTs). Chemosphere 2015, 127, 188–194. [Google Scholar] [CrossRef]
- Olano, D.E.B.; Salvador-Reyes, L.A.; Montaño, M.N.E.; Azanza, R.v. Sorption of Paralytic Shellfish Toxins (PSTs) in Algal Polysaccharide Gels. Algal Res. 2020, 45, 101655. [Google Scholar] [CrossRef]
- Qiu, J.B.; Fan, H.; Liu, T.; Liang, X.; Meng, F.P.; Quilliam, M.A.; Li, A.F. Application of Activated Carbon to Accelerate Detoxification of Paralytic Shellfish Toxins from Mussels Mytilus Galloprovincialis and Scallops Chlamys Farreri. Ecotoxicol. Environ. Saf. 2018, 148, 402–409. [Google Scholar] [CrossRef]
- Shi, H.; Ding, J.; Timmons, T.; Adams, C. PH Effects on the Adsorption of Saxitoxin by Powdered Activated Carbon. Harmful Algae 2012, 19, 61–67. [Google Scholar] [CrossRef]
- Xie, W.; Liu, X.; Yang, X.; Zhang, C.; Bian, Z. Accumulation and Depuration of Paralytic Shellfish Poisoning Toxins in the Oyster Ostrea Rivularis Gould—Chitosan Facilitates the Toxin Depuration. Food Control 2013, 30, 446–452. [Google Scholar] [CrossRef]
- Tobke, J.; Giarratano, E.; Ortiz, A.; Garrido, C.; Serra, M.; Gil, M.N.; Navarro, J.M. Chitosan Performance during Paralytic Shellfish Toxins (PST) Depuration of Mytilus Chilensis Exposed to Alexandrium Catenella. Toxicon 2021, 195, 48–57. [Google Scholar] [CrossRef]
- Yang, X.; Hu, X.; Dong, Z.; Li, M.; Zheng, Z.; Xie, W. Effect of Carboxymethyl Chitosan on the Detoxification and Biotransformation of Paralytic Shellfish Toxins in Oyster Ostrea Rivularis. Toxicon 2021, 196, 1–7. [Google Scholar] [CrossRef]
- Hassan, M.M.; Carr, C.M. A Critical Review on Recent Advancements of the Removal of Reactive Dyes from Dyehouse Effluent by Ion-Exchange Adsorbents. Chemosphere 2018, 209, 201–219. [Google Scholar] [CrossRef]
- Choi, J.W.; Bediako, J.K.; Zhao, Y.; Lin, S.; Sarkar, A.K.; Han, M.; Song, M.H.; Cho, C.W.; Yun, Y.S. Adsorptive Removal of Cationic Tricyclic Antidepressants Using Cation-Exchange Resin. Environ. Sci. Pollut. Res. 2020, 27, 24760–24771. [Google Scholar] [CrossRef]
- Lei, H.; Bao, Z.; Xing, H.; Yang, Y.; Ren, Q.; Zhao, M.; Huang, H. Adsorption Behavior of Glucose, Xylose, and Arabinose on Five Different Cation Exchange Resins. J. Chem. Eng. Data 2010, 55, 735–738. [Google Scholar] [CrossRef]
- Shimizu, Y. Chemistry and Mechanism of Action. In Seafood and Freshwater Toxins: Pharmacology, Physiology, and Detection; Botana, L.M., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2000; pp. 151–172. ISBN 0-8247-8956-3. [Google Scholar]
- Leal, J.F.; Bombo, G.; Pereira, H.; Vicente, B.; Amorim, A.; Cristiano, M.L.S. Toxin Profile of Two Gymnodinium Catenatum Strains from Iberian Coastal Waters. Toxins 2022, 14, 762. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Hargraves, P.E. Stichochrysis Immobilis Is a Diatom, Not a Chrysophyte. Phycologia 1993, 32, 234–236. [Google Scholar] [CrossRef]
- UNESCO. Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis; Karlson, B., Cusack, C., Bresnan, E., Eds.; Intergovernmental Oceanographic Commission of ©UNESCO: Paris, France, 2010. [Google Scholar]
- Guillard, R.R.L. Culture of Phytoplankton for Feeding Marine Invertebrates. In Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport; Springer US: New York, NY, USA, 1975; pp. 29–60. [Google Scholar] [CrossRef]
- Merck Amberchrom 50WX8 Hydrogen Form, 100-200mesh 69011-20-7. Available online: https://www.sigmaaldrich.com/PT/en/product/sial/217506 (accessed on 10 October 2022).
