Effects of Halogen Lamp and Traditional Sun Drying on the Volatile Compounds, Color Parameters, and Gel Texture of Gongliao Gelidium Seaweed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dried Red Seaweed Preparation
2.3. Moisture and Agar Content
2.4. Seaweed Jelly Texture Analysis
2.5. Color Analysis
2.6. Rheological Measurement
2.7. Volatiles of Dried Seaweed
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effects of Halogen Lamp Drying, Sun Drying, and Washing Cycles on the Agar Yield and Properties
3.2. Effects of Drying Methods and Washing Cycles on Rheological Parameters of Agar Solutions Extracted from Gelidium Seaweeds
3.3. Color Measurements of Dried Red Seaweeds and Appearance of Gelidium Jellies with Various Drying Methods and Washing Cycles
3.4. Volatile Compounds of Dried Gelidium Seaweeds
OAV ** | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Compound | OT * (ng/mL) | F | S3 | S7 | L7 | L9 | L12 | Odor | Odor Reference | OT Reference | |
1 | hexanal | 4.1 | 69 | 43 | 34 | 57 | 38 | 35 | green, grass | a | [26] |
2 | 2-hexenal | 17 | 4 | - | 2 | 2 | 2 | 1 | green, leaf | a | [26] |
3 | 2-heptanone | 1 | - | - | - | 12 | 5 | - | Soap | a | [26] |
4 | heptanal | 3 | 167 | 31 | 7 | 12 | 7 | 5 | fat, citrus, rancid | a | [26] |
5 | 2-heptenal | 4.2 | - | 80 | 42 | 67 | 59 | - | fat, grass | a | [26] |
6 | 1-octen-3-one | 0.05 | - | - | - | 885 | 348 | 147 | mushroom, butter | a | [26] |
7 | 1-octen-3-ol | 14 | 7 | - | - | 2 | 1 | - | mushroom | a | [26] |
8 | octanal | 1.4 | 168 | 210 | 205 | 121 | 99 | 100 | fat, soap, green | a | [26] |
9 | 2-octenal | 3 | - | 102 | 21 | 79 | 60 | 37 | green, nut, fat | a | [26] |
10 | 1-octanol | 42 | - | 5 | 1 | 3 | 1 | - | pulpy, fruity, sweet | [27] | [26] |
11 | 3,5-octadien-2-one | 0.15 | - | - | - | 299 | 60 | - | geranium, metal | a | [26] |
12 | 3,5-octadien-2-one | 150 | - | 1 | - | - | - | - | earth, must | a | [26] |
13 | nonanal | 1 | - | 332 | 253 | 293 | 287 | 305 | fat, citrus, green | a | [26] |
14 | 2,6-nonadienal | 0.09 | 481 | 316 | - | 159 | 53 | - | cucumber, wax, green | a | [26] |
15 | 2-nonenal | 0.1 | 836 | 983 | 1370 | 778 | 1612 | 2147 | cucumber, fat, green | a | [26] |
16 | decanal | 0.1 | - | 362 | 464 | 209 | 379 | 595 | soap, tallow | a | [26] |
17 | 2,4-nonadienal | 0.09 | - | 2057 | 1206 | 4158 | 3364 | 2939 | fat, wax, green | a | [26] |
18 | 2-decenal | 1 | 29 | 206 | 646 | 112 | 475 | 527 | tallow | a | [26] |
19 | β-ionone | 0.03 | 12,632 | 747 | - | 482 | - | - | violet, flower | a | [26] |
20 | 2,4-decadienal | 0.07 | - | 2558 | 2154 | 4067 | 2634 | 1806 | fried, wax, fat | a | [28] |
21 | undecanal | 0.4 | - | - | 140 | 17 | 53 | 119 | oil, pungent, sweet | a | [26] |
22 | 2-undecenal | 3.5 | - | 18 | 30 | - | 6 | 27 | Sweet | a | [29] |
23 | dodecanal | 0.5 | - | 50 | 124 | 47 | 73 | 87 | fatty, green | [30] | [26] |
24 | α-ionone | 0.6 | 424 | 106 | - | 60 | 20 | 20 | wood, violet | a | [26] |
25 | tetradecanal | 14 | - | 2 | 1 | - | - | - | Aldehyde | [31] | [28] |
3.5. Sensory Evaluation
3.6. Principal Component Analysis of Volatiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fink, P. Ecological functions of volatile organic compounds in aquatic systems. Mar. Freshw. Behav. Physiol. 2007, 40, 155–168. [Google Scholar] [CrossRef]
- Hurler, J.; Engesland, A.; Poorahmary Kermany, B.; Škalko-Basnet, N. Improved texture analysis for hydrogel characterization: Gel cohesiveness, adhesiveness, and hardness. J. Appl. Polym. 2012, 125, 180–188. [Google Scholar] [CrossRef]
- Available online: https://www.cwa.gov.tw (accessed on 29 November 2023).
