Distribution and Elimination of Deltamethrin Toxicity in Laying Hens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Animals
2.2. Exposure Experiment and Sample Collection
2.3. Sample Preparation and Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Selection of Extraction Solvents
3.2. Method Validation
3.3. Study on the Enrichment Pattern of Deltamethrin in Laying Hens
3.4. Study on the Elimination Pattern of Deltamethrin in Laying Hens
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, P.; Chen, K.; Gao, M.; Qu, J.; Zhang, Z.; Dahlgren, R.A.; Li, Y.; Liu, W.; Huang, H.; Wang, X. Magnetic effervescent tablets containing ionic liquids as a non-conventional extraction and dispersive agent for determination of pyrethroids in milk. Food Chem. 2018, 268, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Manav, O.G.; Dinc-Zor, S.; Alpdogan, G. Optimization of a modified QuEChERS method by means of experimental design for multiresidue determination of pesticides in milk and dairy products by GC–MS. Microchem. J. 2019, 144, 124–129. [Google Scholar] [CrossRef]
- Braun, H.E.; Stanek, J. Application of the AOAC multi-residue method to determination of synthetic pyrethroid residues in celery and animal products. J. Assoc. Off. Anal. Chem. 1982, 65, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Khay, S.; Abd, E.A.; Choi, J.H.; Shin, E.H.; Shin, H.C.; Kim, J.S.; Chang, B.J.; Lee, C.H.; Shin, S.C.; Jeong, J.Y.; et al. Simultaneous determination of pyrethroids from pesticide residues in porcine muscle and pasteurized milk using GC. J. Sep. Sci. 2009, 32, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.B.; Bartlett, M.G.; Anand, S.S.; Bruckner, J.V.; Kim, H.J. Rapid determination of the synthetic pyrethroid insecticide, deltamethrin, in rat plasma and tissues by HPLC. J. Chromatogr. B 2006, 834, 141–148. [Google Scholar] [CrossRef]
- Bissacot, D.Z.; Vassilieff, I. HPLC determination of flumethrin, deltamethrin, cypermethrin, and cyhalothrin residues in the milk and blood of lactating dairy cows. J. Anal. Toxicol. 1997, 21, 397–402. [Google Scholar] [CrossRef]
- Moloney, M.; Tuck, S.; Ramkumar, A.; Furey, A.; Danaher, M. Determination of pyrethrin and pyrethroid residues in animal fat using liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. B 2018, 1077–1078, 60–70. [Google Scholar] [CrossRef]
- Feo, M.L.; Eljarrat, E.; Barcelo, D. Performance of gas chromatography/tandem mass spectrometry in the analysis of pyrethroid insecticides in environmental and food samples. Rapid Commun. Mass Spectrom. 2011, 25, 869–876. [Google Scholar] [CrossRef]
- Meneghini, L.Z.; Rubensam, G.; Bica, V.C.; Ceccon, A.; Barreto, F.; Ferrao, M.F.; Bergold, A.M. Multivariate optimization for extraction of pyrethroids in milk and validation for GC-ECD and CG-MS/MS analysis. Int. J. Environ. Res. Public Health 2014, 11, 11421–11437. [Google Scholar] [CrossRef]
- Goulart, S.M.; de Queiroz, M.E.; Neves, A.A.; de Queiroz, J.H. Low-temperature clean-up method for the determination of pyrethroids in milk using gas chromatography with electron capture detection. Talanta 2008, 75, 1320–1323. [Google Scholar] [CrossRef]
- Brondi, S.H.; De Macedo, A.N.; de Souza, G.B.; Nogueira, A.R. Application of QuEChERS method and gas chromatography-mass spectrometry for the analysis of cypermethrin residue in milk. J. Environ. Sci. Health B 2011, 46, 671–677. [Google Scholar]
- Corcellas, C.; Eljarrat, E.; Barceló, D. First report of pyrethroid bioaccumulation in wild river fish: A case study in Iberian river basins (Spain). Environ. Int. 2015, 75, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Corcellas, C.; Feo, M.L.; Torres, J.P.; Malm, O.; Ocampo-Duque, W.; Eljarrat, E.; Barcelo, D. Pyrethroids in human breast milk: Occurrence and nursing daily intake estimation. Environ. Int. 2012, 47, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Han, M.Y.; Liu, C.S.; Tang, Y.X.; Jia, M.; Chen, X.J.; Liang, H.J.; Gao, Y.F.; Gu, X. Subchronic toxicity of oral deltamethrin in laying chickens. Front. Vet. Sci. 2022, 9, 1079580. [Google Scholar] [CrossRef] [PubMed]
- Analytical Quality Control and Validation Procedures for Pesticide Residues Analysis in Food and Feed. (SANTE/11312/2021). 2021. Available online: https://www.accredia.it/en/documento/guidance-sante-11312-2021-analytical-quality-control-and-method-validation-procedures-for-pesticide-residues-analysis-in-food-and-feed/ (accessed on 17 January 2022).