- Costa, P.R.; Braga, A.C.; Turner, A.D. Accumulation and Elimination Dynamics of the Hydroxybenzoate Saxitoxin Analogues in Mussels Mytilus Galloprovincialis Exposed to the Toxic Marine Dinoflagellate Gymnodinium Catenatum. Toxins 2018, 10, 428. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.A.; Batista, I. Produção, Salubridade e Comercialização de Moluscos Bivalves Em Portugal (Production, Health and Marketing of Bivalve Molluscs in Portugal); IPIMAR: Lisboa, Portugal, 2008; Volume 20. [Google Scholar]
- AOAC. Paralytic Shellfish Poisoning Toxins in Shellfish. Prechromatographic and Liquid Chromatography with Fluorescence Detection. First Action, Official Method 2005.06. In AOAC Official Methods of Analysis; Horwitz, W., Latimer, G.W., Eds.; AOAC INTERNATIONAL: Gaithersburg, MD, USA, 2005; p. 83. [Google Scholar]
- Leão, J.M.; Gago-Martínez, A. EURLMB SOP for the Analysis of Paralytic Shellfish Toxins (PST) by Precolumn HPLC-FLD According to OMA AOAC 2005.06. 2020. Available online: https://www.aesan.gob.es/en/CRLMB/web/public_documents/seccion/crlmb_standard_operating_procedures.htm (accessed on 17 January 2023).
- Rodríguez, P.; Alfonso, A.; Botana, A.M.; Vieytes, M.R.; Botana, L.M. Comparative Analysis of Pre- and Post-Column Oxidation Methods for Detection of Paralytic Shellfish Toxins. Toxicon 2010, 56, 448–457. [Google Scholar] [CrossRef] [PubMed]
- ICH. Validation of Analytical Procedures: Text and Methodology Q2(R1); IFPMA: Geneva, Switzerland, 2005. [Google Scholar]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 5th ed.; Pearson Education Limited: Essex, UK, 2005. [Google Scholar]
- Nguyen, T.T.; Tran, V.A.K.; Tran, L.B.; Phan, P.T.; Nguyen, M.T.; Bach, L.G.; Padungthon, S.; Ta, C.K.; Nguyen, N.H. Synthesis of Cation Exchange Resin-Supported Iron and Magnesium Oxides/Hydroxides Composite for Nitrate Removal in Water. Chin. J. Chem. Eng. 2021, 32, 378–384. [Google Scholar] [CrossRef]
- Fathy, M.; Abdel Moghny, T.; Awad Allah, A.E.; Alblehy, A.E. Cation Exchange Resin Nanocomposites Based on Multi-Walled Carbon Nanotubes. Appl. Nanosci. 2014, 4, 103–112. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zheng, Y.H.; Xue, Y.; de Yan, Y.; Ma, F.Q.; Zhang, M.L.; Bai, H.Y.; Kou, Z.Q.; Liu, J.P. Study on the Destruction Process of Cationic Exchange Resins Treated by Li2CO3-Na2CO3-K2CO3 Molten Salt. J. Environ. Chem. Eng. 2021, 9, 105948. [Google Scholar] [CrossRef]
- González-Jartín, J.M.; de Castro Alves, L.; Alfonso, A.; Piñeiro, Y.; Vilar, S.Y.; Rodríguez, I.; Gomez, M.G.; Osorio, Z.V.; Sainz, M.J.; Vieytes, M.R.; et al. Magnetic Nanostructures for Marine and Freshwater Toxins Removal. Chemosphere 2020, 256, 127019. [Google Scholar] [CrossRef]
- Quilliam, M.A.; Li, A.; Lewis, N.; McCarron, P.; Thomas, K.; Walter, J.A. Biotransformation and Chemical Degradation of Paralytic Shellfish Toxins in Mussels. In Marine and Fresh-Water Harmful Algae. Proceedings of the 17th International Conference on Harmful Algae, Florianópolis, Brazil, 9–14 October 2016; International Society for the Study of Harmful Algae in Cooperation with Intergovernmental Oceanographic Commission of UNESCO: Copenhagen, Denmark, 2017; pp. 118–121. [Google Scholar]
