Unlocking the Potential of Sprouted Cereals, Pseudocereals, and Pulses in Combating Malnutrition
Abstract
:1. Introduction
2. Sprouting Process
3. Biochemical Changes
3.1. Starch and Sugars
3.2. Fiber
3.3. Proteins and Amino Acids
γ-Aminobutyric Acid (GABA)
3.4. Lipids and Fatty Acids
3.5. Minerals
3.6. Vitamins and Bioactive Compounds
3.7. Anti-Nutritional Factors
3.8. Toxic Compounds
Sprouted Grain | Condition Used | Finding | Ref. |
---|---|---|---|
Normal and waxy wheat | Soaking: 20 °C, 6–8 h Sprouting: 20 ± 5 °C, 9–11 days on soft agar (1.5% agar) | Increase in protein content and digestibility, fiber, ash, total phenolic and flavonoid contents, and antioxidant activity, anti-inflammatory effects. Decrease in fat, carbohydrate, phytic acid, and cell toxicity. | [68,69,70] |
Brown rice | Soaking: 28–30 °C, 12 h Sprouting: 24 h, 28–30 °C, 90–95% RH | Increase in protein content and digestibility, starch digestibility, niacin, amino acids, vitamin E, vitamin C and pyridoxine, GABA, γ-oryzanol, antioxidants. Decrease in phytic acid. No change in ash, crude fat, or carbohydrate. | [70,71] |
Mung bean | Soaking: 25 °C, 12 h Sprouting: 60 h, 25 °C, 70% RH | Increase in protein content and digestibility, ash, crude fiber. Reduction in carbohydrate, resistant starch, and crude fat. | [72] |
Chickpea | Soaking: 25 °C, 12 h Sprouting: 60 h, 25 °C; 70% RH | Increase in protein, ash, crude fiber, and reduction in carbohydrate and crude fat. | [73] |
Quinoa | Soaking: 22 °C, 4 h Sprouting: 72 h, 22 °C, 95% RH | Increase in protein, ash, and crude fiber and reduction in carbohydrate, crude fat, and ash. | [74] |
Buckwheat | Soaking: 22 °C, 1 h Sprouting: 12, 24, 36, 48, 60, and 72 h, 25 °C, 90% RH | Increase in protein, total phenolic, and flavonoid content. Decrease in crude fat and phytic acid. | [75] |
Oat | Soaking: 22 °C, 4 h Sprouting: 18 °C for 96 h, ≥90% RH, in darkness | Increase in reducing sugar, protein, essential amino acids, minerals (Ca, Fe, Zn, Mg), riboflavin, and essential fatty acids. No change in soluble and insoluble fiber. | [76] |
4. Processing of the Sprouted Grains
Spouted Grains | Sprouting Conditions | % Sprouted Grains in Foods | Product Quality | Nutritional Value of the Product | Health Benefits | Reference |
---|---|---|---|---|---|---|
Lentil | Soaking: 24 h at 20 °C Sprouting: 96 h, 90% RH, 25 °C | 0, 10, 20% in bread | Up to 10% volume increased but reduced at 20% replacement; Darker color; Harder texture. | 10% reduced phytic acid; 20% increase in iron; 10% increase in protein; no change in antioxidant content | Not reported | [81] |
Wheat | Soaking: 26 °C, 6 h. Sprouting: 20 ◦C, 80% RH, 12 and 24 h | 10 to 50% in bread and wheat-based fermented beverage | Slower starch retrogradation. Sensory attributes increased | Not reported | Not reported | [82] |
Wheat, barley, pearl millet, and green gram | Soaking: in water, 8 h, 30 °C. Spouting: 35 °C, 95% RH, 24–36 h | 2–8% in non-dairy probiotic drink | Increased Sensory acceptability and probiotic count | Increase in protein digestibility | Not reported | [83] |
Corn | Soaking: 8 h Sprouting: 72 h, 24 °C 80–90% RH | Non-alcoholic fermented beverages (kombucha) | Improved appearance, flavor, smell, color, and mouthfeel | Not reported | Improved health benefits | [84] |
Buckwheat, ed Job’s tears, and mungbean | Soaking: 10–24 h, room temperature Sprouting: 6 h-7 days, 10 °C | 20% in rice cakes | Decreased starch pasting properties. Slowing retrogradation; Improved textural and sensory properties | The dietary fiber increased. Texture properties and sensory evaluation improved. | Improved starch digestion | [14] |
Brown rice | Soaking: in water, 24 h at 28 °C Sprouting: 48 h and 96 h | Fermented yoghurt | Promoting the growth of the starter culture in yogurt. Increase in the average scores for organoleptic properties | Increase in phenolic compounds and GABA, consistency index, and density | Low glycaemic index, increase in health-promoting properties | [85] |
