Effect of Piperine on Saltiness Perception
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Threshold Testing
2.3. Model Solutions
2.4. Soup
2.5. Statistical Analysis
2.5.1. Threshold Testing
2.5.2. Model Solutions
2.5.3. Soup
3. Results and Discussion
3.1. Threshold Testing and Model Solutions
3.2. Soup
3.3. Future Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powles, J.; Fahimi, S.; Micha, R.; Khatibzadeh, S.; Shi, P.; Ezzati, M.; Engell, R.E.; Lim, S.S.; Danaei, G.; Mozaffarian, D.; et al. Global, Regional and National Sodium Intakes in 1990 and 2010: A Systematic Analysis of 24 h Urinary Sodium Excretion and Dietary Surveys Worldwide. BMJ Open 2013, 3, e003733. [Google Scholar] [CrossRef] [Green Version]
- Arcand, J.; Campbell, N.R.C. Dietary Sodium Reduction in Canada: More Action Is Needed to Reach the 2025 Global Targets. CMAJ 2022, 194, E387–E388. [Google Scholar] [CrossRef] [PubMed]
- Belc, N.; Smeu, I.; Macri, A.; Vallauri, D.; Flynn, K. Reformulating Foods to Meet Current Scientific Knowledge about Salt, Sugar and Fats. Trends Food Sci. Technol. 2019, 84, 25–28. [Google Scholar] [CrossRef]
- Vinitha, K.; Sethupathy, P.; Moses, J.A.; Anandharamakrishnan, C. Conventional and Emerging Approaches for Reducing Dietary Intake of Salt. Food Res. Int. 2022, 152, 110933. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhou, X.; Hu, Z.; Lu, W.; Zhao, Y.; Fang, Y. Food and Salt Structure Design for Salt Reducing. Innov. Food Sci. Emerg. Technol. 2021, 67, 102570. [Google Scholar] [CrossRef]
- Thomas-Danguin, T.; Guichard, E.; Salles, C. Cross-Modal Interactions as a Strategy to Enhance Salty Taste and to Maintain Liking of Low-Salt Food: A Review. Food Funct. 2019, 10, 5269–5281. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.J.; Wang, J.; Sharkey, A.L.; Dowling, E.A.; Curtis, C.J.; Kessler, K.A. US Food Industry Progress Toward Salt Reduction, 2009–2018. Am. J. Public Health 2022, 112, 325–333. [Google Scholar] [CrossRef]
- Kurtz, T.W.; Pravenec, M.; DiCarlo, S.E. Will Food and Drug Administration Guidance to Reduce the Salt Content of Processed Foods Reduce Salt Intake and Save Lives? Hypertension 2022, 79, 809–812. [Google Scholar] [CrossRef]
- Beaglehole, R.; Bonita, R.; Horton, R.; Ezzati, M.; Bhala, N.; Amuyunzu-Nyamongo, M.; Mwatsama, M.; Reddy, K.S. Measuring Progress on NCDs: One Goal and Five Targets. Lancet 2012, 380, 1283–1285. [Google Scholar] [CrossRef] [PubMed]
- Hoppu, U.; Hopia, A.; Pohjanheimo, T.; Rotola-Pukkila, M.; Mäkinen, S.; Pihlanto, A.; Sandell, M. Effect of Salt Reduction on Consumer Acceptance and Sensory Quality of Food. Foods 2017, 6, 103. [Google Scholar] [CrossRef]
- Spencer, M.; Dalton, P. The Third Dimension of Flavor: A Chemesthetic Approach to Healthier Eating (A Review). J. Sens. Stud. 2020, 35, e12551. [Google Scholar] [CrossRef]
- Spence, C. Multisensory Flavour Perception. Curr. Biol. 2013, 23, R365–R369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, P.; Müller, L.; Hummel, T. Peri-Threshold Trigeminal Stimulation with Capsaicin Increases Taste Sensitivity in Humans. Chem. Percept. 2022, 15, 1–7. [Google Scholar] [CrossRef]
- Delwiche, J. The Impact of Perceptual Interactions on Perceived Flavor. Food Qual. Prefer. 2004, 15, 137–146. [Google Scholar] [CrossRef]
- Rozin, P.; Schiller, D. The Nature and Acquisition of a Preference for Chili Pepper by Humans. Motiv. Emot. 1980, 4, 77–101. [Google Scholar] [CrossRef]
- Yang, F.; Zheng, J. Understand Spiciness: Mechanism of TRPV1 Channel Activation by Capsaicin. Protein Cell 2017, 8, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Carstens, E.; Iodi Carstens, M.; Dessirier, J.-M.; O’Mahony, M.; Simons, C.T.; Sudo, M.; Sudo, S. It Hurts so Good: Oral Irritation by Spices and Carbonated Drinks and the Underlying Neural Mechanisms. Food Qual. Prefer. 2002, 13, 431–443. [Google Scholar] [CrossRef]