- Tiwari, G.; Tiwari, R. Bioanalytical method validation: An updated review. Pharm. Methods 2010, 1, 25–38. [Google Scholar] [CrossRef]
- Wu, G.; Bao, X.; Zhao, S.; Wu, J.; Han, A.; Ye, Q. Analysis of multi-pesticide residues in the foods of animal origin by GC-MS coupled with accelerated solvent extraction and gel permeation chromatography cleanup. Food Chem. 2011, 126, 646–654. [Google Scholar] [CrossRef]
- Anagnostopoulos, C.; Liapis, K.; Haroutounian, S.A.; Miliadis, G.E. Development of an Easy Multiresidue Method for Fat-Soluble Pesticides in Animal Products Using Gas Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2014, 7, 205–216. [Google Scholar] [CrossRef]
- Gullick, D.; Popovici, A.; Young, H.C.; Bruckner, J.V.; Cummings, B.S.; Li, P.; Bartlett, M.G. Determination of deltamethrin in rat plasma and brain using gas chromatography-negative chemical ionization mass spectrometry. J. Chromatogr. B 2014, 960, 158–165. [Google Scholar] [CrossRef]
- Srivastava, A.; Rai, S.; Kumar, S.A.; Karsauliya, K.; Pandey, C.P.; Singh, S.P. Simultaneous determination of multiclass pesticide residues in human plasma using a mini QuEChERS method. Anal. Bioanal. Chem. 2017, 409, 3757–3765. [Google Scholar] [CrossRef]
- Ding, Y.; White, C.A.; Muralidhara, S.; Bruckner, J.V.; Bartlett, M.G. Determination of deltamethrin and its metabolite 3-phenoxybenzoic acid in male rat plasma by high-performance liquid chromatography. J. Chromatogr. B 2004, 810, 221–227. [Google Scholar] [CrossRef]
- Mudiam, M.K.; Jain, R.; Maurya, S.K.; Khan, H.A.; Bandyopadhyay, S.; Murthy, R.C. Low density solvent based dispersive liquid-liquid microextraction with gas chromatography-electron capture detection for the determination of cypermethrin in tissues and blood of cypermethrin treated rats. J. Chromatogr. B 2012, 895–896, 65–70. [Google Scholar] [CrossRef]
- Alimentarius, C. Residues of V Eterinary; Food and Agriculture Organization of the United Nations: Rome, Italy, 1993. [Google Scholar]
- Stengel, D.; Wahby, S.; Braunbeck, T. In search of a comprehensible set of endpoints for the routine monitoring of neurotoxicity in vertebrates: Sensory perception and nerve transmission in zebrafish (Danio rerio) embryos. Environ. Sci. Pollut. Res. Int. 2018, 25, 4066–4084. [Google Scholar] [CrossRef] [PubMed]
- Dell’Oro, D.; Casamassima, F.; Gesualdo, G.; Iammarino, M.; Mambelli, P.; Nardelli, V. Determination of pyrethroids in chicken egg samples: Development and validation of a confirmatory analytical method by gas chromatography/mass spectrometry. Food Sci. Technol. 2014, 5, 1391–1400. [Google Scholar] [CrossRef]
- Kwon, H.; Lehotay, S.J.; Geis-Asteggiante, L. Variability of matrix effects in liquid and gas chromatography-mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops. J. Chromatogr. A 2012, 1270, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Walorczyk, S. Validation and use of a QuEChERS-based gas chromatographic-tandem mass spectrometric method for multiresidue pesticide analysis in blackcurrants including studies of matrix effects and estimation of measurement uncertainty. Talanta 2014, 120, 106–113. [Google Scholar] [CrossRef]
- Poole, C.F. Matrix-induced response enhancement in pesticide residue analysis by gas chromatography. J. Chromatogr. A 2007, 1158, 241–250. [Google Scholar] [CrossRef]