wheat barley, chickpea, lentil, and quinoa grains | Soaking: in water, room temperature, 30 min Sprouting: in water, 24 h, 16.5 °C | 20% in bread | Improved sensory quality | Increase in peptides, free amino acids, GABA, Decrease in phytic acid, tannins, raffinose, and trypsin inhibitors. | High protein digestibility and low starch availability | [86,87,88] |
5. Challenges of Using Sprouted Grains in Foods
6. Recent Advances in Boosting the Nutrients of the Sprouted Grains
Treatment | Treatment Condition | Tested Grains | Findings | References |
---|---|---|---|---|
Biofortification | Soaking in FeSO4, NaSO3 or Na2SeO3 solutions | Wheat, Rice | Increase in Fe, Se, Zn | [4,97] |
Abiotic elicitors | Water deficit stress, Inorganic salts, Metal ions, High germination temperature | Rice, Foxtail millet, wheat | Increase in protein, vitamin C, phenolic compounds, decrease in phytic acid | [98] |
Biotic elicitors | Sucrose, Chitosan, Proteins, Glucosamine, Citric acid | Buckwheat, Soybean, Lentil, Wheat, Rice | Increase in flavonoids, GABA, vitamin C, B1, B2, B3 and E, proteins | [12] |
Electrolysed water | Slightly acidic water with HCl, pH near neutral | Tartary buckwheat, mung bean | Suppressing microbial growth; increase in GABA | [94] |
Ultrasound | 50–60 Hz for 5 min | Wheat | Sanitization of fresh sprouts, increase in vitamin B2, GABA, and reduction in heavy metal contamination. | [99] |
Microwave treatment | 2.85 cm and frequency of 10.525 GHz for 15 min | Wheat | Increase the content of antioxidants, proteins, and amino acids, antimicrobial effects. | [99] |
Magnetic field | 50 mega tesla/0.5 h for 0.5, 1, and 2 h | wheat | Increase in phosphorous, potassium, and protein | [99] |
Light | Light-emitting diodes light (red and blue LED) | Barely, Rice | Increase in protein and amino acid accumulation, increase in anthocyanin | [94] |
Biotransformation | Cellular and DNA modifying techniques | Wheat | Increase in bioactive compounds | [96] |
7. Final Remarks
- Identifying the most suitable grain genotype, abiotic and biotic elicitors, biofortification methods, and novel technologies for specific grains to achieve the maximum nutrients and health benefits of the sprouts;
- Conducting in vivo and in vitro studies to identify the unknown health benefits of fresh and processed sprouted grains;
- Developing environmentally friendly and economical technologies to produce shelf-stable and safe ingredients with acceptable organoleptic properties from sprouted grains for food formulation and creating novel foods.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bouchard, J.; Malalgoda, M.; Storsley, J.; Malunga, L.; Netticadan, T.; Thandapilly, S.J. Health Benefits of Cereal Grain- and Pulse-Derived Proteins. Molecules 2022, 27, 3746. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A. Review: Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Sci. 2018, 269, 136–142. [Google Scholar] [CrossRef]
- Welch, R.M.; Graham, R.D. A new paradigm for world agriculture: Productive, sustainable, nutritious, healthful food systems. Food Nutr. Bull. 2016, 21, 361–366. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Mokrzycki, J.; Mierzwa-Hersztek, M. Agronomic biofortification with Se, Zn, and Fe: An effective strategy to enhance crop nutritional quality and stress defense—A review. J. Soil Sci. Plant Nutr. 2022, 22, 1129–1159. [Google Scholar] [CrossRef]
- Biel, W.; Jaroszewska, A.; Stankowski, S.; Sobolewska, M.; Kępińska-Pacelik, J. Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains. Eur. Food Res. Technol. 2021, 247, 1525–1538. [Google Scholar] [CrossRef]
- Chen, X.; Shuai, C.; Wu, Y. Global food stability and its socio-economic determinants towards sustainable development goal 2 (Zero Hunger). Sustain. Dev. 2022, 31, 1768–1780. [Google Scholar] [CrossRef]
- Malnutrition. Available online: https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 20 October 2023).