- Motoki, K.; Saito, T.; Nouchi, R.; Sugiura, M. Cross-Modal Correspondences Between Temperature and Taste Attributes. Front. Psychol. 2020, 11, 571852. [Google Scholar] [CrossRef]
- Utama-ang, N.; Cheewinworasak, T.; Simawonthamgul, N.; Samakradhamrongthai, R.S. Influence of Garlic and Pepper Powder on Physicochemical and Sensory Qualities of Flavoured Rice Noodle. Sci. Rep. 2020, 10, 8538. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K. Black Pepper and Its Pungent Principle-Piperine: A Review of Diverse Physiological Effects. Crit. Rev. Food Sci. Nutr. 2007, 47, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Haq, I.-U.; Imran, M.; Nadeem, M.; Tufail, T.; Gondal, T.A.; Mubarak, M.S. Piperine: A Review of Its Biological Effects. Phytother. Res. 2021, 35, 680–700. [Google Scholar] [CrossRef] [PubMed]
- Eib, S.; Schneider, D.J.; Hensel, O.; Seuß-Baum, I. Evaluation of Trigeminal Pungency Perception of Allyl Isothiocyanate—A Time Intensity (TI) Study. Food Qual. Prefer. 2021, 87, 104039. [Google Scholar] [CrossRef]
- Laing, D.G.; Jinks, A. Flavour Perception Mechanisms. Trends Food Sci. Technol. 1996, 7, 387–389. [Google Scholar] [CrossRef]
- Green, B.G. Chemesthesis: Pungency as a Component of Flavor. Trends Food Sci. Technol. 1996, 7, 415–420. [Google Scholar] [CrossRef]
- Gilmore, M.M.; Green, B.G. Sensory Irritation and Taste Produced by NaCl and Citric Acid: Effects of Capsaicin Desensitization. Chem. Senses 1993, 18, 257–272. [Google Scholar] [CrossRef]
- Li, Q.; Cui, Y.; Jin, R.; Lang, H.; Yu, H.; Sun, F.; He, C.; Ma, T.; Li, Y.; Zhou, X.; et al. Enjoyment of Spicy Flavor Enhances Central Salty-Taste Perception and Reduces Salt Intake and Blood Pressure. Hypertension 2017, 70, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Narukawa, M.; Sasaki, S.; Watanabe, T. Effect of Capsaicin on Salt Taste Sensitivity in Humans. Food Sci. Technol. Res. 2011, 17, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Aumpa, P.; Khawsud, A.; Jannu, T.; Renaldi, G.; Utama-Ang, N.; Bai-Ngew, S.; Walter, P.; Samakradhamrongthai, R.S. Determination for a Suitable Ratio of Dried Black Pepper and Cinnamon Powder in the Development of Mixed-Spice Ice Cream. Sci. Rep. 2022, 12, 15121. [Google Scholar] [CrossRef] [PubMed]
- Lawless, H.; Stevens, D.A. Effects of Oral Chemical Irritation on Taste. Physiol. Behav. 1984, 32, 995–998. [Google Scholar] [CrossRef]
- Lawless, H.T.; Stevens, D.A. Responses by Humans to Oral Chemical Irritants as a Function of Locus of Stimulation. Percept. Psychophys. 1988, 43, 72–78. [Google Scholar] [CrossRef]
- Simons, C.T.; O’Mahony, M.; Carstens, E. Taste Suppression Following Lingual Capsaicin Pre-Treatment in Humans. Chem. Senses 2002, 27, 353–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas-Danguin, T.; Sinding, C.; Tournier, C.; Saint-Eve, A. 5-Multimodal Interactions. In Flavor; Etiévant, P., Guichard, E., Salles, C., Voilley, A., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2016; pp. 121–141. ISBN 978-0-08-100295-7. [Google Scholar]
- Byrnes, N.K.; Hayes, J.E. Behavioral Measures of Risk Tasking, Sensation Seeking and Sensitivity to Reward May Reflect Different Motivations for Spicy Food Liking and Consumption. Appetite 2016, 103, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Bastian, B.; Jetten, J.; Hornsey, M.J. Gustatory Pleasure and Pain. The Offset of Acute Physical Pain Enhances Responsiveness to Taste. Appetite 2014, 72, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Spence, C. Why Is Piquant/Spicy Food so Popular? Int. J. Gastron. Food Sci. 2018, 12, 16–21. [Google Scholar] [CrossRef]