- Available online: https://fishery.ntpc.gov.tw/cht/index.php?code=list&flag=detail&ids=20&article_id=1832&keyword=%E7%9F%B3%E8%8A%B1%E8%8F%9C%E7%94%A2%E5%AD%A3%E5%88%B0+%E6%BC%81%E6%9D%91%E8%80%81%E5%B0%91%E7%B8%BD%E5%8B%95%E5%93%A1 (accessed on 29 November 2023).
- Quintano, E.; Diex, I.; Muguerza, N.; Figueroa, F.L.; Gorostiaga, J.M. Bed structure (frond bleaching, density and biomass) of the red alga Gelidium corneum under different irradiance levels. J. Sea Res. 2017, 130, 180–188. [Google Scholar] [CrossRef]
- A.O.A.C. Official Methods of Analysis of the Association of Official Analytical Chemists, 21st ed.; Sidney, W., Ed.; A.O.A.C.: Washington, DC, USA, 2019. [Google Scholar]
- Garrido, J.I.; Lozano, J.E.; Genovese, D.B. Effect of formulation variables on rheology, texture, colour, and acceptability of apple jelly: Modelling and optimization. LWT-Food Sci. Technol. 2015, 62, 325–332. [Google Scholar] [CrossRef]
- Yamamoto, M.; Baldermann, S.; Yoshikawa, K.; Fujita, A.; Mase, N.; Watanabe, N. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry. Sci. World J. 2014, 2014, 289780. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.X.; Zhang, X.; Guo, S.; Yan, H.; Wang, J.M.; Zhou, J.Q.; Yang, J.; Duan, J.A. Headspace GC/MS and fast GC e-nose combined with chemometric analysis to identify the varieties and geographical origins of ginger (Zingiber officinale Roscoe). Food Chem. 2022, 396, 133672. [Google Scholar] [CrossRef]
- Li, H.; Yu, X.; Jin, Y.; Zhang, W.; Liu, Y. Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Bioresour. Technol. 2008, 99, 3301–3305. [Google Scholar] [CrossRef]
- Kurmar, V.; Fotedar, R. Agar extraction process for Gracilaria cliftonii. Carbohydr. Polym. 2009, 78, 813–819. [Google Scholar] [CrossRef]
- Azizi, N.; Najafpour, G.; Younesi, H. Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. Int. J. Biol. Macromol. 2017, 101, 1029–1040. [Google Scholar] [CrossRef]
- Chirapart, A.; Praiboon, J. Comparison of the photosynthetic efficiency, agar yield, and properties of Gracilaria salicornia (Gracilariales, Rhodophyta) with and without adelphoparasite. J. Appl. Phycol. 2018, 30, 149–157. [Google Scholar] [CrossRef]
- Hurtado, M.A.; Manzano-Sarabia, M.; Hernandez-Garibay, E.; Pacheco-Ruiz, I.; Zertuche-Gonzalez, J.A. Latitudinal variations of the yield and quality of agar from Gelidium robustum (Gelidiales, Rhodophyta) from the main commercial harvest beds along the western coast of the Baja California Peninsula, Mexico. J. Appl. Phycol. 2011, 23, 727–734. [Google Scholar] [CrossRef]
- Wang, L.; Shen, Z.; Mu, H.; Lin, Y.; Zhang, J.; Jiang, X. Impact of alkali pretreatment on yield, physico-chemical and gelling properties of high quality agar from Gracilaria tenuistipitata. Food Hydrocoll. 2017, 70, 356–362. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.; Xin, Y.; Zhang, B.; Jin, Y.; Zhang, W. Optimization and scale-up of a new photobleaching agar extraction process from Gracilaria lemaneiformis. J. Appl. Phycol. 2009, 21, 247–254. [Google Scholar] [CrossRef]