- 2023 Global Report on Food Crises. Available online: https://www.fsinplatform.org/sites/default/files/resources/files/GRFC2023-compressed.pdf (accessed on 20 October 2023).
- Chima, J.U.; Fasuan, T.O. Antioxidants, nutritional, antinutrients and functional characteristics of black turtle bean (Phaseolus vulgaris): Synergistic and antagonistic interrelationship of epigeal germination periods. Nutr. Food Sci. 2021, 51, 1029–1050. [Google Scholar] [CrossRef]
- Erba, D.; Angelino, D.; Marti, A.; Manini, F.; Faoro, F.; Morreale, F.; Pellegrini, N.; Casiraghi, M.C. Effect of sprouting on nutritional quality of pulses. Int. J. Food Sci. Nutr. 2019, 70, 30–40. [Google Scholar] [CrossRef]
- Lemmens, E.; Deleu, L.J.; De Brier, N.; Smolders, E.; Delcour, J.A. Mineral bio-accessibility and intrinsic saccharides in breakfast flakes manufactured from sprouted wheat. LWT 2021, 143, 111079. [Google Scholar] [CrossRef]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef]
- Amoah, I.; Cairncross, C.; Sturny, A.; Rush, E. Towards improving the nutrition and health of the aged: The role of sprouted grains and encapsulation of bioactive compounds in functional bread—A review. Int. J. Food Sci. Technol. 2019, 54, 1435–1447. [Google Scholar] [CrossRef]
- Graziano, S.; Agrimonti, C.; Marmiroli, N.; Gullì, M. Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends Food Sci. Technol. 2022, 125, 154–165. [Google Scholar] [CrossRef]
- Ikram, A.; Saeed, F.; Afzaal, M.; Imran, A.; Niaz, B.; Tufail, T.; Hussain, M.; Anjum, F.M. Nutritional and end-use perspectives of sprouted grains: A comprehensive review. Food Sci. Nutr. 2021, 9, 4617–4628. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, W.; Lu, H.; Shu, Q.; Zhang, Y.; Chen, Q. New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends Food Sci. Technol. 2022, 123, 187–197. [Google Scholar] [CrossRef]
- Singkhornart, S.; Ryu, G.-H. Effect of soaking time and steeping temperature on biochemical properties and γ-aminobutyric acid (GABA) content of germinated wheat and barley. Prev. Nutr. Food Sci. 2011, 16, 67–73. [Google Scholar] [CrossRef]
- Hubner, F.; Arendt, E.K. Germination of cereal grains as a way to improve the nutritional value: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 853–861. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef]
- Grover, Z.; Ee, L. Protein-energy malnutrition. Pediatr. Clin. N. Am. 2009, 56, 1055–1068. [Google Scholar] [CrossRef]
- Samia, E.; Rabab, S.; Maher, A.E.G. Chemical and nutritional evaluation of different Seed flours as novel sources of protein. World J. Dairy Food Sci. 2012, 7, 59–65. [Google Scholar]
- Sharma, S.; Singh, A.; Singh, B. Characterization of in vitro antioxidant activity, bioactive components, and nutrient digestibility in pigeon pea (Cajanus cajan) as influenced by germination time and temperature. J. Food Biochem. 2019, 43, e12706. [Google Scholar] [CrossRef]
- Atudorei, D.; Stroe, S.G.; Codină, G.G. Impact of germination on the microstructural and physicochemical properties of different legume types. Plants 2021, 10, 592. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.-J.; Cho, D.-W.; Park, J.-D.; Kweon, D.-K.; Lim, S.-T. In vitro starch digestibility and pasting properties of germinated brown rice after hydrothermal treatments. J. Cereal Sci. 2012, 56, 451–456. [Google Scholar] [CrossRef]
- You, S.Y.; Oh, S.G.; Han, H.M.; Jun, W.; Hong, Y.S.; Chung, H.J. Impact of germination on the structures and in vitro digestibility of starch from waxy brown rice. Int. J. Biol. Macromol. 2016, 82, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef]
