Use of K2CO3 to Obtain Products from Starch-Oil Mixtures by Extrusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Radial Expansion Index
- Ex—radial expansion index
- D—extrudate diameter (mm)
- d—extruder nozzle diameter (mm)
2.2.2. Color Measurement
- ∆E 0–1—undetectable differences.
- ∆E 1–2—minor differences.
- ∆E 2–3.5—medium, detectable differences.
- ∆E 3.5–5—distinct differences.
- ∆E above 5 means significant differences in the hue of the color.
2.2.3. Water Solubility Index and Fat Absorption Index
- WSI—percentage content of entered the solution per 1 g of the material [%, w/w]
- mr—weight of substance entered into the solution [g]
- m—weighed portion, converted to value per 1 g of dry matter [g]
- FAI—percentage content of bound oil per 1 g of the material [%, w/w]
- mm—weight of test tube with wet sediment [g]
- m—weighed portion, converted to value per 1 g of dry matter [g]
2.2.4. The Specific Surface Area (Sbet) of the Water Vapor Adsorption Isotherm
- SBET—specific surface area (m2/g)
- am—monolayer capacity (gH2O/g d.m.)
- σ0—the surface area of the water molecule (10.8 × 10−20 m2/molecule)
- N0—Avogadro’s number (6023∙1023)
- M—molecular weight of water (18 g/mol)
2.2.5. Fat Content
- -
- external (a′)
- -
- internal (a″)
- -
- bound, complexed by amylose (a‴).
2.2.6. Iodine-Binding Capacity (IBC)
2.2.7. Complexing Index (CI)
- CI = Complexing Index (%)
- A0—absorbance of control
- As—absorbance of the sample
2.2.8. Iodine Spectra of Starch Samples
2.2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilo, S.; Schoenlechner, R.; Berghofe, E. Role of Lipids in the Extrusion Cooking Processes. Grasas Aceites 2000, 51, 97–110. [Google Scholar] [CrossRef]
- O’Brien, S.; Wang, Y.J.; Vervaet, C.; Remon, J.P. Starch Phosphates Prepared by Reactive Extrusion as a Sustained Release Agent. Carbohydr. Polym. 2009, 76, 557–566. [Google Scholar] [CrossRef]
- Giri, S.K.; Bandyopadhyay, S. Effect of Extrusion Variables on Extrudate Characteristics of Fish Muscle-Rice Flour Blend in a Single-Screw Extruder. J. Food Process. Preserv. 2000, 24, 177–190. [Google Scholar] [CrossRef]
- Pervaiz, M.; Oakley, P.; Sain, M. Extrusion of Thermoplastic Starch: Effect of “Green” and Common Polyethylene on the Hydrophobicity Characteristics. Mater. Sci. Appl. 2014, 5, 845–856. [Google Scholar] [CrossRef]
- Lin, S.; Hsieh, F.; Huff, H.E. Effects of Lipids and Processing Conditions on Lipid Oxidation of Extruded Dry Pet Food during Storage. Anim. Feed Sci. Technol. 1998, 71, 283–294. [Google Scholar] [CrossRef]
- Colonna, P.; Mercier, C. Macromolecular Modifications of Manioc Starch Components by Extrusion-Cooking with and without Lipids. Carbohydr. Polym. 1983, 3, 87–108. [Google Scholar] [CrossRef]
- Thachil, M.T.; Chouksey, M.K.; Gudipati, V. Amylose-Lipid Complex Formation during Extrusion Cooking: Effect of Added Lipid Type and Amylose Level on Corn-Based Puffed Snacks. Int. J. Food Sci. Technol. 2014, 49, 309–316. [Google Scholar] [CrossRef]
- Schaich, K.M. Metals and Lipid Oxidation. Lipids 1992, 27, 209–218. [Google Scholar] [CrossRef]