- Asakawa, M.; Miyazawa, K.; Takayama, H.; Noguchi, T. Dinoflagellate Alexandrium Tamarense as the Source of Paralytic Shellfish Poison (PSP) Contained in Bivalves from Hiroshima Bay, Hiroshima Prefecture, Japan. Toxicon 1995, 33, 691–697. [Google Scholar] [CrossRef]
- Choi, M.C.; Hsieh, D.P.H.; Lam, P.K.S.; Wang, W.X. Field Depuration and Biotransformation of Paralytic Shellfish Toxins in Scallop Chlamys Nobilis and Green-Lipped Mussel Perna Viridis. Mar. Biol. 2003, 143, 927–934. [Google Scholar] [CrossRef]
- Artigas, M.L.; Vale, P.J.V.; Gomes, S.S.; Botelho, M.J.; Rodrigues, S.M.; Amorim, A. Profiles of Paralytic Shellfish Poisoning Toxins in Shellfish from Portugal Explained by Carbamoylase Activity. J. Chromatogr. A 2007, 1160, 99–105. [Google Scholar] [CrossRef]
- Vale, P. Metabolites of Saxitoxin Analogues in Bivalves Contaminated by Gymnodinium Catenatum. Toxicon 2010, 55, 162–165. [Google Scholar] [CrossRef]
- Qiu, J.; Meng, F.; Ding, L.; Che, Y.; McCarron, P.; Beach, D.G.; Li, A. Dynamics of Paralytic Shellfish Toxins and Their Metabolites during Timecourse Exposure of Scallops Chlamys Farreri and Mussels Mytilus Galloprovincialis to Alexandrium Pacificum. Aquat. Toxicol. 2018, 200, 233–240. [Google Scholar] [CrossRef]
- Ding, L.; Qiu, J.; Li, A. Proposed Biotransformation Pathways for New Metabolites of Paralytic Shellfish Toxins Based on Field and Experimental Mussel Samples. J. Agric. Food Chem. 2017, 65, 5494–5502. [Google Scholar] [CrossRef]
- Botelho, M.J.; Marques, F.; Freitas, R.; Pires, A.; Pereira, E.; Vale, C. Paralytic Shellfish Toxin Profiles in Mussel, Cockle and Razor Shell under Post-Bloom Natural Conditions: Evidence of Higher Biotransformation in Razor Shells and Cockles. Mar. Environ. Res. 2020, 154, 104839. [Google Scholar] [CrossRef]
- Botelho, M.J.; Vale, C.; Ferreira, J.G. Profiles of Paralytic Shellfish Toxins in Bivalves of Low and Elevated Toxicities Following Exposure to Gymnodinium Catenatum Blooms in Portuguese Estuarine and Coastal Waters. Chemosphere 2015, 138, 1028–1036. [Google Scholar] [CrossRef]
- Bricelj, V.M.; Shumway, S.E. Paralytic Shellfish Toxins in Bivalve Molluscs: Occurrence, Transfer Kinetics, and Biotransformation. Rev. Fish. Sci. 1998, 6, 315–383. [Google Scholar] [CrossRef]
- EFSA Marine Biotoxins in Shellfish—Saxitoxin Group. EFSA J. 2009, 1019, 1–76.
- Costa, P.R.; Robertson, A.; Quilliam, M.A. Toxin Profile of Gymnodinium Catenatum (Dinophyceae) from the Portuguese Coast, as Determined by Liquid Chromatography Tandem Mass Spectrometry. Mar. Drugs 2015, 13, 2046–2062. [Google Scholar] [CrossRef]
- Vale, P. Fate of Benzoate Paralytic Shellfish Poisoning Toxins from Gymnodinium Catenatum in Shellfish and Fish Detected by Pre-Column Oxidation and Liquid Chromatography with Fluorescence Detection. J. Chromatogr. A 2008, 1190, 191–197. [Google Scholar] [CrossRef]
- Tan, K.S.; Ransangan, J. Factors Influencing the Toxicity, Detoxification and Biotransformation of Paralytic Shellfish Toxins. In Reviews of Environmental Contamination and Toxicology Volume 235; Whitacre, D.M., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–25. ISBN 978-3-319-10861-2. [Google Scholar]
- BIO-RAD AG 50W and AG MP-50 Cation Exchange Resins. Available online: https://www.bio-rad.com/sites/default/files/webroot/web/pdf/lsr/literature/LIT203.pdf (accessed on 12 November 2022).