- Genovese, D.B.; Ye, A.; Singh, H. High methoxyl pectin/apple particles composite gels: Effect of particle size and particle concentration on mechanical properties and gel structure. J. Texture Stud. 2010, 41, 171–189. [Google Scholar] [CrossRef]
- Nordqvist, D.; Vilgis, T.A. Rheological study of the gelation process of agarose-based solutions. Food Biophys. 2011, 6, 450–460. [Google Scholar] [CrossRef]
- Basu, S.; Shivhare, U.S.; Singh, T.V.; Beniwal, V.S. Rheological, textural and spectral characteristics of sorbitol substituted mango jam. J. Food Eng. 2011, 105, 503–512. [Google Scholar] [CrossRef]
- He, J.A.; Hu, Y.Z.; Jiang, L.J. Photodynamic action of phycobiliproteins: In situ generation of reactive oxygen species. Biochim. Biophys. Acta Bioenerg. 1997, 1320, 165–174. [Google Scholar] [CrossRef]
- Le Pape, M.A.; Grua-Priol, J.; Prost, C.; Demaimay, M. Optimization of dynamic headspace extraction of the edible red algae palmaria palmata and identification of the volatile components. J. Agric. Food Chem. 2004, 52, 550–5560. [Google Scholar] [CrossRef]
- Ties, P.; Barringer, S. Influence of lipid content and lipoxygenase on flavor volatiles in the tomato peel and flesh. J. Food Sci. 2012, 77, C830–C837. [Google Scholar] [CrossRef]
- Mahattanatawee, K.; Rouseff, R.; Valim, M.F.; Naim, M. Identification and aroma impact of norisoprenoids in orange juice. J. Agric. Food Chem. 2005, 53, 393–397. [Google Scholar] [CrossRef]
- Kim, T.; Kim, T.K.; Zoh, K.D. Degradation kinetics and pathways of β-cyclocitral and β-ionone during UV photolysis and UV/chlorination reactions. J. Environ. Manag. 2019, 239, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Lalko, J.; Lapczynski, A.; McGinty, D.; Bhatia, S.; Letizia, C.S.; Api, A.M. Fragrance material review on β-ionone. Food Chem. Toxicol. 2007, 45, S241–S247. [Google Scholar] [CrossRef] [PubMed]
- Vilar, E.G.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Volatile compounds of six species of edible seaweed: A review. Algal Res. 2020, 45, 101740. [Google Scholar] [CrossRef]
- De Sousa Galvão, M.; Narain, N.; dos Santos, M.D.S.P.; Nunes, M.L. Volatile compounds and descriptive odor attributes in umbu (Spondias tuberosa) fruits during maturation. Food Res. Int. 2011, 44, 1919–1926. [Google Scholar] [CrossRef]
- Yang, S.; Yu, G.; Qi, B.; Yang, X.; Deng, J.; Zhao, Y.; Rong, H. Analysis of volatile compounds of dried Gracilaria lemaneiformis by HS-SPME method. South China Fish. Sci. 2016, 12, 115–122. [Google Scholar]
- Tan, Y.; Siebert, K.J. Quantitative structure−activity relationship modeling of alcohol, ester, aldehyde, and ketone flavor thresholds in beer from molecular features. J. Agric. Food Chem. 2004, 52, 3057–3064. [Google Scholar] [CrossRef]