- Lampi, A.-M.; Damerau, A.; Li, J.; Moisio, T.; Partanen, R.; Forssell, R.; Piironen, V. Changes in lipids and volatile compounds of oat flours and extrudates during processing and storage. J. Cereal Sci. 2015, 62, 102–109. [Google Scholar] [CrossRef]
- Yilmaz, G.; Jongboom, R.O.J.; Feil, H.; Hennink, W.E. Encapsulation of Sunflower Oil in Starch Matrices via Extrusion: Effect of the Interfacial Properties and Processing Conditions on the Formation of Dispersed Phase Morphologies. Carbohydr. Polym. 2001, 45, 403–410. [Google Scholar] [CrossRef]
- Gray, D.; Bowen, S.; Farhat, I.; Hill, S. Lipid Oxidation in Glassy and Rubbery State Extrudates. Food Chem. 2008, 106, 227–234. [Google Scholar] [CrossRef]
- Genkina, N.K.; Kiseleva, V.I.; Martirosyan, V.V. Different Types of V Amylose–Lipid Inclusion Complexes in Maize Extrudates Revealed by DSC Analysis. Starch Stärke 2015, 67, 752. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Hanna, M. Amylose-Lipid Complex Formation during Single-Screw Extrusion of Various Corn Starches. Cereal Chem. 1994, 71, 582–587. [Google Scholar]
- Mercier, C.; Charbonniere, R.; Grebaut, J.; de la Gueriviere, J.F. Formation of Amylose-Lipid Complexes by Twin-Screw Extrusion Cooking of Manioc Starch. Cereal Chem. 1980, 57, 4–9. [Google Scholar]
- Włodarczyk-Stasiak, M.; Mazurek, A.; Jamroz, J. Effects of Operative Conditions on Products Obtained of Starch-Oil Mixtures by Single-Screw Extrusion. Acta Sci. Pol. Technol. Aliment. 2017, 16, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Junistiaa, L.; Sugiha, A.K.; Manurungb, R.; Picchionia, F.L.; Janssen, L.; Heeresa, H. Synthesis of Higher Fatty Acid Starch Esters Using Vinyl Laurate and Stearate as Reactants. Starch Stärke 2008, 60, 667–675. [Google Scholar] [CrossRef]
- Filip, V.; Zajic, V.; Smidrkal, J. Methanolysis of Rapeseed Oil Triglycerides. Rev. Fr. Corps Gras 1992, 39, 91–92. [Google Scholar]
- Sugih, A.K. Experimental and Modeling Studies on the Synthesis and Properties of Higher Fatty Esters of Corn Starch. In Synthesis and Properties of Starch Based Biomaterials; University of Groningen: Groningen, The Netherlands, 2008; pp. 86–105. [Google Scholar]
- Włodarczyk-Stasiak, M.; Jamroz, J. Analysis of Sorption Properties of Starch-Protein Extrudates with the Use of Water Vapour. J. Food Eng. 2008, 85, 580–589. [Google Scholar] [CrossRef]
- Anderson, R.A.; Conway, H.F.; Pfeifer, V.F.; Griffin, E.L. Gelatinization of Corn Grits by Roll and Extrusion Cooking. Cereal Sci. Today 1969, 14, 4–14. [Google Scholar]
- Beuchat, L. Functional and Electrophoretic Characteristics of Succinylated Peanut Flour Protein. J. Agric. Food Chem. 1977, 25, 258–261. [Google Scholar] [CrossRef]
- Włodarczyk-Stasiak, M.; Mazurek, A. The Use of Starch Drying Kinetics Curves for Experimental Determination of Its Specific Surface Area. Molecules 2021, 26, 5508. [Google Scholar] [CrossRef] [PubMed]
- Gilbert GA, S.S. Methods in Carbohydrate Chemistry. Iodometric Determination of Amylose; Whis, R.L., Ed.; Academic Press: Orlando, FL, USA, 1964. [Google Scholar]