- Dueñas, M.; Sarmento, T.; Aguilera, Y.; Benitez, V.; Mollá, E.; Esteban, R.M.; Martín-Cabrejas, M.A. Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT 2016, 66, 72–78. [Google Scholar] [CrossRef]
- Hübner, F.; O’Neil, T.; Cashman, K.D.; Arendt, E.K. The influence of germination conditions on beta-glucan, dietary fibre and phytate during the germination of oats and barley. Eur. Food Res. Technol. 2010, 231, 27–35. [Google Scholar] [CrossRef]
- Koehler, P.; Hartmann, G.; Wieser, H.; Rychlik, M. Changes of folates, dietary fiber, and proteins in wheat as affected by germination. J. Agric. Food Chem. 2007, 55, 4678–4683. [Google Scholar] [CrossRef]
- Elliott, H.; Woods, P.; Green, B.D.; Nugent, A.P. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes? Nutr. Bull. 2022, 47, 138–156. [Google Scholar] [CrossRef]
- Pal, R.S.; Bhartiya, A.; Yadav, P.; Kant, L.; Mishra, K.K.; Aditya, J.P.; Pattanayak, A. Effect of dehulling, germination and cooking on nutrients, anti-nutrients, fatty acid composition and antioxidant properties in lentil (Lens culinaris). J. Food Sci. Technol. 2017, 54, 909–920. [Google Scholar] [CrossRef]
- Kamjijam, B.; Bednarz, H.; Suwannaporn, P.; Jom, K.N.; Niehaus, K. Localization of amino acids in germinated rice grain: Gamma-aminobutyric acid and essential amino acids production approach. J. Cereal Sci. 2020, 93, 102958. [Google Scholar] [CrossRef]
- Du, Z.; Li, Y. Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities. J. Agric. Food Res. 2022, 9, 100353. [Google Scholar] [CrossRef]
- Alkaltham, M.S.; Musa Ozcan, M.; Uslu, N.; Salamatullah, A.M.; Hayat, K. Changes in antioxidant activity, phenolic compounds, fatty acids, and mineral contents of raw, germinated, and boiled lentil seeds. J. Food Sci. 2022, 87, 1639–1649. [Google Scholar] [CrossRef] [PubMed]
- Leon-Lopez, L.; Escobar-Zuniga, Y.; Salazar-Salas, N.Y.; Mora Rochin, S.; Cuevas-Rodriguez, E.O.; Reyes-Moreno, C.; Milan-Carrillo, J. Improving polyphenolic compounds: Antioxidant activity in chickpea sprouts through elicitation with hydrogen peroxide. Foods 2020, 9, 1791. [Google Scholar] [CrossRef]
- Munarko, H.; Sitanggang, A.B.; Kusnandar, F.; Budijanto, S. Effect of different soaking and germination methods on bioactive compounds of germinated brown rice. Int. J. Food Sci. Technol. 2021, 56, 4540–4548. [Google Scholar] [CrossRef]
- Yan, L.; Zheng, H.; Liu, W.; Liu, C.; Jin, T.; Liu, S.; Zheng, L. UV-C treatment enhances organic acids and GABA accumulation in tomato fruits during storage. Food Chem. 2021, 338, 128126. [Google Scholar] [CrossRef]
- Tiansawang, K.; Luangpituksa, P.; Varanyanond, W.; Hansawasdi, C. GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content. Food Sci. Technol. 2016, 36, 313–321. [Google Scholar] [CrossRef]
- Nemzer, B.; Al-Taher, F. Analysis of fatty acid composition in sprouted grains. Foods 2023, 12, 1853. [Google Scholar] [CrossRef]
- Devi, C.B.; Kushwaha, A.; Kumar, A. Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata). J. Food Sci. Technol. 2015, 52, 6821–6827. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Nunes, M.A.; Santo, L.E.; Machado, S.; Costa, A.S.G.; Alvarez-Orti, M.; Pardo, J.E.; Oliveira, M.; Alves, R.C. Characterization of chia seeds, cold-pressed oil, and defatted cake: An ancient grain for modern food production. Molecules 2023, 28, 723. [Google Scholar] [CrossRef]
- Guo, H.; Wu, H.; Sajid, A.; Li, Z. Whole grain cereals: The potential roles of functional components in human health. Crit. Rev. Food Sci. Nutr. 2022, 62, 8388–8402. [Google Scholar] [CrossRef]