- daSilva, M.B.; Vianna, M.T.G.; Marques, M. Adsorption Processes Applied for the Removal of Saxitoxins in Water: A Literature Review (2010–2022). Water Air Soil Pollut. 2022, 233, 529. [Google Scholar] [CrossRef]
- Narita, D.; Rehdanz, K.; Tol, R.S.J. Economic Costs of Ocean Acidification: A Look into the Impacts on Global Shellfish Production. Clim. Change 2012, 113, 1049–1063. [Google Scholar] [CrossRef]
- Gazeau, F.; Parker, L.M.; Comeau, S.; Gattuso, J.-P.; O’Connor, W.A.; Martin, S.; Pörtner, H.-O.; Ross, P.M. Impacts of Ocean Acidification on Marine Shelled Molluscs. Mar. Biol. 2013, 160, 2207–2245. [Google Scholar] [CrossRef] [Green Version]
Toxin | T0 (0 h) | T1 (1 h) | T2 (3 h) | T3 (19 h) | T4 (26 h) | T5 (48 h) | C (48 h) | Removal (48 h, %) |
---|---|---|---|---|---|---|---|---|
C1,2 | 0.24 ± 0.01 | 0.25 ± 0.01 | 0.24 ± 0.00 | 0.25 ± 0.01 | 0.26 ± 0.01 | 0.25 ± 0.00 | 0.25 ± 0.01 | --- |
DcSTX * | 0.33 ± 0.00 | 0.14 ± 0.15 | 0.12 ± 0.13 | 0.06 ± 0.11 | ND | ND | 0.33 ± 0.01 | 100 ± 0 |
GTX5 | 0.09 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.01 | 0.09 ± 0.00 | 0.06 ± 0.02 | 0.05 ± 0.02 | 0.09 ± 0.00 | 55 ± 5 |
GTX6 | 0.57 ± 0.02 | 0.58 ± 0.01 | 0.56 ± 0.01 | 0.58 ± 0.02 | 0.57 ± 0.01 | 0.56 ± 0.02 | 0.57 ± 0.03 | --- |
2nd Set of Experiments | 3rd Set of Experiments | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Without Resin | With H-Form Resin | Without Resin | With Na+-Form Resin | |||||||||
0 h | 24 h | 48 h | 70 h | 24 h | 48 h | 70 h | 0 h | 24 h | 48 h | 24 h | 48 h | |
C1&2 | 23 ± 10 | 17 ± 7 | 13 ± 3 | 14 ± 4 | 10 ± 2 | 14 ± 5 | 21 ± 4 | 28 ± 1 | 24 ± 2 | 18 ± 1 | 21 ± 2 | 19 ± 0 |
dcSTX | 841 ± 113 | 598 ± 73 | 567 ± 71 | 563 ± 73 | 505 ± 36 | 540 ± 67 | 627 ± 106 | 853 ± 10 | 782 ± 32 | 703 ± 23 | 711 ± 19 | 686 ± 9 |
GTX5 | 18 ± 4 | 15 ± 4 | 13 ± 2 | 14 ± 4 | 11 ± 1 | 13 ± 3 | 19 ± 3 | 18 ± 1 | 16 ± 1 | 14 ± 1 | 15 ± 1 | 16 ± 0 |
GTX6 | 87 ± 1 | 83 ± 1 | 79 ± 1 | 82 ± 2 | 81 ± 1 | 78 ± 1 | 84 ± 2 | 82 ± 5 | 78 ± 0 | 80 ± 0 | 82 ± 5 | 79 ± 0 |
TOTAL | 973 ± 138 | 728 ± 96 | 672 ± 78 | 673 ± 82 | 607 ± 40 | 645 ± 75 | 750 ± 114 | 981 ± 15 | 900 ± 34 | 815 ± 24 | 828 ± 17 | 799 ± 11 |
Reduct. (%) | --- | 28 ± 9 | 33 ± 11 | 33 ± 11 | 34 ± 7 | 31 ± 6 | 19 ± 10 | --- | 8 ± 4 | 16 ± 3 | 16 ± 4 | 19 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leal, J.F.; Bombo, G.; Amado, P.S.M.; Pereira, H.; Cristiano, M.L.S. Cation-Exchange Resin Applied to Paralytic Shellfish Toxins Depuration from Bivalves Exposed to Gymnodinium catenatum. Foods 2023, 12, 768. https://doi.org/10.3390/foods12040768
Leal JF, Bombo G, Amado PSM, Pereira H, Cristiano MLS. Cation-Exchange Resin Applied to Paralytic Shellfish Toxins Depuration from Bivalves Exposed to Gymnodinium catenatum. Foods. 2023; 12(4):768. https://doi.org/10.3390/foods12040768
Chicago/Turabian StyleLeal, Joana F., Gabriel Bombo, Patrícia S. M. Amado, Hugo Pereira, and Maria L. S. Cristiano. 2023. "Cation-Exchange Resin Applied to Paralytic Shellfish Toxins Depuration from Bivalves Exposed to Gymnodinium catenatum" Foods 12, no. 4: 768. https://doi.org/10.3390/foods12040768