- Huertas, P.J.; Sejeroe-Olsen, B.; Fernandez, A.A.; Schimmel, H.; Dabrio, M. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry. Talanta 2015, 137, 120–129. [Google Scholar] [CrossRef]
- Yarita, T.; Aoyagi, Y.; Otake, T. Evaluation of the impact of matrix effect on quantification of pesticides in foods by gas chromatography-mass spectrometry using isotope-labeled internal standards. J. Chromatogr. A 2015, 1396, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Pagliano, E.; Onor, M.; Pitzalis, E.; Mester, Z.; Sturgeon, R.E.; D’Ulivo, A. Quantification of nitrite and nitrate in seawater by triethyloxonium tetrafluoroborate derivatization-headspace SPME GC-MS. Talanta 2011, 85, 2511–2516. [Google Scholar] [CrossRef]
- Vera, B.; Santa, C.S.; Magnarelli, G. Plasma cholinesterase and carboxylesterase activities and nuclear and mitochondrial lipid composition of human placenta associated with maternal exposure to pesticides. Reprod. Toxicol. 2012, 34, 402–407. [Google Scholar] [CrossRef]
- Donoghue, D.J.; Myers, K. Imaging residue transfer into egg yolks. J. Agric. Food Chem. 2000, 48, 6428–6430. [Google Scholar] [CrossRef]
- Martin-Castillo, A.; Castells, M.T.; Adanez, G.; Polo, M.T.; Perez, B.G.; Ayala, I. Effect of atorvastatin and diet on non-alcoholic fatty liver disease activity score in hyperlipidemic chickens. Biomed. Pharmacother. 2010, 64, 275–281. [Google Scholar] [CrossRef]
- Kan, C.A.; Petz, M. Residues of veterinary drugs in eggs and their distribution between yolk and white. J. Agric. Food Chem. 2000, 48, 6397–6403. [Google Scholar] [CrossRef] [PubMed]
- Chandra, N.; Jain, N.K.; Sondhia, S.; Srivastava, A.B. Deltamethrin induced toxicity and ameliorative effect of alpha-tocopherol in broilers. Bull. Environ. Contam. Toxicol. 2013, 90, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.B.; Anand, S.S.; Muralidhara, S.; Kim, H.J.; Bruckner, J.V. Formulation-dependent toxicokinetics explains differences in the GI absorption, bioavailability and acute neurotoxicity of deltamethrin in rats. Toxicology 2007, 234, 194–202. [Google Scholar] [CrossRef]
- Lin, C.H.; Yan, C.T.; Kumar, P.V.; Li, H.P.; Jen, J.F. Determination of pyrethroid metabolites in human urine using liquid phase microextraction coupled in-syringe derivatization followed by gas chromatography/electron capture detection. Anal. Bioanal. Chem. 2011, 401, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Starr, J.M.; Scollon, E.J.; Hughes, M.F.; Ross, D.G.; Graham, S.E.; Crofton, K.M.; Wolansky, M.J.; Devito, M.J.; Tornero-Velez, R. Environmentally relevant mixtures in cumulative assessments: An acute study of toxicokinetics and effects on motor activity in rats exposed to a mixture of pyrethroids. Toxicol. Sci. 2012, 130, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.B.; Anand, S.S.; Kim, H.J.; White, C.A.; Bruckner, J.V. Toxicokinetics and tissue distribution of deltamethrin in adult Sprague-Dawley rats. Toxicol. Sci. 2008, 101, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Tornero-Velez, R.; Mirfazaelian, A.; Kim, K.B.; Anand, S.S.; Kim, H.J.; Haines, W.T.; Bruckner, J.V.; Fisher, J.W. Evaluation of deltamethrin kinetics and dosimetry in the maturing rat using a PBPK model. Toxicol. Appl. Pharmacol. 2010, 244, 208–217. [Google Scholar] [CrossRef]
- Akhtar, M.H.; Danis, C.; Trenholm, H.L.; Hartin, K.E. Deltamethrin residues in milk and tissues of lactating dairy cows. J. Environ. Sci. Health B 1992, 27, 235–253. [Google Scholar] [CrossRef]