- Wells, J.C.K.; Marphatia, A.A.; Amable, G.; Siervo, M.; Friis, H.; Miranda, J.J.; Haisma, H.H.; Raubenheimer, D. The future of human malnutrition: Rebalancing agency for better nutritional health. Glob. Health 2021, 17, 119. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, E.; De Brier, N.; Spiers, K.M.; Ryan, C.; Garrevoet, J.; Falkenberg, G.; Goos, P.; Smolders, E.; Delcour, J.A. The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements. Food Chem. 2018, 264, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.-W.; Xie, W.-H.; Jin, X.-X.; Wang, Q.; He, Y.-J. Effects of germination on iron, zinc, calcium, manganese, and copper availability from cereals and legumes. CyTA-J. Food 2014, 12, 22–26. [Google Scholar] [CrossRef]
- Saunders, J.; Smith, T. Malnutrition: Causes and consequences. Clin. Med. 2010, 10, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Sharma, A.; Vats, S.; Tiwari, V.; Kumari, A.; Mishra, V.; Krishania, M. Vitamins in cereals: A critical review of content, health effects, processing losses, bioaccessibility, fortification, and biofortification strategies for their improvement. Front. Nutr. 2021, 8, 586815. [Google Scholar] [CrossRef] [PubMed]
- Žilić, S.; Basić, Z.; Hadži-Tašković Šukalović, V.; Maksimović, V.; Janković, M.; Filipović, M. Can the sprouting process applied to wheat improve the contents of vitamins and phenolic compounds and antioxidant capacity of the flour? Int. J. Food Sci. Technol. 2014, 49, 1040–1047. [Google Scholar] [CrossRef]
- Chauhan, D.; Kumar, K.; Ahmed, N.; Thakur, P.; Rizvi, Q.U.E.H.; Jan, S.; Yadav, A.N. Impact of soaking, germination, fermentation, and roasting treatments on nutritional, anti-nutritional, and bioactive composition of black soybean (Glycine max L.). J. Appl. Biol. Biotechnol. 2022, 10, 186–192. [Google Scholar] [CrossRef]
- Donkor, O.N.; Stojanovska, L.; Ginn, P.; Ashton, J.; Vasiljevic, T. Germinated grains—Sources of bioactive compounds. Food Chem. 2012, 135, 950–959. [Google Scholar] [CrossRef]
- Ferreira, C.D.; Bubolz, V.K.; da Silva, J.; Dittgen, C.L.; Ziegler, V.; de Oliveira Raphaelli, C.; de Oliveira, M. Changes in the chemical composition and bioactive compounds of chickpea (Cicer arietinum L.) fortified by germination. LWT 2019, 111, 363–369. [Google Scholar] [CrossRef]
- Bangar, S.P.; Sandhu, K.S.; Trif, M.; Manjunatha, V.; Lorenzo, J.M. Germinated barley cultivars: Effect on physicochemical and bioactive properties. Food Anal. Methods 2022, 15, 2505–2512. [Google Scholar] [CrossRef]
- Gan, R.-Y.; Lui, W.-Y.; Wu, K.; Chan, C.-L.; Dai, S.-H.; Sui, Z.-Q.; Corke, H. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol. 2017, 59, 1–14. [Google Scholar] [CrossRef]
- Alkaltham, M.S.; Salamatullah, A.M.; Özcan, M.M.; Uslu, N.; Hayat, K. The effects of germination and heating on bioactive properties, phenolic compounds and mineral contents of green gram seeds. LWT 2020, 134, 110106. [Google Scholar] [CrossRef]
- Sharma, S.; Sahni, P. Germination behaviour, techno-functional characteristics, antinutrients, antioxidant activity and mineral profile of lucerne as influenced by germination regimes. J. Food Meas. Charact. 2021, 15, 1796–1809. [Google Scholar] [CrossRef]
- Van Hung, P.; Hoang Yen, N.T.; Lan Phi, N.T.; Ha Tien, N.P.; Thu Trung, N.T. Nutritional composition, enzyme activities and bioactive compounds of mung bean (Vigna radiata L.) germinated under dark and light conditions. LWT 2020, 133, 110100. [Google Scholar] [CrossRef]