- Sowbhagya, C.M.; Bhattacharya, K. A Simpli- Fied Calorimetric Method for Determination of Amylose Content in Rice. Starch Stärke 1971, 23, 53–56. [Google Scholar] [CrossRef]
- Amft, J.; Bauer, J.L.; Rostek, J.; Spielvogel, S.; Schwarz, K. Effect of Water Addition on the Microstructure, Lipid Incorporation, and Lipid Oxidation of Corn Extrudates. Eur. J. Lipid Sci. Technol. 2019, 121, 1800433. [Google Scholar] [CrossRef]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional Aspects of Food Extrusion: A Review. Int. J. Food Sci. Technol. 2007, 42, 916–929. [Google Scholar] [CrossRef]
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 445–473. [Google Scholar] [CrossRef] [PubMed]
- Raphaelides, S.N.; Arsenoudi, K.; Exarhopoulos, S.; Xu, Z.-M. Effect of Processing History on the Functional and Structural Characteristics of Starch–Fatty Acid Extrudates. Food Res. Int. 2010, 43, 329–341. [Google Scholar] [CrossRef]
- Raphaelides, S.N.; Dimitreli, G.; Exarhopoulos, S.; Kokonidis, G.; Tzani, E. Effect of Processing History on the Physicochemical and Structural Characteristics of Starch-Fatty Acid Extrudates Plasticized with Glycerol. Carbohydr. Polym. 2011, 83, 727–736. [Google Scholar] [CrossRef]
- Świtka, J.; Krasowski, Z. Application of Water Sorption Isotherms in Food Technology. Przem. Spoz. 1990, 44, 105–107. [Google Scholar]
- Al-Muhtaseb, A.H.; McMinn, W.A.M.; Magee, T.R.A. Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food Bioprod. Process. 2002, 80, 118–128. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Hanna, M. Modification of Ofmicrostructure of Starch Extruded with Selected Lipids. Starch Stärke 1997, 49, 12–20. [Google Scholar] [CrossRef]
- Dextrumaux, A.; Bouvier, J.M.; Burri, J. Effect of Free Fatty Acids Addition on Corn Gritsextrusion Cooking. Cereal Chem. 1999, 76, 699–704. [Google Scholar] [CrossRef]
- Izzo, M.T.; Ho, C.-T. Protein-Lipid Interaction during Single-Screw Extrusion of Zein and Corn Oil. Cereal Chem. 1998, 66, 47–51. [Google Scholar]
- Zahler, P.; Niggli, V. The use of organic solvent in membrane research. In Methods in Membrane Biology; Korn, E.D., Ed.; Plenum Press: New York, NY, USA, 1974. [Google Scholar]
- Zadernowski, R.; Nowak-Polanska, H.; Wicklund, T.; Fornal, L. Changes in Oat Lipids Affected by Extrusion. Nahrung 1997, 41, 224–227. [Google Scholar] [CrossRef]
- Strange, E.D.; Schaich, K.M. Extraction of Lipids from Extruded Corn-Soy Blends. J. Food Lipids 2000, 7, 217–224. [Google Scholar] [CrossRef]
- Putseys, J.A.; Lamberts, L.; Delcour, J.A. Amylose-Inclusion Complexes: Formation, Identity and Physico-Chemical Properties. J. Cereal Sci. 2010, 51, 238–247. [Google Scholar] [CrossRef]
- Chao, C.H.; Yu, J.; Wang, S.; Copeland, L.; Wang, S. Mechanisms Underlying the Formation of Complexes between Maize Starch and Lipids. J. Agric. Food Chem 2018, 66, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, S.; Hanna, M.A. Extrusion Processing Conditions for Amylose-Lipid Complexing. Cereal Chem. 1994, 71, 587–593. [Google Scholar]
- Matignon, A.; Tecante, A. Starch Retrogradation: From Starch Components to Cereal Products. Food Hydrocoll. 2017, 68, 43–52. [Google Scholar] [CrossRef]