- Zhu, P.; Fan, S.; Zou, J.H.; Miao, H.; Li, J.G.; Zhang, G.W.; Wu, Y.N. Application of gas chromatography-mass spectrometry in analyzing pharmacokinetics and distribution of deltamethrin in miniature pig tissues. Biomed. Environ. Sci. 2014, 27, 426–435. [Google Scholar]
- Akhtar, M.H.; Hartin, K.E.; Trenholm, H.L. Fate of [14C] deltamethrin in lactating dairy cows. J. Agric. Food Chem. 1986, 34, 753–758. [Google Scholar] [CrossRef]
- Venant, A.; Belli, P.; Borrel, S.; Mallet, J. Excretion of deltamethrin in lactating dairy cows. Food Addit. Contam. 1990, 7, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Juliet, S.; Chakraborty, A.K.; Koley, K.M.; Mandal, T.K.; Bhattacharyya, A. Toxico-kinetics, recovery efficiency and microsomal changes following administration of deltamethrin to black Bengal goats. Pest. Manag. Sci. 2001, 57, 311–319. [Google Scholar] [CrossRef]
- Gaughan, L.C.; Robinson, R.A.; Casida, J.E. Distribution and metabolic fate of trans- and cis-permethrin in laying hens. J. Agric. Food Chem. 1978, 26, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Eladl, A.H.; Hamed, H.R.; El-Shafei, R.A. Prevalence of mites and their impact on laying hen (Gallus gallus domesticus) farm facilities in Egypt, with an analysis of deltamethrin residues in eggs and tissue. Avian Pathol. 2018, 47, 161–171. [Google Scholar] [CrossRef]
- Savithri, Y.; Ravi, S.P.; Jacob, D.P. Biochemical and Histopathological Changes in Liver due to Chlorpyrifos Toxicity in Albino Rats. J. Ind. SocToxicol. 2010, 6, 5–10. [Google Scholar]
- Godin, S.J.; Scollon, E.J.; Hughes, M.F.; Potter, P.M.; DeVito, M.J.; Ross, M.K. Species differences in the in vitro metabolism of deltamethrin and esfenvalerate: Differential oxidative and hydrolytic metabolism by humans and rats. Drug Metab. Dispos. 2006, 34, 1764–1771. [Google Scholar] [CrossRef]
- Ning, M.; Hao, W.; Cao, C.; Xie, X.; Fan, W.; Huang, H.; Yue, Y.; Tang, M.; Wang, W.; Gu, W.; et al. Toxicity of deltamethrin to Eriocheir sinensis and the isolation of a deltamethrin-degrading bacterium, Paracoccus sp. P-2. Chemosphere 2020, 257, 127162. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; Elsabagh, R.; Allam, A.; Youssef, G.; Fadl, S.E.; Abdelhiee, E.Y.; Alkafafy, M.; Soliman, A.; Aboubakr, M. Bioremediation role of Spirulina platensis against deltamethrin-mediated toxicityand its chemical residues in chicken meat. Environ. Sci. Pollut. Res. Int. 2021, 28, 56188–56198. [Google Scholar] [CrossRef]
- Han, B.; Lv, Z.; Zhang, X.; Lv, Y.; Li, S.; Wu, P.; Yang, Q.; Li, J.; Qu, B.; Zhang, Z. Deltamethrin induces liver fibrosis in quails via activation of the TGF-beta1/Smad signaling pathway. Environ. Pollut. 2020, 259, 113870. [Google Scholar] [CrossRef] [PubMed]
- Knaak, J.B.; Dary, C.C.; Zhang, X.; Gerlach, R.W.; Tornero-Velez, R.; Chang, D.T.; Goldsmith, R.; Blancato, J.N. Parameters for pyrethroid insecticide QSAR and PBPK/PD models for human risk assessment. Rev. Environ. Contam. Toxicol. 2012, 219, 1–114. [Google Scholar] [PubMed]
- Akhtar, M.H.; Hamilton, R.M.G.; Trenholm, H.L. Metabolism, distribution, and excretion of deltamethrin by Leghorn hens. J. Agric. Food Chem. 1985, 33, 610–617. [Google Scholar] [CrossRef]
- CCRVDF. Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods. 2021. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/maximum-residue-limits/en/ (accessed on 15 April 2018).