- Quynh, C.T.T.; Kubota, K. Study on the aroma model of Vietnamese coriander leaves (Polygonum odoratum). Vietnam J. Sci. Technol. 2016, 54, 73. [Google Scholar] [CrossRef]
- Shiratsuchi, H.; Shimoda, M.; Imayoshi, K.; Noda, K.; Osajima, Y. Off-flavor compounds in spray-dried skim milk powder. J. Agric. Food Chem. 1994, 42, 1323–1327. [Google Scholar] [CrossRef]
F | S3 | S7 | L7 | L9 | L12 | |
---|---|---|---|---|---|---|
Agar yield (%db) | 31.1 ± 6.2 bc | 35.6 ± 3.7 bc | 45.5 ± 8.7 ab | 23.0 ± 10.8 c | 58.1 ± 8.5 a | 28.1 ± 5.3 bc |
Gelling temperature (°C) | 26.2 ± 2.3 c | 30.8 ± 0.2 ab | 31.1 ± 0.6 a | 27.5 ± 1.7 bc | 29.7 ± 0.7 ab | 30.7 ± 0.6 ab |
Hardness (N/cm2) | 0.2 ± 0.01 e | 2.7 ± 0.1 b | 3.5 ± 0.1 a | 2.2 ± 0.1 d | 2.4 ± 0.0 cd | 2.6 ± 0.2 bc |
Springiness | 0.1 ± 0.1 b | 0.6 ± 0.1 a | 0.6 ± 0.2 a | 0.4 ± 0.1 ab | 0.7 ± 0.3 a | 0.6 ± 0.0 a |
L* | a* | b* | ΔE # | |
---|---|---|---|---|
F | 26.1 ± 1.6 e | 0.2 ± 0.8 c | 15.6 ± 4.3 d | - |
S3 | 50.8 ± 2.6 d | 2.4 ± 0.4 a | 38.7 ± 1.3 c | 28.6 ± 1.8 d |
S7 | 67.9 ± 1.0 a | −2.3 ± 0.1 f | 48.5 ± 1.0 a | 46.3 ± 2.9 a |
L7 | 49.7 ± 2.6 d | −1.4 ± 0.5 e | 36.6 ± 1.2 c | 27.0 ± 4.0 d |
L9 | 58.7 ± 2.9 c | 1.3 ± 0.5 b | 36.9 ± 1.1 c | 35.2 ± 2.2 c |
L12 | 63.0 ± 1.9 b | −0.4 ± 0.2 d | 44.0 ± 2.8 b | 40.7 ± 1.6 b |
Appearance | Color | Texture | Flavor | Overall | Fishy Odor * | |
---|---|---|---|---|---|---|
F | 3.35 ± 2.10 c | 3.73 ± 2.16 c | 2.74 ± 1.96 c | 2.27 ± 1.70 d | 2.53 ± 1.72 c | 7.59 ± 2.25 a |
S3 | 5.65 ± 2.06 ab | 6.07 ± 1.67 ab | 5.80 ± 2.31 a | 4.68 ± 2.08 ab | 5.58 ± 2.20 a | 4.67 ± 2.50 c |
S7 | 5.87 ± 2.19 a | 5.93 ± 2.23 a | 6.59 ± 2.00 a | 5.38 ± 2.22 a | 6.05 ± 1.95 a | 3.80 ± 2.39 c |
L7 | 4.67 ± 2.01 b | 5.33 ± 1.73 b | 2.91 ± 1.48 c | 3.02 ± 1.90 cd | 3.29 ± 1.76 bc | 6.02 ± 2.30 b |
L9 | 5.18 ± 2.00 ab | 5.68 ± 1.71 ab | 4.09 ± 1.86 b | 3.71 ± 1.69 bc | 4.00 ± 1.90 b | 5.91 ± 2.33 b |
L12 | 5.80 ± 2.10 a | 5.90 ± 1.90 a | 5.64 ± 2.24 a | 4.97 ± 2.20 a | 5.44 ± 2.21 a | 3.77 ± 2.29 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, W.-C.; Lin, H.-T.; Liao, W.-C.; Fang, M. Effects of Halogen Lamp and Traditional Sun Drying on the Volatile Compounds, Color Parameters, and Gel Texture of Gongliao Gelidium Seaweed. Foods 2023, 12, 4508. https://doi.org/10.3390/foods12244508
Sung W-C, Lin H-T, Liao W-C, Fang M. Effects of Halogen Lamp and Traditional Sun Drying on the Volatile Compounds, Color Parameters, and Gel Texture of Gongliao Gelidium Seaweed. Foods. 2023; 12(24):4508. https://doi.org/10.3390/foods12244508
Chicago/Turabian StyleSung, Wen-Chieh, Hong-Ting (Victor) Lin, Wei-Chih Liao, and Mingchih Fang. 2023. "Effects of Halogen Lamp and Traditional Sun Drying on the Volatile Compounds, Color Parameters, and Gel Texture of Gongliao Gelidium Seaweed" Foods 12, no. 24: 4508. https://doi.org/10.3390/foods12244508