- Sokhey, A.S.; Chinnaswamy, R. Physicochemical Properties of Irradiation Modified Starch Extrudates. Food Struct. 1992, 11, 61–371. [Google Scholar]
Code of Sample | Potato Starch | Catalyst K2CO3 | Oils | |
---|---|---|---|---|
Rapeseed Oil | Sunflower Oil | |||
(g/100 g) | ||||
Control (c) | 100 | 0 | 0 | 0 |
R1 | 96 | 3 | 3 | - |
R2 | 91 | 3 | 6 | - |
R3 | 88 | 3 | 9 | - |
S1 | 96 | 3 | - | 3 |
S2 | 91 | 3 | - | 6 |
S3 | 88 | 3 | - | 9 |
Code of Sample | Temperature Profile (°C) | Screw Speed (rpm/min) | Nozzle Diameter (mm) | Moisture (%) |
---|---|---|---|---|
H | 100/100/100/75/75/60 | 200 | 3.5 | 22 |
L | 80/80/80/60/60/50 |
Radial Expansion (EX) | |||
---|---|---|---|
cH | 2.84 ± 0.02 b | cL | 2.97 ± 0.04 b |
R1H | 1.88 ± 0.01 a | R1L | 2.03 ± 0.04 ab |
R2H | 1.76 ± 0.04 a | R2L | 2.03 ± 0.03 ab |
R3H | 1.82 ± 0.05 a | R3L | 2.03 ± 0.02 ab |
S1H | 2.35 ± 0.11 b | S1L | 2.13 ± 0.04 ab |
S2H | 2.03 ± 0.04 ab | S2L | 2.01 ± 0.01 ab |
S3H | 1.82 ± 0.03 a | S3L | 2.04 ± 0.02 ab |
Color Measurement in the L*, a*, b* System | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sample | L | a | b | ∆E | Sample | L | a | b | ∆E |
cH | 46.66 ± 0.42 b | 0.33 ± 0.07 a | 2.28 ± 0.04 a | - | cL | 48.81 ± 1.28 b | 0.18 ± 0.07 a | 2.55 ± 0.21 a | - |
R1H | 42.02 ± 0.59 a | 1.88 ± 0.11 a | 5.64 ± 0.15 a | 5.94 | R1L | 41.89 ± 0.23 a | 1.66 ± 0.10 a | 5.30 ± 0.41 a | 7.59 |
R2H | 42.15 ± 0.64 a | 2.44 ± 0.22 ab | 6.14 ± 0.33 ab | 6.31 | R2L | 43.35 ± 0.63 a | 1.81 ± 0.13 ab | 5.35 ± 0.28 a | 6.35 |
R3H | 42.94 ± 0.46 a | 1.83 ± 0.24 a | 3.63 ± 0.38 a | 4.24 | R3L | 45.04 ± 0.52 ab | 2.51 ± 0.15 b | 7.74 ± 0.32 b | 6.82 |
S1H | 42.12 ± 0.53 a | 1.51 ± 0.10 a | 4.86 ± 0.16 a | 5.36 | S1L | 43.68 ± 0.30 a | 1.52 ± 0.10 a | 6.19 ± 0.20 ab | 6.44 |
S2H | 44.38 ± 0.74 a | 2.54 ± 0.32 ab | 7.65 ± 0.39 ab | 6.26 | S2L | 43.95 ± 1.14 a | 1.63 ± 0.14 a | 6.63 ± 0.34 ab | 6.51 |
S3H | 44.76 ± 0.21 a | 3.64 ± 0.09 b | 8.91 ± 0.15 b | 7.67 | S3L | 45.45 ± 0.70 ab | 2.85 ± 0.15 b | 4.94 ± 1.32 a | 4.91 |
Selected Functional Properties | |||||
---|---|---|---|---|---|
Samples | WSI | FAI | Samples | WSI | FAI |
cH | 19.09 ± 2.10 b | 165.25 ± 7.53 ab | cL | 20.09 ± 3.09 b | 177.75 ± 1.76 b |
R1H | 8.24 ± 0.41 a | 156.69 ± 2.54 a | R1L | 9.98 ± 0.25 a | 169.258 ± 3.39 a |
R2H | 8.58 ± 0.63 a | 157.27 ± 0.56 a | R2L | 9.47 ± 0.92 a | 165.82 ± 4.24 a |
R3H | 7.97 ± 0.81 a | 163.54 ± 2.72 ab | R3L | 8.61 ± 1.13 a | 164.57 ± 7.74 a |
S1H | 6.05 ± 0.27 a | 167.28 ± 5.37 b | S1L | 9.21 ± 0.34 a | 162.11 ± 1.69 a |
S2H | 7.08 ± 6.95 a | 161.51 ± 7.07 ab | S2L | 9.05 ± 7.49 a | 167.81 ± 3.11 a |
S3H | 5.00 ± 0.11 a | 165.41 ± 5.83 ab | S3L | 9.06 ± 7.01 a | 161.49 ± 6.46 a |
Specific Surface Area (SBET; m2/g) | |||
---|---|---|---|
cH | 210.04 ± 8.58 ab | cL | 179.85 ± 8.25 a |
R1H | 199.45 ± 10.77 a | R1L | 234.73 ± 9.67 b |
R2H | 204.09 ± 8.18 ab | R2L | 181.49 ± 8.67 a |
R3H | 199.30 ± 9.05 a | R3L | 186.90 ± 7.09 a |
S1H | 204.16 ± 11.25 ab | S1L | 187.83 ± 11.34 ab |
S2H | 197.14 ± 10.15 a | S2L | 184.18 ± 10.59 a |
S3H | 205.35 ± 6.29 ab | S3L | 203.38 ± 11.05 ab |