- Baranzelli, J.; Somacal, S.; Monteiro, C.S.A.; Mello, R.d.O.; Rodrigues, E.; Prestes, O.D.; López-Ruiz, R.; Garrido Frenich, A.; Romero-González, R.; Miranda, M.Z.d.; et al. Grain germination changes the profile of phenolic compounds and benzoxazinoids in wheat: A study on hard and soft cultivars. Molecules 2023, 28, 721. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, C.; Dinică, R.M.; Bahrim, G.E.; Vizireanu, C.; Baroiu, L.; Iancu, A.V.; Draganescu, M.L. New insights into the antioxidant compounds of achenes and sprouted buckwheat cultivated in the republic of moldova. Appl. Sci. 2021, 11, 10230. [Google Scholar] [CrossRef]
- James, S.; Nwabueze, T.U.; Ndife, J.; Onwuka, G.I.; Ata’Anda Usman, M. Influence of fermentation and germination on some bioactive components of selected lesser legumes indigenous to Nigeria. J. Agric. Food Res. 2020, 2, 100086. [Google Scholar] [CrossRef]
- Arouna, N.; Gabriele, M.; Pucci, L. The impact of germination on sorghum nutraceutical properties. Foods 2020, 9, 1218. [Google Scholar] [CrossRef]
- Miyahira, R.F.; Lopes, J.d.O.; Antunes, A.E.C. The use of uprouts to Improve the Nutritional Value of Food Products: A Brief Review. Plant Foods Hum. Nutr. 2021, 76, 143–152. [Google Scholar] [CrossRef]
- Nelson, K.; Stojanovska, L.; Vasiljevic, T.; Mathai, M. Germinated grains: A superior whole grain functional food? Can. J. Physiol. Pharmacol. 2013, 91, 429–441. [Google Scholar] [CrossRef]
- Pakfetrat, S.; Amiri, S.; Radi, M.; Abedi, E.; Torri, L. Reduction of phytic acid, aflatoxins and other mycotoxins in wheat during germination. J. Sci. Food Agric. 2019, 99, 4695–4701. [Google Scholar] [CrossRef]
- Liang, J.; Han, B.-Z.; Han, L.; Nout, M.J.R.; Hamer, R.J. Iron, zinc and phytic acid content of selected rice varieties from China. J. Sci. Food Agric. 2007, 87, 504–510. [Google Scholar] [CrossRef]
- Pramitha, J.L.; Rana, S.; Aggarwal, P.R.; Ravikesavan, R.; Joel, A.J.; Muthamilarasan, M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. Adv. Genet. 2021, 107, 89–120. [Google Scholar] [CrossRef] [PubMed]
- Dia, V.P.; Gomez, T.; Vernaza, G.; Berhow, M.; Chang, Y.K.; de Mejia, E.G. Bowman-Birk and Kunitz protease inhibitors among antinutrients and bioactives modified by germination and hydrolysis in Brazilian soybean cultivar BRS 133. J. Agric. Food Chem. 2012, 60, 7886–7894. [Google Scholar] [CrossRef]
- Muzquiz, M.; Varela, A.; Burbano, C.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. Bioactive compounds in legumes: Pronutritive and antinutritive actions. Implications for nutrition and health. Phytochem. Rev. 2012, 11, 227–244. [Google Scholar] [CrossRef]
- Assenova, B.; Smolnikova, F.; Nurgazezova, A.; Kassymov, S.; Atambayeva, Z.; Kuderinova, N.A.; Igenbayev, A.; Mustafayeva, A. Nutritive and biological value of the germinated wheat grain. EurAsian J. BioSci. 2019, 13, 1947–1951. [Google Scholar]
- Han, I. Antioxidant, α-glucosidase inhibitory, and anti-inflammatory activities and cell toxicity of waxy and normal wheat sprouts at various germination time. Appl. Sci. 2021, 11, 7755. [Google Scholar] [CrossRef]
- Sibian, M.S.; Saxena, D.C.; Riar, C.S. Effect of germination on chemical, functional and nutritional characteristics of wheat, brown rice and triticale: A comparative study. J. Sci. Food Agric. 2017, 97, 4643–4651. [Google Scholar] [CrossRef]
- Cho, D.H.; Lim, S.T. Germinated brown rice and its bio-functional compounds. Food Chem. 2016, 196, 259–271. [Google Scholar] [CrossRef]
- Świeca, M.; Gawlik-Dziki, U. Effects of sprouting and postharvest storage under cool temperature conditions on starch content and antioxidant capacity of green pea, lentil and young mung bean sprouts. Food Chem. 2015, 185, 99–105. [Google Scholar] [CrossRef]