- Anand, S.S.; Bruckner, J.V.; Haines, W.T.; Muralidhara, S.; Fisher, J.W.; Padilla, S. Characterization of deltamethrin metabolism by rat plasma and liver microsomes. Toxicol. Appl. Pharmacol. 2006, 212, 156–166. [Google Scholar] [CrossRef]
- Mirfazaelian, A.; Kim, K.B.; Anand, S.S.; Kim, H.J.; Tornero-Velez, R.; Bruckner, J.V.; Fisher, J.W. Development of a physiologically based pharmacokinetic model for deltamethrin in the adult male Sprague-Dawley rat. Toxicol. Sci. 2006, 93, 432–442. [Google Scholar] [CrossRef]
- Gogebakan, T.; Eraslan, G. Single-dose toxicokinetics of permethrin in broiler chickens. Br. Poult. Sci. 2015, 56, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.A.; Ibrahim, N.A.; Soliman, N.Z.; El Sheimy, M.K. Persistence and distribution of cypermethrin, deltamethrin, and fenvalerate in laying chickens. J. Agric. Food Chem. 1986, 34, 895–898. [Google Scholar] [CrossRef]
- Chen, A.W.; Fink, J.M.; Letinski, D.J.; Barrett, G.P.; Pearsall, J.C. Residue of cypermethrin and its major acid metabolites in milk and tissues from dairy bovines treated with cypermethrin. J. Agric. Food Chem. 1997, 45, 4850–4855. [Google Scholar] [CrossRef]
- Tewari, A.; Banga, H.S.; Gill, J. Sublethal chronic effects of oral dietary exposure to deltamethrin in Swiss albino mice. Toxicol. Ind. Health 2018, 34, 423–432. [Google Scholar] [CrossRef]
- Rhodes, C.; Jones, B.K.; Croucher, A.; Hutson, D.H.; Logan, C.J.; Hopkins, R.; Hall, B.E.; Vickers, J.A. Bioaccumulation and biotransformation of cis, trans-cypermethrin in the rat. Pestic. Sci. 1984, 15, 471–480. [Google Scholar] [CrossRef]
- Mick, D.L.; Long, K.R.; Aldinger, S.M. The effects of dietary dieldrin on residues in eggs and tissues of laying hens and the effects of phenobarbital and charcoal on these residues. Bull. Environ. Contam. Toxicol. 1973, 9, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, P.; Liu, C.; Liang, Y.; Zhou, Z.; Liu, D. Absorption, Distribution, Metabolism, and in Vitro Digestion of Beta-Cypermethrin in Laying Hens. J. Agric. Food Chem. 2017, 65, 7647–7652. [Google Scholar] [CrossRef] [PubMed]
- Sehonova, P.; Svobodova, Z.; Dolezelova, P.; Vosmerova, P.; Faggio, C. Effects of waterborne antidepressants on non-target animals living in the aquatic environment: A review. Sci. Total Environ. 2018, 631–632, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Aliko, V.; Qirjo, M.; Sula, E.; Morina, V.; Faggio, C. Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment. Fish Shellfish Immunol. 2018, 76, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Song, N.E.; Lee, J.Y.; Mansur, A.R.; Jang, H.W.; Lim, M.C.; Lee, Y.; Yoo, M.; Nam, T.G. Determination of 60 pesticides in hen eggs using the QuEChERS procedure followed by LC-MS/MS and GC-MS/MS. Food Chem. 2019, 298, 125050. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, A.; Ballesteros, E. Multiresidue method for the determination of pharmacologically active substances in egg and honey using a continuous solid-phase extraction system and gas chromatography-mass spectrometry. Food Chem. 2015, 178, 63–69. [Google Scholar] [CrossRef]