- Hayes, J.E.; Sullivan, B.S.; Duffy, V.B. Explaining Variability in Sodium Intake through Oral Sensory Phenotype, Salt Sensation and Liking. Physiol. Behav. 2010, 100, 369–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolden, A.A.; McGeary, J.E.; Hayes, J.E. Differential Bitterness in Capsaicin, Piperine, and Ethanol Associates with Polymorphisms in Multiple Bitter Taste Receptor Genes. Physiol. Behav. 2016, 156, 117–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasrawi, C.W.; Pangborn, R.M. The Influence of Tastants on Oral Irritation by Capsaicin. J. Sens. Stud. 1989, 3, 287–294. [Google Scholar] [CrossRef]
- Hayes, J.E.; Allen, A.L.; Bennett, S.M. Direct Comparison of the Generalized Visual Analog Scale (GVAS) and General Labeled Magnitude Scale (GLMS). Food Qual. Prefer. 2013, 28, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Castura, J.C.; Antúnez, L.; Giménez, A.; Ares, G. Temporal Check-All-That-Apply (TCATA): A Novel Dynamic Method for Characterizing Products. Food Qual. Prefer. 2016, 47, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Wismer, W.V. Temporal Sensory Profiles of Regular and Sodium-Reduced Foods Elicited by Temporal Dominance of Sensations (TDS) and Temporal Check-All-That-Apply (TCATA). Foods 2022, 11, 457. [Google Scholar] [CrossRef]
- Heymann, H.; Lawless, H.T. Sensory Evaluation of Food: Principles and Practices; Springer Science & Business Media: Berlin, Germany, 2013; ISBN 978-1-4419-7452-5. [Google Scholar]
- McMahon, K.M.; Culver, C.; Castura, J.C.; Ross, C.F. Perception of Carbonation in Sparkling Wines Using Descriptive Analysis (DA) and Temporal Check-All-That-Apply (TCATA). Food Qual. Prefer. 2017, 59, 14–26. [Google Scholar] [CrossRef]
- Pangborn, R.M.; Gibbs, Z.M.; Tassan, C. Effect of Hydrocolloids on Apparent Viscosity and Sensory Properties of Selected Beverages1. J. Texture Stud. 1978, 9, 415–436. [Google Scholar] [CrossRef]
- Soukoulis, C.; Lyroni, E.; Tzia, C. Sensory Profiling and Hedonic Judgement of Probiotic Ice Cream as a Function of Hydrocolloids, Yogurt and Milk Fat Content. LWT-Food Sci. Technol. 2010, 43, 1351–1358. [Google Scholar] [CrossRef]
- Keast, R.S.J.; Breslin, P.A.S. An Overview of Binary Taste–Taste Interactions. Food Qual. Prefer. 2003, 14, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.T.; Besser, G.; Bayer, K.; Prem, B.; Mueller, C.A.; Renner, B. Bitter Taste Disrupts Spatial Discrimination of Piperine-Evoked Burning Sensations: A Pilot Study. Biology 2021, 10, 886. [Google Scholar] [CrossRef] [PubMed]
- Green, B.G.; Hayes, J.E. Individual Differences in Perception of Bitterness from Capsaicin, Piperine and Zingerone. Chem. Senses 2004, 29, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.; Green, B.G. The Psychophysical Relationship between Bitter Taste and Burning Sensation: Evidence of Qualitative Similarity. Chem. Senses 2007, 32, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Lyu, C.; Schijvens, D.; Hayes, J.E.; Stieger, M. Capsaicin Burn Increases Thickness Discrimination Thresholds Independently of Chronic Chili Intake. Food Res. Int. 2021, 149, 110702. [Google Scholar] [CrossRef]
- Scott, N.O.; Burgess, B.; Tepper, B.J. Perception and Liking of Soups Flavored with Chipotle Chili and Ginger Extracts: Effects of PROP Taster Status, Personality Traits and Emotions. Food Qual. Prefer. 2019, 73, 192–201. [Google Scholar] [CrossRef]
- Prescott, J.; Allen, S.; Stephens, L. Interactions between Oral Chemical Irritation, Taste and Temperature. Chem. Senses 1993, 18, 389–404. [Google Scholar] [CrossRef]