- Wu, Z.; Song, L.; Feng, S.; Liu, Y.; He, G.; Yioe, Y.; Liu, S.Q.; Huang, D. Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arietinum L.) seeds. J. Agric. Food Chem. 2012, 60, 8606–8615. [Google Scholar] [CrossRef]
- Pilco Quesada, S.; Tian, Y.; Yang, B.; Repo-Carrasco-Valencia, R.; Suomela, J.-P. Effects of germination and kilning on the phenolic compounds and nutritional properties of quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus). J. Cereal Sci. 2020, 94, 102996. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Z.; Gao, Y.; Huang, X.; Zou, Y.; Yang, T. Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. J. Food Sci. 2015, 80, H1111–H1119. [Google Scholar] [CrossRef]
- Aparicio-García, N.; Martínez-Villaluenga, C.; Frias, J.; Peñas, E. Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chem. 2021, 338, 127972. [Google Scholar] [CrossRef]
- do Nascimento, L.Á.; Abhilasha, A.; Singh, J.; Elias, M.C.; Colussi, R. Rice germination and its impact on technological and nutritional properties: A review. Rice Sci. 2022, 29, 201–215. [Google Scholar] [CrossRef]
- Corzo-Rios, L.; Garduño-Siciliano, L.; Sánchez, X.; Herrera, J.; Anaberta, C.-M.; Jimenez Martinez, C. Effect of the consumption of amaranth seeds and their sprouts on alterations of lipids and glucose metabolism in mice. Int. J. Food Sci. Technol. 2021, 56, 3269–3277. [Google Scholar] [CrossRef]
- Finnie, S.; Brovelli, V.; Nelson, D. 6—Sprouted grains as a food ingredient. In Sprouted Grains; Feng, H., Nemzer, B., DeVries, J.W., Eds.; AACC International Press: New York, NY, USA, 2019; pp. 113–142. [Google Scholar]
- Ispiryan, L.; Kuktaite, R.; Zannini, E.; Arendt, E.K. Fundamental study on changes in the FODMAP profile of cereals, pseudo-cereals, and pulses during the malting process. Food Chem. 2021, 343, 128549. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Palma Tenango, M.; Valderrama-Bravo, C.; Soto Hernández, M.; Cruz-Orea, A.; Ordonez-Miranda, J. Lentil sprouts: A nutraceutical alternative for the elaboration of bread. J. Food Sci. Technol. 2020, 57, 1817–1829. [Google Scholar] [CrossRef] [PubMed]
- Peñaranda, J.D.; Bueno, M.; Álvarez, F.; Pérez, P.D.; Perezábad, L. Sprouted grains in product development. Case studies of sprouted wheat for baking flours and fermented beverages. Int. J. Gastron. Food Sci. 2021, 25, 100375. [Google Scholar] [CrossRef]
- Mridula, D.; Sharma, M.; Gupta, R.K. Development of quick cooking multi-grain dalia utilizing sprouted grains. J. Food Sci. Technol. 2015, 52, 5826–5833. [Google Scholar] [CrossRef]
- Francisco, Á.R.; José, d.l.R.M.; Igor, H. Development of a no added sugar kombucha beverage based on germinated corn. Int. J. Gastron. Food Sci. 2021, 24, 100355. [Google Scholar] [CrossRef]
- Cáceres, P.J.; Peñas, E.; Martínez-Villaluenga, C.; García-Mora, P.; Frías, J. Development of a multifunctional yogurt-like product from germinated brown rice. LWT 2019, 99, 306–312. [Google Scholar] [CrossRef]
- Cardone, G.; D’Incecco, P.; Casiraghi, M.C.; Marti, A. Exploiting milling by-products in bread-making: The case of sprouted wheat. Foods 2020, 9, 260. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Estrella, D.; Cardone, G.; Buratti, S.; Pagani, M.A.; Marti, A. Sprouting as a pre-processing for producing quinoa-enriched bread. J. Cereal Sci. 2020, 96, 103111. [Google Scholar] [CrossRef]
- Świeca, M.; Dziki, D.; Gawlik-Dziki, U. Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour. Food Chem. 2017, 228, 643–648. [Google Scholar] [CrossRef]