- Maalej, A.; Mahmoudi, A.; Bouallagui, Z.; Fki, I.; Marrekchi, R.; Sayadi, S. Sayadi, Olive phenolic compounds attenuate deltamethrin-induced liver and kidney toxicity through regulating oxidative stress, inflammation and apoptosis. Food Chem. Toxicol. 2017, 106, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Barlow, S.M.; Sullivan, F.M.; Lines, J. Risk assessment of the use of deltamethrin on bednets for the prevention of malaria. Food Chem. Toxicol. 2001, 39, 407–422. [Google Scholar] [CrossRef]
- Frank, D.F.; Miller, G.W.; Harvey, D.J.; Brander, S.M.; Geist, J.; Connon, R.E.; Lein, P.J. Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). Aquat. Toxicol. 2018, 200, 50–61. [Google Scholar] [CrossRef]
Compound Name | Quantitative Ion | Qualitative Ion 1 | Qualitative Ion 2 | Collision Energy (eV) |
---|---|---|---|---|
Epoxy heptachlor | 353 | 355 | 351 | 70 |
Deltamethrin | 181 | 172 | 174 | 70 |
Acidification Ratio | Tissue | Eggs | Blood | Hen Manure |
---|---|---|---|---|
0.1% | 135.75 ± 6.72% | 187.01 ± 6.23% | 117.13 ± 9.19% | 300.59 ± 10.61% |
0.2% | 137.20 ± 9.85% | 150.07 ± 7.78% | 98.42 ± 5.24% | |
0.4% | 149.18 ± 2.32% | 96.83 ± 5.38% | 90.92 ± 2.95% | |
0.6% | 96.10 ± 10.56% | 76.56 ± 8.47% | 79.50 ± 4.22% | |
1% | 62.45 ± 7.09% | 49.18 ± 9.94% | 68.64 ± 6.94% | 183.42 ± 5.42% |
2% | 332.43 ± 7.36% | |||
4% | 117.79 ± 10.78% | |||
6% | 100.10 ± 7.78% |
Sample | Linear Equation | Correlation Coefficient | The Limits of Detection | The Limits of Quantitation |
---|---|---|---|---|
Cockscomb | y = 0.8208x + 0.3344 | 0.9996 | 5 μg·kg−1 | 15 μg·kg−1 |
Crop | y = 0.8508x + 0.2958 | 0.9946 | ||
Heart | y = 0.8215x + 0.3817 | 0.9996 | ||
Lung | y = 0.8111x + 0.1568 | 0.9993 | ||
Liver | y = 0.8291x + 0.0936 | 0.9978 | ||
Kidney | y = 0.8447x + 0.2332 | 0.9986 | ||
Spleen | y = 0.1951x + 0.0377 | 0.9926 | ||
Muscular stomach | y = 0.7359x + 0.1923 | 0.9954 | ||
Glandular stomach | y = 0.8583x + 0.1736 | 0.9919 | ||
Muscle | y = 0.6667x + 0.1524 | 0.9961 | ||
Fat | y = 0.6084x + 0.1326 | 0.9987 | ||
Eggs | y = 0.4168x + 0.1824 | 0.9938 | ||
Blood | y = 0.3592x + 0.0932 | 0.9992 | ||
Hen manure | y = 0.22x + 0.2888 | 0.9912 |
Concentration (μg·kg−1)/Sample | Intra-Day Recovery Rate (%) | Intra-Day RSD (%) | Inter-Day Recovery Rate (%) | Inter-Day RSD (%) | ||||||||
25 | 50 | 100 | 25 | 50 | 100 | 25 | 50 | 100 | 25 | 50 | 100 | |
Cockscomb | 96.27 | 99.90 | 103.57 | 10.35 | 14.45 | 13.14 | 96.58 | 98.34 | 102.39 | 8.77 | 15.64 | 15.03 |
Crop | 86.68 | 88.69 | 89.68 | 9.70 | 7.67 | 10.05 | 93.08 | 91.58 | 91.57 | 8.54 | 9.61 | 10.90 |
Heart | 81.57 | 86.16 | 91.70 | 11.88 | 8.40 | 8.86 | 82.19 | 84.68 | 90.38 | 10.92 | 8.89 | 9.57 |
Lung | 98.64 | 107.01 | 106.07 | 9.01 | 12.22 | 7.50 | 94.00 | 97.13 | 100.10 | 7.83 | 19.70 | 7.78 |
Liver | 96.34 | 92.68 | 99.31 | 7.38 | 6.82 | 7.75 | 94.89 | 100.79 | 98.37 | 11.97 | 10.24 | 13.63 |
Kidney | 83.07 | 91.44 | 92.51 | 9.11 | 13.24 | 13.17 | 84.17 | 96.82 | 94.37 | 9.63 | 18.20 | 11.29 |