Sample | Fat Content (g/100 g) | The Percentage of Fat Binding (%) * | The Total | ||||
---|---|---|---|---|---|---|---|
External Fat Content | Internal Fat Content | Bound Complexed Fat by Amylose | The External | The Internal | The Complexed | ||
cH | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | - | - | - | - |
R1H | 0.006 ± 0.001 a | 0.713 ± 0.003 a | 0.560 ± 0.002 a | 0.20 | 23.77 | 18.67 | 42.63 |
R2H | 0.084 ± 0.003 ab | 1.736 ± 0.008 ab | 0.903 ± 0.004 ab | 1.40 | 28.93 | 15.05 | 45.38 |
R3H | 0.015 ± 0.002 a | 2.387 ± 0.007 b | 1.357 ± 0.006 b | 0.17 | 26.52 | 15.08 | 41.77 |
S1H | 0.018 ± 0.001 a | 0.234 ± 0.004 a | 0.900 ± 0.005 ab | 0.60 | 7.80 | 30.00 | 38.42 |
S2H | 0.012 ± 0.001 a | 1.271 ± 0.009 ab | 1.063 ± 0.006 ab | 0.20 | 21.18 | 17.72 | 39.08 |
S3H | 0.118 ± 0.005 b | 0.856 ± 0.005 a | 1.428 ± 0.007 b | 1.31 | 9.51 | 15.87 | 26.68 |
cL | 0.000 ± 0.000 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | - | - | - | - |
R1L | 0.017 ± 0.002 a | 1.559 ± 0.005 a | 0.798 ± 0.005 a | 0.57 | 51.97 | 26.60 | 79.14 |
R2L | 0.020 ± 0.001 a | 2.064 ± 0.008 b | 1.165 ± 0.008 ab | 0.33 | 34.40 | 19.42 | 54.16 |
R3L | 0.007 ± 0.001 a | 2.403 ± 0.005 b | 1.990 ± 0.006 b | 0.08 | 26.70 | 22.11 | 48.89 |
S1L | 0.084 ± 0.003 b | 0.582 ± 0.007 a | 0.957 ± 0.008 ab | 2.80 | 19.40 | 31.90 | 54.12 |
S2L | 0.023 ± 0.002 a | 0.886 ± 0.007 a | 1.295 ± 0.010 ab | 0.38 | 14.77 | 21.58 | 36.74 |
S3L | 0.047 ± 0.002 ab | 1.865 ± 0.010 ab | 1.745 ± 0.005 b | 0.52 | 20.72 | 19.39 | 40.63 |
Sample | IBC (mg/100 mg) | Complexed Starch Index (%) | Iodine Absorption Spectra (nm) | |||
---|---|---|---|---|---|---|
After Defatted | Before Defatted | |||||
Ratio 630/520 | A Max | Ratio 630/520 | A Max | |||
cH | 1.96 | - | 1.98 | 628 | 1.95 | 629 |
R1H | 0.10 | 94.66 | 1.91 | 629 | 1.88 | 625 |
R2H | 0.12 | 93.85 | 1.92 | 625 | 1.90 | 625 |
R3H | 0.07 | 96.43 | 1.95 | 627 | 1.94 | 623 |
S1H | 0.25 | 87.45 | 1.92 | 626 | 1.87 | 625 |
S2H | 0.32 | 83.41 | 1.91 | 626 | 1.84 | 625 |
S3H | 0.42 | 78.33 | 1.86 | 622 | 1.80 | 623 |
cL | 1.83 | - | 1.76 | 625 | 1.99 | 635 |
R1L | 0.18 | 90.31 | 1.87 | 626 | 1.80 | 623 |
R2L | 0.13 | 92.91 | 1.89 | 626 | 1.68 | 618 |
R3L | 0.20 | 89.34 | 1.91 | 627 | 1.85 | 625 |
S1L | 0.14 | 92.33 | 1.95 | 627 | 1.84 | 622 |
S2L | 0.33 | 82.27 | 1.92 | 626 | 1.80 | 619 |
S3L | 0.47 | 74.59 | 1.90 | 627 | 1.66 | 618 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Włodarczyk-Stasiak, M. Use of K2CO3 to Obtain Products from Starch-Oil Mixtures by Extrusion. Foods 2023, 12, 3835. https://doi.org/10.3390/foods12203835
Włodarczyk-Stasiak M. Use of K2CO3 to Obtain Products from Starch-Oil Mixtures by Extrusion. Foods. 2023; 12(20):3835. https://doi.org/10.3390/foods12203835
Chicago/Turabian StyleWłodarczyk-Stasiak, Marzena. 2023. "Use of K2CO3 to Obtain Products from Starch-Oil Mixtures by Extrusion" Foods 12, no. 20: 3835. https://doi.org/10.3390/foods12203835
APA StyleWłodarczyk-Stasiak, M. (2023). Use of K2CO3 to Obtain Products from Starch-Oil Mixtures by Extrusion. Foods, 12(20), 3835. https://doi.org/10.3390/foods12203835