- Ding, H.; Fu, T.J.; Smith, M.A. Microbial contamination in sprouts: How effective is seed disinfection treatment? J. Food Sci. 2013, 78, R495–R501. [Google Scholar] [CrossRef]
- Mir, S.A.; Farooq, S.; Shah, M.A.; Sofi, S.A.; Dar, B.N.; Hamdani, A.M.; Mousavi Khaneghah, A. An overview of sprouts nutritional properties, pathogens and decontamination technologies. LWT 2021, 141, 110900. [Google Scholar] [CrossRef]
- Miyahira, R.F.; Antunes, A.E.C. Bacteriological safety of sprouts: A brief review. Int. J. Food Microbiol. 2021, 352, 109266. [Google Scholar] [CrossRef]
- Salgado, V.; Zago, L.; Antunes, A.E.C.; Miyahira, R.F. Chia (Salvia hispanica L.) Seed germination: A brief review. Plant Foods Hum. Nutr. 2022, 77, 485–494. [Google Scholar] [CrossRef]
- Lemmens, E.; Moroni, A.V.; Pagand, J.; Heirbaut, P.; Ritala, A.; Karlen, Y.; Kim-Anne, L.ê.; Van den Broeck, H.C.; Brouns, F.J.P.H.; De Brier, N.; et al. Impact of cereal seed sprouting on its nutritional and technological properties: A critical review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 305–328. [Google Scholar] [CrossRef]
- Liu, H.; Kang, Y.; Zhao, X.; Liu, Y.; Zhang, X.; Zhang, S. Effects of elicitation on bioactive compounds and biological activities of sprouts. J. Funct. Foods 2019, 53, 136–145. [Google Scholar] [CrossRef]
- de Valença, A.W.; Bake, A.; Brouwer, I.D.; Giller, K.E. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob. Food Secur. 2017, 12, 8–14. [Google Scholar] [CrossRef]
- Aloo, S.O.; Ofosu, F.K.; Kilonzi, S.M.; Shabbir, U.; Oh, D.H. Edible plant sprouts: Health benefits, trends, and opportunities for novel exploration. Nutrients 2021, 13, 2882. [Google Scholar] [CrossRef]
- Huang, J.; Qian, J.; Wang, S.; Li, Y.; Zhai, X.; Olajide, T.M.; Shen, G.X.; Liao, X. Effect of selenium biofortification on bioactive compounds and antioxidant activity in germinated black soybean. J. Food Sci. 2022, 87, 1009–1019. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Castillejo, N.; Martínez-Zamora, L. UV and visible spectrum LED lighting as abiotic elicitors of bioactive compounds in sprouts, microgreens, and baby leaves; A comprehensive review including their mode of action. Foods 2022, 11, 265. [Google Scholar] [CrossRef]
- Wang, J.; Ma, H.; Wang, S. Application of ultrasound, microwaves, and magnetic fields techniques in the germination of cereals. Food Sci. Technol. Res. 2019, 25, 489–497. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majzoobi, M.; Wang, Z.; Teimouri, S.; Pematilleke, N.; Brennan, C.S.; Farahnaky, A. Unlocking the Potential of Sprouted Cereals, Pseudocereals, and Pulses in Combating Malnutrition. Foods 2023, 12, 3901. https://doi.org/10.3390/foods12213901
Majzoobi M, Wang Z, Teimouri S, Pematilleke N, Brennan CS, Farahnaky A. Unlocking the Potential of Sprouted Cereals, Pseudocereals, and Pulses in Combating Malnutrition. Foods. 2023; 12(21):3901. https://doi.org/10.3390/foods12213901
Chicago/Turabian StyleMajzoobi, Mahsa, Ziyu Wang, Shahla Teimouri, Nelum Pematilleke, Charles Stephen Brennan, and Asgar Farahnaky. 2023. "Unlocking the Potential of Sprouted Cereals, Pseudocereals, and Pulses in Combating Malnutrition" Foods 12, no. 21: 3901. https://doi.org/10.3390/foods12213901
APA StyleMajzoobi, M., Wang, Z., Teimouri, S., Pematilleke, N., Brennan, C. S., & Farahnaky, A. (2023). Unlocking the Potential of Sprouted Cereals, Pseudocereals, and Pulses in Combating Malnutrition. Foods, 12(21), 3901. https://doi.org/10.3390/foods12213901