- Prescott, J.; Stevenson, R.J. Effects of Oral Chemical Irritation on Tastes and Flavors in Frequent and Infrequent Users of Chili. Physiol. Behav. 1995, 58, 1117–1127. [Google Scholar] [CrossRef]
- Rentmeister-Bryant, H.; Green, B.G. Perceived Irritation during Ingestion of Capsaicin or Piperine: Comparison of Trigeminal and Non-Trigeminal Areas. Chem. Senses 1997, 22, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cliff, M.; Heymann, H. Descriptive Analysis of Oral Pungency. J. Sens. Stud. 1992, 7, 279–290. [Google Scholar] [CrossRef]
- Prescott, J.; Soo, J.; Campbell, H.; Roberts, C. Responses of PROP Taster Groups to Variations in Sensory Qualities within Foods and Beverages. Physiol. Behav. 2004, 82, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Nolden, A.A.; Hayes, J.E. Perceptual and Affective Responses to Sampled Capsaicin Differ by Reported Intake. Food Qual. Prefer. 2017, 55, 26–34. [Google Scholar] [CrossRef] [PubMed]
Threshold Testing (n = 72) | Model Solutions (n = 78) | Soup (n = 75) | ||
---|---|---|---|---|
Gender | Male | 43 | 45 | 42 |
Female | 57 | 55 | 58 | |
Age | 18–20 | 5 | 6 | 5 |
21–29 | 30 | 28 | 33 | |
30–39 | 21 | 23 | 23 | |
40–49 | 17 | 14 | 15 | |
50–59 | 17 | 19 | 16 | |
60–65 | 10 | 10 | 8 |
0.55 ppm Piperine | 0.2% Xanthan Gum | 0.75 mM NaCl | 0.55 ppm Piperine and 0.2% Xanthan Gum | 0.55 ppm Piperine and 0.75 mM NaCl | 0.55 ppm Piperine, 0.75 mM NaCl and 0.2% Xanthan Gum | |
---|---|---|---|---|---|---|
Saltiness | 0.56 a 1,2,3 ± 0.07 | 0.27 b ± 0.02 | 1.65 c ± 0.15 | 0.42 ab ± 0.12 | 1.94 d ± 0.09 | 1.73 cd ± 0.05 |
Bitterness | 0.64 a ± 0.05 | 0.31 b ± 0.03 | 0.50 ab ± 0.08 | 0.54 ab ± 0.04 | 0.79 a ± 0.05 | 0.78 a ± 0.06 |
Sweetness | 0.23 a ± 0.03 | 0.53 b ± 0.04 | 0.26 a ± 0.02 | 0.28 a ± 0.08 | 0.26 a ± 0.07 | 0.24 a ± 0.06 |
Sourness | 0.37 a ± 0.04 | 0.44 a ± 0.06 | 0.23 a ± 0.05 | 0.44 a ± 0.05 | 0.45 a ± 0.03 | 0.25 a ± 0.02 |
Umami | 0.63 a ± 0.05 | 0.60 a ± 0.03 | 0.60 a ± 0.04 | 0.53 a ± 0.04 | 0.59 a ± 0.05 | 0.55 a ± 0.09 |
Burning and Stinging | 1.53 a ± 0.06 | 0.11 b ± 0.02 | 0.35 c ± 0.04 | 1.23 d ± 0.09 | 1.55 a ± 0.09 | 1.39 ad ± 0.08 |
Sample | Appearance | Flavour | Texture | Overall Liking | Saltiness |
---|---|---|---|---|---|
Control | 4.8 a 1,2,3 ± 1.1 | 6.0 a ± 0.9 | 6.1 a ± 0.8 | 6.0 a ± 1.1 | 1.11 a 4 ±0.04 |
Soup with Piperine | 5.6 b ± 1.2 | 5.6 b ± 1.2 | 6.1 a ± 1.1 | 5.5 b ± 1.3 | 1.36 b ± 0.05 |
Attribute | Control | Soup with Piperine |
---|---|---|
Salty | 0.199 a 1 | 0.160 b |
Savoury | 0.182 a | 0.125 b |
Peppery | 0.088 a | 0.303 b |
Sweet | 0.132 a | 0.049 b |
Metallic | 0.035 a | 0.030 a |
Bitter | 0.019 a | 0.074 b |
Sour | 0.021 a | 0.052 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moss, R.; Fisher, C.; Gorman, M.; Knowles, S.; LeBlanc, J.; Ritchie, C.; Schindell, K.; Ettinger, L.; McSweeney, M.B. Effect of Piperine on Saltiness Perception. Foods 2023, 12, 296. https://doi.org/10.3390/foods12020296
Moss R, Fisher C, Gorman M, Knowles S, LeBlanc J, Ritchie C, Schindell K, Ettinger L, McSweeney MB. Effect of Piperine on Saltiness Perception. Foods. 2023; 12(2):296. https://doi.org/10.3390/foods12020296
Chicago/Turabian StyleMoss, Rachael, Cassie Fisher, Mackenzie Gorman, Sophie Knowles, Jeanne LeBlanc, Christopher Ritchie, Kaelyn Schindell, Laurel Ettinger, and Matthew B. McSweeney. 2023. "Effect of Piperine on Saltiness Perception" Foods 12, no. 2: 296. https://doi.org/10.3390/foods12020296
APA StyleMoss, R., Fisher, C., Gorman, M., Knowles, S., LeBlanc, J., Ritchie, C., Schindell, K., Ettinger, L., & McSweeney, M. B. (2023). Effect of Piperine on Saltiness Perception. Foods, 12(2), 296. https://doi.org/10.3390/foods12020296