Spleen | 89.35 | 106.65 | 96.98 | 7.62 | 7.92 | 9.61 | 82.66 | 104.41 | 100.20 | 6.46 | 6.35 | 10.60 |
Muscular stomach | 91.10 | 95.28 | 95.33 | 15.82 | 4.61 | 12.47 | 96.22 | 98.96 | 97.22 | 14.59 | 7.30 | 12.30 |
Glandular stomach | 92.81 | 94.03 | 98.12 | 16.88 | 5.10 | 5.17 | 94.01 | 90.82 | 98.19 | 12.75 | 6.81 | 6.64 |
Muscle | 95.44 | 88.40 | 101.56 | 2.78 | 10.55 | 11.55 | 99.16 | 90.44 | 99.96 | 2.73 | 9.82 | 10.34 |
Eggs | 97.67 | 100.26 | 85.42 | 14.39 | 14.78 | 7.06 | 97.03 | 102.64 | 87.73 | 11.10 | 16.00 | 6.85 |
Blood | 89.02 | 107.32 | 103.59 | 13.51 | 9.96 | 10.43 | 89.02 | 110.39 | 105.60 | 17.75 | 9.36 | 13.95 |
Hen manure | 112.34 | 91.90 | 100.09 | 11.44 | 12.16 | 10.02 | 112.34 | 93.35 | 100.09 | 11.44 | 14.38 | 10.03 |
Concentration (μg·kg−1)/Sample | Intra-Day Recovery Rate (%) | Intra-Day RSD (%) | Inter-Day Recovery Rate (%) | Inter-Day RSD (%) | ||||||||
250 | 500 | 1000 | 250 | 500 | 1000 | 250 | 500 | 1000 | 250 | 500 | 1000 | |
Fat | 118.32 | 106.51 | 112.54 | 11.15 | 7.12 | 5.10 | 117.19 | 106.80 | 111.14 | 11.32 | 6.24 | 7.06 |
Sample | Matrix Effects (%) |
---|---|
Cockscomb | 118.99 |
Crop | 127.01 |
Heart | 119.18 |
Lung | 116.64 |
Liver | 121.21 |
Kidney | 125.37 |
Spleen | 112.4 |
Muscular stomach | 96.34 |
Glandular stomach | 129.00 |
Muscle | 77.88 |
Fat | 62.32 |
Eggs | 11.20 |
Blood | −4.16 |
Hen manure | 41.30 |
Sample | Drugs Administration Period (μg·kg−1) | ||||
---|---|---|---|---|---|
1 d | 3 d | 7 d | 10 d | 14 d | |
Eggs | 23.35 ± 2.87 | 112.34 ± 24.28 | 603.55 ± 37.82 | 491.29 ± 61.22 | 443.16 ± 40.40 |
Crop | 5406.16 ± 717.36 | 2377.14 ± 341.38 | 3441.86 ± 56.22 | 4077.98 ± 640.39 | 2377.14 ± 341.38 |
Cockscomb | 560.98 ± 38.41 | 277.10 ± 23.98 | 347.18 ± 42.71 | 217.19 ± 4.13 | 121.66 ± 17.9 |
Spleen | ND | 179.88 ± 34.18 | 267.65 ± 15.94 | 276.22 ± 52.10 | 284.47 ± 8.77 |
Liver | 91.96 ± 22.52 | 110.24 ± 37.72 | 124.73 ± 9.13 | 146.99 ± 53.82 | 126.95 ± 19.22 |
Lung | 8553.83 ± 1133.94 | 3749.72 ± 137.42 | 3474.30 ± 526.56 | 5670.60 ± 1382.27 | 3844.98 ± 297.14 |
Kidney | 412.18 ± 22.81 | 418.11 ± 30.69 | 453.62 ± 40.36 | 434.98 ± 46.31 | 238.20 ± 31.65 |
Heart | 109.68 ± 14.95 | 131.82 ± 9.32 | 204.09 ± 56.85 | 244.44 ± 39.54 | 261.39 ± 78.26 |
Glandular stomach | 611.43 ± 39.33 | 770.91 ± 172.00 | 288.39 ± 36.00 | 488.88 ± 97.87 | 273.19 ± 77.97 |
Muscular stomach | 220.68 ± 43.13 | 152.48 ± 20.86 | 90.31 ± 5.77 | 151.96 ± 16.03 | 111.28 ± 14.50 |
Muscle | 264.77 ± 46.53 | 659.92 ± 19.70 | 333.87 ± 66.99 | 467.15 ± 68.49 | 192.58 ± 65.91 |
Fat | 830.70 ± 174.22 | 3565.64 ± 74.78 | 3444.05 ± 61.86 | 3618.77 ± 253.32 | 2666.10 ± 5.13 |
Blood | 423.19 ± 66.42 | 560.46 ± 16.29 | 622.45 ± 34.15 | 241.70 ± 46.92 | 385.61 ± 78.36 |
Hen manure | 5191.89 ± 507.97 | 6749.18 ± 480.80 | 7089.48 ± 1602.73 | 11,036.51 ± 1988.69 | 13,510.9 ± 172.24 |
Drugs Withdrawal Period | Muscle | Muscular Stomach | Glandular Stomach | Crop | Spleen | Cockscomb | Liver |
0 d | 192.58 ± 65.91 | 111.28 ± 14.50 | 273.19 ± 77.97 | 2377.14 ± 341.38 | 284.47 ± 8.77 | 126.85 ± 17.93 | 126.95 ± 19.27 |
1 d | ND | ND | 36.69 ± 4.61 | 148.08 ± 33.83 | 81.75 ± 4.46 | 102.24 ± 58.95 | 10.50 ± 1.57 |
2 d | - | - | 23.39 ± 0.14 | 132.17 ± 22.47 | 96.25 ± 32.48 | 97.96 ± 0.00 | 12.74 ± 1.88 |
3 d | - | - | - | 126.59 ± 33.15 | 58.30 ± 4.08 | 75.29 ± 34.89 | 11.75 ± 0.57 |
7 d | - | - | - | - | - | - | 7.99 ± 1.73 |
10 d | - | - | - | - | - | - | 10.71 ± 1.09 |
14 d | - | - | - | - | - | - | 10.59 ± 0.98 |
17 d | - | - | - | - | - | - | 9.76 ± 1.47 |
21 d | - | - | - | - | - | - | 9.55 ± 0.92 |
Drugs Withdrawal Period | Heart | Kidney | Lung | Fat | Blood | Hen manure | Eggs |
0 d | 261.39 ± 78.26 | 238.20 ± 31.65 | 3844.98 ± 297.14 | 2666.10 ± 5.13 | 385.61 ± 78.36 | 13,510.90 ± 172.24 | 443.16 ± 40.40 |
1 d | 90.15 ± 7.02 | 72.02 ± 16.59 | 129.38 ± 6.88 | 4017.73 ± 256.34 | 216.73 ± 86.30 | 2552.18 ± 1039.71 | 393.85 ± 117.39 |
2 d | 69.17 ± 12.86 | 74.05 ± 2.07 | 120.69 ± 5.97 | 2222.48 ± 575.86 | 121.64 ± 36.10 | 1267.44 ± 105.11 | 379.40 ± 15.06 |
3 d | 89.69 ± 8.20 | 48.70 ± 14.16 | 69.05 ± 38.09 | 2917.96 ± 94.50 | 124.04 ± 79.02 | 175.89 ± 72.43 | 281.00 ± 39.21 |
7 d | 50.59 ± 9.83 | 34.57 ± 15.12 | 57.76 ± 5.56 | 2855.88 ± 103.95 | 104.81 ± 36.22 | 185.15 ± 84.02 | 113.50 ± 13.57 |
10 d | 40.66 ± 1.42 | 69.56 ± 2.56 | 52.04 ± 11.38 | 2312.21 ± 271.03 | 75.79 ± 32.27 | 107.79 ± 22.59 | 188.66 ± 54.17 |
14 d | 45.46 ± 6.19 | 39.00 ± 7.30 | 55.87 ± 6.34 | 2082.92 ± 3.01 | 107.81 ± 47.28 | 138.94 ± 33.54 | 244.37 ± 86.09 |
17 d | 34.21 ± 6.50 | 44.68 ± 4.56 | 52.13 ± 3.16 | 1514.49 ± 498.58 | 110.81 ± 34.44 | 118.92 ± 26.26 | 137.41 ± 9.64 |
21 d | 23.49 ± 0.77 | 57.85 ± 1.74 | 59.52 ± 3.78 | 904.25 ± 295.32 | 108.66 ± 50.46 | - | - |
Sample | Elimination Equation | Elimination Rate (t−1) | Half-Life (Day) |
---|---|---|---|
Liver | y = 126.8 × 10−2.258t | 2.258 | 0.3069 |
Heart | y = 240.7 × 10−0.5597t | 0.5597 | 1.238 |
Kidney | y = 226.4 × 10−0.7101t | 0.7101 | 0.9761 |
Lung | y = 3845 × 10−3.328t | 3.328 | 0.2083 |
Fat | y = 3230 × 10−0.04078t | 0.04078 | 17.00 |
Blood | y = 248.5 × 10−0.08435t | 0.08435 | 8.217 |
Hen manure | y = 13,480 × 10−1.557t | 1.557 | 0.4451 |
Eggs | y = 408.1 × 10−0.07458t | 0.07458 | 9.294 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, C.; Han, M.; Yu, N.; Pan, W.; Wang, J.; Fan, Z.; Wang, W.; Li, X.; Gu, X. Distribution and Elimination of Deltamethrin Toxicity in Laying Hens. Foods 2023, 12, 4385. https://doi.org/10.3390/foods12244385
Liu Y, Liu C, Han M, Yu N, Pan W, Wang J, Fan Z, Wang W, Li X, Gu X. Distribution and Elimination of Deltamethrin Toxicity in Laying Hens. Foods. 2023; 12(24):4385. https://doi.org/10.3390/foods12244385
Chicago/Turabian StyleLiu, Yiming, Chunshuang Liu, Mingyue Han, Na Yu, Wen Pan, Jie Wang, Zhiying Fan, Wei Wang, Xiubo Li, and Xu Gu. 2023. "Distribution and Elimination of Deltamethrin Toxicity in Laying Hens" Foods 12, no. 24: 4385. https://doi.org/10.3390/foods12244385
APA StyleLiu, Y., Liu, C., Han, M., Yu, N., Pan, W., Wang, J., Fan, Z., Wang, W., Li, X., & Gu, X. (2023). Distribution and Elimination of Deltamethrin Toxicity in Laying Hens. Foods, 12(24), 4385. https://doi.org/10.3390/foods12244385